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8. Least squares

• least squares problem

• solution of a least squares problem

• solving least squares problems
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Least squares problem

given 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚, find vector 𝑥 ∈ R𝑛 that minimizes

∥𝐴𝑥 − 𝑏∥2 =
𝑚∑︁
𝑖=1

(
𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗 − 𝑏𝑖

)2

• “least squares” because we minimize a sum of squares of affine functions:

∥𝐴𝑥 − 𝑏∥2 =
𝑚∑︁
𝑖=1

𝑟𝑖 (𝑥)2, 𝑟𝑖 (𝑥) =
𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗 − 𝑏𝑖

• the problem is also called the linear least squares problem
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Example

𝐴 =


2 0
−1 1
0 2

 , 𝑏 =


1
0
−1


−1 0 1
−1

0

1

x̂

f (x̂) + 1
f (x̂) + 2

x1

x 2

• the least squares solution 𝑥 minimizes

𝑓 (𝑥) = ∥𝐴𝑥 − 𝑏∥2 = (2𝑥1 − 1)2 + (−𝑥1 + 𝑥2)2 + (2𝑥2 + 1)2

• to find 𝑥, set derivatives with respect to 𝑥1 and 𝑥2 equal to zero:

10𝑥1 − 2𝑥2 − 4 = 0, −2𝑥1 + 10𝑥2 + 4 = 0

solution is (𝑥1, 𝑥2) = (1/3,−1/3)
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Least squares and linear equations

minimize ∥𝐴𝑥 − 𝑏∥2

• solution of the least squares problem: any 𝑥 that satisfies

∥𝐴𝑥 − 𝑏∥ ≤ ∥𝐴𝑥 − 𝑏∥ for all 𝑥

• 𝑟 = 𝑏 − 𝐴𝑥 is the residual vector

• if 𝑟 = 0, then 𝑥 solves the linear equation 𝐴𝑥 = 𝑏

• if 𝑟 ≠ 0, then 𝑥 is a least squares approximate solution of the equation

• in most least squares applications, 𝑚 > 𝑛 and 𝐴𝑥 = 𝑏 has no solution
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Column interpretation

least squares problem in terms of columns 𝑎1, 𝑎2, . . . , 𝑎𝑛 of 𝐴:

minimize ∥𝐴𝑥 − 𝑏∥2 = ∥
𝑛∑︁
𝑗=1

𝑎 𝑗𝑥 𝑗 − 𝑏∥2

range(𝐴) = span(𝑎1, . . . , 𝑎𝑛)

𝑟 = 𝑏 − 𝐴𝑥

𝑏

𝐴𝑥

• 𝐴𝑥 is the vector in range(𝐴) = span(𝑎1, 𝑎2, . . . , 𝑎𝑛) closest to 𝑏

• geometric intuition suggests that 𝑟 = 𝑏 − 𝐴𝑥 is orthogonal to range(𝐴)
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Example: advertising purchases

• 𝑚 demographic groups; 𝑛 advertising channels

• 𝑏𝑖 is target number of impressions (views) in group 𝑖

• 𝐴𝑖 𝑗 is number of impressions in group 𝑖 per dollar spent on ads in channel 𝑗

• 𝑥 𝑗 is amount of advertising purchased in channel 𝑗

• (𝐴𝑥)𝑖 is number of impressions in group 𝑖

Example: 𝑚 = 10, 𝑛 = 3, 𝑏 = 1031
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Example: illumination

• 𝑛 lamps at given positions above an area divided in 𝑚 regions

• 𝑏𝑖 is target illumination level at region 𝑖

• 𝐴𝑖 𝑗 is illumination in region 𝑖 if lamp 𝑗 is on with power 1 and other lamps are off

• 𝑥 𝑗 is power of lamp 𝑗

• (𝐴𝑥)𝑖 is illumination level at region 𝑖

Example: 𝑚 = 252, 𝑛 = 10; figure shows position and height of each lamp
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Example: illumination

• left: illumination pattern for equal lamp powers (𝑥 = 1)

• right: illumination pattern for least squares solution 𝑥, with 𝑏 = 1
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Solution of a least squares problem

if 𝐴 has linearly independent columns (is left-invertible), then the vector

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏

= 𝐴†𝑏

is the unique solution of the least squares problem

minimize ∥𝐴𝑥 − 𝑏∥2

• in other words, if 𝑥 ≠ 𝑥, then ∥𝐴𝑥 − 𝑏∥2 > ∥𝐴𝑥 − 𝑏∥2

• recall from page 4.22 that
𝐴† = (𝐴𝑇𝐴)−1𝐴𝑇

is called the pseudo-inverse of a left-invertible matrix
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Proof

we show that ∥𝐴𝑥 − 𝑏∥2 > ∥𝐴𝑥 − 𝑏∥2 for 𝑥 ≠ 𝑥:

∥𝐴𝑥 − 𝑏∥2 = ∥𝐴(𝑥 − 𝑥) + (𝐴𝑥 − 𝑏)∥2

= ∥𝐴(𝑥 − 𝑥)∥2 + ∥𝐴𝑥 − 𝑏∥2

> ∥𝐴𝑥 − 𝑏∥2

• 2nd step follows from 𝐴(𝑥 − 𝑥) ⊥ (𝐴𝑥 − 𝑏):

(𝐴(𝑥 − 𝑥))𝑇 (𝐴𝑥 − 𝑏) = (𝑥 − 𝑥)𝑇 (𝐴𝑇𝐴𝑥 − 𝐴𝑇𝑏) = 0

• 3rd step follows from linear independence of columns of 𝐴:

𝐴(𝑥 − 𝑥) ≠ 0 if 𝑥 ≠ 𝑥
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Derivation from calculus

𝑓 (𝑥) = ∥𝐴𝑥 − 𝑏∥2 =
𝑚∑︁
𝑖=1

(
𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗 − 𝑏𝑖

)2

• partial derivative of 𝑓 with respect to 𝑥𝑘

𝜕 𝑓

𝜕𝑥𝑘
(𝑥) = 2

𝑚∑︁
𝑖=1

𝐴𝑖𝑘

(
𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗 − 𝑏𝑖

)
= 2(𝐴𝑇 (𝐴𝑥 − 𝑏))𝑘

• gradient of 𝑓 is

∇ 𝑓 (𝑥) =
(
𝜕 𝑓

𝜕𝑥1
(𝑥), 𝜕 𝑓

𝜕𝑥2
(𝑥), . . . , 𝜕 𝑓

𝜕𝑥𝑛
(𝑥)

)
= 2𝐴𝑇 (𝐴𝑥 − 𝑏)

• minimizer 𝑥 of 𝑓 (𝑥) satisfies ∇ 𝑓 (𝑥) = 2𝐴𝑇 (𝐴𝑥 − 𝑏) = 0
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Geometric interpretation

residual vector 𝑟 = 𝑏 − 𝐴𝑥 satisfies 𝐴𝑇𝑟 = 𝐴𝑇 (𝑏 − 𝐴𝑥) = 0

range(𝐴) = span(𝑎1, . . . , 𝑎𝑛)

𝑏

𝑟 = 𝑏 − 𝐴𝑥

𝐴𝑥

• residual vector 𝑟 is orthogonal to every column of 𝐴; hence, to range(𝐴)
• projection on range(𝐴) is a linear function with coefficient matrix

𝐴(𝐴𝑇𝐴)−1𝐴𝑇 = 𝐴𝐴†
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Normal equations

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

• these equations are called the normal equations of the least squares problem

• coefficient matrix 𝐴𝑇𝐴 is the Gram matrix of 𝐴

• equivalent to ∇ 𝑓 (𝑥) = 0 where 𝑓 (𝑥) = ∥𝐴𝑥 − 𝑏∥2

• all solutions of the least squares problem satisfy the normal equations

if 𝐴 has linearly independent columns, then:

• 𝐴𝑇𝐴 is nonsingular (see page 4.21)

• normal equations have a unique solution 𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏
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QR factorization method

rewrite least squares solution using QR factorization 𝐴 = 𝑄𝑅

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 = ((𝑄𝑅)𝑇 (𝑄𝑅))−1(𝑄𝑅)𝑇𝑏
= (𝑅𝑇𝑄𝑇𝑄𝑅)−1𝑅𝑇𝑄𝑇𝑏

= (𝑅𝑇𝑅)−1𝑅𝑇𝑄𝑇𝑏

= 𝑅−1𝑅−𝑇𝑅𝑇𝑄𝑇𝑏

= 𝑅−1𝑄𝑇𝑏

Algorithm

1. compute QR factorization 𝐴 = 𝑄𝑅 (2𝑚𝑛2 flops if 𝐴 is 𝑚 × 𝑛)

2. matrix-vector product 𝑑 = 𝑄𝑇𝑏 (2𝑚𝑛 flops)

3. solve 𝑅𝑥 = 𝑑 by back substitution (𝑛2 flops)

complexity: 2𝑚𝑛2 flops
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Example

𝐴 =


3 −6
4 −8
0 1

 , 𝑏 =


−1
7
2


1. QR factorization: 𝐴 = 𝑄𝑅 with

𝑄 =


3/5 0
4/5 0
0 1

 , 𝑅 =

[
5 −10
0 1

]

2. calculate 𝑑 = 𝑄𝑇𝑏 = (5, 2)
3. solve 𝑅𝑥 = 𝑑 [

5 −10
0 1

] [
𝑥1
𝑥2

]
=

[
5
2

]
solution is 𝑥1 = 5, 𝑥2 = 2

Least squares 8.15



Solving the normal equations

why not solve the normal equations

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

as a set of linear equations?

Example: a 3 × 2 matrix with “almost linearly dependent” columns

𝐴 =


1 −1
0 10−5

0 0

 , 𝑏 =


0

10−5

1

 ,
we round intermediate results to 8 significant decimal digits
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Solving the normal equations

Method 1: form Gram matrix 𝐴𝑇𝐴 and solve normal equations

𝐴𝑇𝐴 =

[
1 −1

−1 1 + 10−10

]
{

[
1 −1

−1 1

]
, 𝐴𝑇𝑏 =

[
0

10−10

]
after rounding, the Gram matrix is singular; hence method fails

Method 2: QR factorization of 𝐴 is

𝑄 =


1 0
0 1
0 0

 , 𝑅 =

[
1 −1
0 10−5

]
rounding does not change any values (in this example)

• problem with method 1 occurs when forming Gram matrix 𝐴𝑇𝐴

• QR factorization method is more stable because it avoids forming 𝐴𝑇𝐴
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