8. Least squares

- least squares problem
- solution of a least squares problem
- solving least squares problems

Least squares problem

given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^{m}$, find vector $x \in \mathbf{R}^{n}$ that minimizes

$$
\|A x-b\|^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right)^{2}
$$

- "least squares" because we minimize a sum of squares of affine functions:

$$
\|A x-b\|^{2}=\sum_{i=1}^{m} r_{i}(x)^{2}, \quad r_{i}(x)=\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}
$$

- the problem is also called the linear least squares problem

Example

$$
A=\left[\begin{array}{cc}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right], \quad b=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

- the least squares solution \hat{x} minimizes

$$
f(x)=\|A x-b\|^{2}=\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}
$$

- to find \hat{x}, set derivatives with respect to x_{1} and x_{2} equal to zero:

$$
10 x_{1}-2 x_{2}-4=0, \quad-2 x_{1}+10 x_{2}+4=0
$$

solution is $\left(\hat{x}_{1}, \hat{x}_{2}\right)=(1 / 3,-1 / 3)$

Least squares and linear equations

$$
\text { minimize }\|A x-b\|^{2}
$$

- solution of the least squares problem: any \hat{x} that satisfies

$$
\|A \hat{x}-b\| \leq\|A x-b\| \quad \text { for all } x
$$

- $\hat{r}=b-A \hat{x}$ is the residual vector
- if $\hat{r}=0$, then \hat{x} solves the linear equation $A x=b$
- if $\hat{r} \neq 0$, then \hat{x} is a least squares approximate solution of the equation
- in most least squares applications, $m>n$ and $A x=b$ has no solution

Column interpretation

least squares problem in terms of columns $a_{1}, a_{2}, \ldots, a_{n}$ of A :

$$
\text { minimize }\|A x-b\|^{2}=\left\|\sum_{j=1}^{n} a_{j} x_{j}-b\right\|^{2}
$$

- $A \hat{x}$ is the vector in range $(A)=\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ closest to b
- geometric intuition suggests that $\hat{r}=b-A \hat{x}$ is orthogonal to range (A)

Example: advertising purchases

- m demographic groups; n advertising channels
- $A_{i j}$ is \# impressions (views) in group i per dollar spent on ads in channel j
- x_{j} is amount of advertising purchased in channel j
- $(A x)_{i}$ is number of impressions in group i
- b_{i} is target number of impressions in group i

Example: $m=10, n=3, b=10^{3} 1$

Columns of matrix A

Target b and least squares result $A \hat{x}$

Example: illumination

- n lamps at given positions above an area divided in m regions
- $A_{i j}$ is illumination in region i if lamp j is on with power 1 and other lamps are off
- x_{j} is power of lamp j
- $(A x)_{i}$ is illumination level at region i
- b_{i} is target illumination level at region i

Example: $m=25^{2}, n=10$; figure shows position and height of each lamp

Example: illumination

- left: illumination pattern for equal lamp powers $(x=1)$
- right: illumination pattern for least squares solution \hat{x}, with $b=\mathbf{1}$

Outline

- least squares problem
- solution of a least squares problem
- solving least squares problems

Solution of a least squares problem

if A has linearly independent columns (is left-invertible), then the vector

$$
\begin{aligned}
\hat{x} & =\left(A^{T} A\right)^{-1} A^{T} b \\
& =A^{\dagger} b
\end{aligned}
$$

is the unique solution of the least squares problem

$$
\text { minimize } \quad\|A x-b\|^{2}
$$

- in other words, if $x \neq \hat{x}$, then $\|A x-b\|^{2}>\|A \hat{x}-b\|^{2}$
- recall from page 4.22 that

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

is called the pseudo-inverse of a left-invertible matrix

Proof

we show that $\|A x-b\|^{2}>\|A \hat{x}-b\|^{2}$ for $x \neq \hat{x}$:

$$
\begin{aligned}
\|A x-b\|^{2} & =\|A(x-\hat{x})+(A \hat{x}-b)\|^{2} \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2} \\
& >\|A \hat{x}-b\|^{2}
\end{aligned}
$$

- 2nd step follows from $A(x-\hat{x}) \perp(A \hat{x}-b)$:

$$
(A(x-\hat{x}))^{T}(A \hat{x}-b)=(x-\hat{x})^{T}\left(A^{T} A \hat{x}-A^{T} b\right)=0
$$

- 3rd step follows from linear independence of columns of A :

$$
A(x-\hat{x}) \neq 0 \quad \text { if } x \neq \hat{x}
$$

Derivation from calculus

$$
f(x)=\|A x-b\|^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right)^{2}
$$

- partial derivative of f with respect to x_{k}

$$
\frac{\partial f}{\partial x_{k}}(x)=2 \sum_{i=1}^{m} A_{i k}\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right)=2\left(A^{T}(A x-b)\right)_{k}
$$

- gradient of f is

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right)=2 A^{T}(A x-b)
$$

- minimizer \hat{x} of $f(x)$ satisfies $\nabla f(\hat{x})=2 A^{T}(A \hat{x}-b)=0$

Geometric interpretation

residual vector $\hat{r}=b-A \hat{x}$ satisfies $A^{T} \hat{r}=A^{T}(b-A \hat{x})=0$


```
range}(A)=\operatorname{span}(\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{}
```

- residual vector \hat{r} is orthogonal to every column of A; hence, to range (A)
- projection on range (A) is a linear function with coefficient matrix

$$
A\left(A^{T} A\right)^{-1} A^{T}=A A^{\dagger}
$$

Outline

- least squares problem
- solution of a least squares problem
- solving least squares problems

Normal equations

$$
A^{T} A x=A^{T} b
$$

- these equations are called the normal equations of the least squares problem
- coefficient matrix $A^{T} A$ is the Gram matrix of A
- equivalent to $\nabla f(x)=0$ where $f(x)=\|A x-b\|^{2}$
- all solutions of the least squares problem satisfy the normal equations
if A has linearly independent columns, then:
- $A^{T} A$ is nonsingular (see page 4.21)
- normal equations have a unique solution $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$

QR factorization method

rewrite least squares solution using QR factorization $A=Q R$

$$
\begin{aligned}
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b & =\left((Q R)^{T}(Q R)\right)^{-1}(Q R)^{T} b \\
& =\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} b \\
& =\left(R^{T} R\right)^{-1} R^{T} Q^{T} b \\
& =R^{-1} R^{-T} R^{T} Q^{T} b \\
& =R^{-1} Q^{T} b
\end{aligned}
$$

Algorithm

1. compute QR factorization $A=Q R\left(2 m n^{2}\right.$ flops if A is $\left.m \times n\right)$
2. matrix-vector product $d=Q^{T} b$ (2 mn flops)
3. solve $R x=d$ by back substitution (n^{2} flops)
complexity: $2 m n^{2}$ flops

Example

$$
A=\left[\begin{array}{cc}
3 & -6 \\
4 & -8 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{c}
-1 \\
7 \\
2
\end{array}\right]
$$

1. $Q R$ factorization: $A=Q R$ with

$$
Q=\left[\begin{array}{cc}
3 / 5 & 0 \\
4 / 5 & 0 \\
0 & 1
\end{array}\right], \quad R=\left[\begin{array}{cc}
5 & -10 \\
0 & 1
\end{array}\right]
$$

2. calculate $d=Q^{T} b=(5,2)$
3. solve $R x=d$

$$
\left[\begin{array}{cc}
5 & -10 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

solution is $x_{1}=5, x_{2}=2$

Solving the normal equations

why not solve the normal equations

$$
A^{T} A x=A^{T} b
$$

as a set of linear equations?

Example: a 3×2 matrix with "almost linearly dependent" columns

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 10^{-5} \\
0 & 0
\end{array}\right], \quad b=\left[\begin{array}{c}
0 \\
10^{-5} \\
1
\end{array}\right]
$$

we round intermediate results to 8 significant decimal digits

Solving the normal equations

Method 1: form Gram matrix $A^{T} A$ and solve normal equations

$$
A^{T} A=\left[\begin{array}{rc}
1 & -1 \\
-1 & 1+10^{-10}
\end{array}\right] \leadsto\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right], \quad A^{T} b=\left[\begin{array}{c}
0 \\
10^{-10}
\end{array}\right]
$$

after rounding, the Gram matrix is singular; hence method fails
Method 2: QR factorization of A is

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad R=\left[\begin{array}{cc}
1 & -1 \\
0 & 10^{-5}
\end{array}\right]
$$

rounding does not change any values (in this example)

- problem with method 1 occurs when forming Gram matrix $A^{T} A$
- QR factorization method is more stable because it avoids forming $A^{T} A$

