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17. Path-following methods
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Introduction

Primal-dual pair of conic LPs

minimize ¢l x maximize —b!z

subjectto Az <b subjectto ATz +c=0

o Ac R"™™withrank(A) =n
e inequalities are with respect to proper cone K and its dual cone K*

e we will assume primal and dual problem are strictly feasible

This lecture

e feasible methods that follow the central path to find the solution

e complexity analysis based on theory of self-concordant functions
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Barrier for the feasible set

Definition: as a barrier function for the feasible set we will use

(z) = ¢(b — Ax)
where ¢ is a 8-normal barrier for K

Notation (in this lecture):

[0l = (W V()" 0) /2

Properties
e 1) is self-concordant with domain {z | Az < b}

e Newton decrement of v is bounded by Vo, ie.,
IVe(2)|l;, = V() V2i(x) ' Vi(z) <6 Vo € domy

(proof on next page)
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Proof of bound on Newton decrement:

e gradient and Hessian of ¢ are (with s = b — Ax)

Vip(z) = —ATVe(s),  Vi(x) = ATVH(s)A

e from page 16-24, Vo (s)1 V2¢(s) "1V ¢(s) = 0; therefore

Vo (x)'V2(x) "IV (z) = sup (—v" VZ(z)v + 2Vi(z) " v)

v

= sup (—(Av)" V?¢(s)(Av) — 2Ve(s)" Av)

(Y

< sup (—w!' V3¢ (s)w + 2V (s)' w)

= Vo(s) V2o(s) 'V (s)
= 0
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Central path

Definition: the set of minimizers x*(t), for t > 0, of

tc'x +(z) =tchz + ¢(b — Ax)

Optimality conditions
ATV ¢(s) = te, s=0b— Ax

e implies that z = —(1/t)V¢(s) is strictly dual feasible

e by weak duality,
T, % x o~ T T T 0
cxr(t)—p"<carx+bz=z's=-

hence, clz*(t) — p*ast — o
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Existence and uniqueness

Centering problem
minimize  tclz + @(s)
subjectto Ax +s=0b

Lagrange dual (with dual cone barrier ¢, of page 16-27)

maximize —tblz — ¢,(2) + Ologt
subjectto ATz+c=0

e strictly feasible z for dual conic LP is feasible for dual centering problem
e if dual conic LP is strictly feasible, tc!'x + ¢(b — Ax) is bounded below

e from self-concordance theory (page 16-12), z*(¢) exists and is unique
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Dual points in neighborhood of central path
Newton step Ax for
tce +(z) =tz + ¢(b — Az)
e satisfies Newton equation
ATV2p(s)AAx = —tc+ ATV ¢(s), s=b— Ax
e Newton decrement is \;(z) = (AmTVsz(w)A:r;)l/Q
Dual feasible point: define

z = —% (Vo(s) — V2¢(s)AAz)

e satisfies Az + ¢ = 0 by definition

e satisfies z =, 0if A\;(x) < 1 (see next page)

Path-following methods

17-7



Proof. z >, O follows from Dikin ellipsoid theorem

e Newton decrement is

M(2)? = Az'V3(2)Az
= Azt ATV2¢(s)AAx
= vIV3%(s) v

where v = VZ¢(s) AAx
e define u = —V¢(s); then V2¢,(u) = V?¢(s)~! (see page 16-28) and

A(2)? = v V20, (u)v

e by Dikin ellipsoid theorem A\;(x) < 1 implies

u+v=—-Ve(s)+ V¢(s)AAz =, 0

Path-following methods

17-8



Duality gap in neighborhood of central path

cle —p* < (1 - Ai}g)) g if \i(z) < 1

e from weak duality, using the dual point 2 on page 17-7

stz = % (0 — s"V?p(s)AAx)

< (0 19%6(5) 2] | ?0(5)/? Al
6 + \/5)\75(33)

t

e implies cl'z — p* < 20 /t, since # > 1 holds for any 6-normal barrier ¢

(¢ is unbounded below, so its Newton decrement Vo> 1 everywhere)
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Short-step methods

General idea: keep the iterates in the region of quadratic convergence for
tch x4+ (z),

by limiting the rate at which ¢ is increased (hence, ‘short-step’)

Quadratic convergence results (from self-concordance theory)

o if \;(x) < 1/4, a full Newton step gives \;(zT) < 2\ (x)?

e started at a point with \;(z) < 1/4, an accuracy €ccyt is reached in
logs logy(1/€cent) iterations

for practical purposes this is a constant (4—6 for €cent ~ 1072 ... 10729)
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Short-step method with exact centering

simplifying assumptions:
e 1*(t) is computed exactly

e a central point x*(tg) is given

Algorithm: define a tolerance € € (0, 1) and parameter

,u—1+—

4/

starting at t = ¢, repeat until 8/t < e:

e compute x*(ut) by Newton’s method started at x* ()

e sett = ut
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Newton iterations for recentering

Newton decrement at z = x*(¢) for new value t* = ut is

A+ () |pte + Vip(z)|| .

[p(te + Vip(z)) — (= V().
(= DIVY(2)]]2s

(n—1)V0

1/4

IA

e line 3 follows because tc + Vi)(x) = 0 for x = x*(t)

e line 4 follows from ||V (z) ||« < V0 (see page 17-3)

Conclusion

number of iterations to compute z*(¢™) from x*(¢) is bounded by a small constant
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Iteration complexity

Number of outer iterations: t(¥) = /¥t > 0/ when

> log(0/(eto))
— logp

Cumulative number of Newton iterations

o (o))

(we used log 1 > (log 2)/(4v/6) by concavity of log(1 + u))

e multiply by flops per iteration to get polynomial worst-case complexity

RV dependence is lowest known complexity for interior-point methods

Path-following methods

17-13



Short-step method with inexact centering

Improvements of short-step method with exact centering

e keep iterates in region of quadratic region, but avoid complete centering

e at each iteration: make small increase in ¢, followed by one Newton step

Algorithm: define a tolerance € € (0, 1) and parameters

1
1+8v0

=5 w=1+

e select x and t with \;(z) <

e repeat until 20/t < e:

t = ut, r =z — VY(x)" ! (tc + V()

Path-following methods 17-14



Newton decrement after update

we first show that A\;(x) < (8 at the end of each iteration

o if \i(z) < Bandtt = ut, then

At (x) = [[tTe+ V()]
= |lp(te + Vip(z)) — (1 — D) Vep(2)|]
< pllte+ V(@) |lox + (1 = D[ V(@) || 24
< B4+ (p—1)V0
1
T4

e from theory of Newton’s method for self-concordant functions (page 16-16)

At (ah) < 20 () <

=p

oo | —
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Iteration complexity

e from page 17-9, stopping criterion implies ¢’z — p* < e

e stopping criterion is satisified when

(k)
W20 1og(20/(eto))
to Eto ]og Iu

e taking the logarithm on both sides gives an upper bound of

O (\/mog <i>> iterations
Eto

(using log 1 > log 2/(1 + 8v/0))
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Predictor-corrector methods

Short-step methods

e stay in narrow neighborhood of central path (defined by limit on \;)

e make small, fixed increases t* = ut

as a result, quite slow in practice

Predictor-corrector method

e select new ¢ using a linear approximation to central path (‘predictor’)

e recenter with new ¢ (‘corrector’)

allows faster and ‘adaptive’ increases in ¢
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Global convergence bound for centering problem

minimize fi(z) = tclz + ¢(b — Ax)

Convergence result (damped Newton algorithm of page 16-11 started at x)

fi(x) —infy, fi(u)

#iterations <
w(1)

+ log, 10%2(1/€cent)

® c.ont IS @ccuracy in centering
e w(n) =n—1log(l+n)andn € (0,1/4]
e for practical purposes, second term is a small constant

e first term depends on unknown optimal value inf,, f;(u)
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Bound from duality

Dual centering problem (see page 17-6)

maximize —tblz — ¢.(2) + Ologt
subjectto ATz+c=0

strictly feasible z provides lower bound on inf,, fi(u):

inf f;(u) > —tb' 2z — ¢, (2) + Ologt

Bound on centering cost: f;(x) — inf, fi(u) < Vi(z, s, z) where

Vi(z,s,2) = t(chz+b2)+ ¢(s) + ¢ (2) — Ologt
= tsT2+ @(s) + ¢.(2) — Ologt
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Potential function

Definition (for strictly feasible z, s, 2)

U(x,s,z) = irtlth(a:, S, %)
stz
= 910g7+¢(3)+¢*(z)+9

(optimal t is t = argmin, V;(z, s, 2) = /s 2)

Properties

e homogeneous of degree zero: V(ax, as,az) = ¥(z, s, z) fora > 0
e nonnegative for all strictly feasible x, s, 2

e zeroonly if x, s, z are centered

can be used as a global measure of proximity to the central path
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Tangent to central path

Central path equation

i ] =[ 20 o [ 150
1

() = —Vo(s" (1)

Derivatives & = dx*(t)/dt, s = ds*/dt, 2 = dz*(t)/dt satisfy
o] [ o AT 2
s | —A 0 z
1

. * 1 2 * .
i=—2 (t) — ;V o(s*(t))s

Tangent direction: derivatives scaled by ¢ (to simplify notation)

AZEt = tCE‘, ASt = tS, AZt =tz
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Predictor equations

with x = x*(t), s = s*(t), z = z*(t)

- (1/)V26(s)

0 I Ast —z
0 0 AT Az 0 (1)
i —1 —A 0 i AZt | 0
Equivalent equations
T 0 (1/H)V%0.(2) | | As; ] —$
0 0 AT Axy 0 (2)
i -1 —-A 0 i AZt i 0

equivalence follows from primal-dual relations on central path

s= Vo), s= Vo), VP(s) = 1VPu(2)")
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Properties of tangent direction

e from 2nd and 3rd block in (1): Asl' Az =0
e from first block in (1) and V2¢(s)s = —V¢(s):

sTAz + 2 Asy = —s1 2
e hence, gap in tangent direction is
(s 4+ aAs)! (z 4+ aAz) = (1 —a)s’ 2
e from first block in (1)

[As||? = AsiV2p(s)Asy = —tz! As,

e similarly, from first block in (2)
[Az)|? = Azl V20, (2) Az, = —ts? Az

Path-following methods 17-23



Predictor-corrector method with exact centering

Simplifying assumptions: exact centering, a central point z* (%) is given

Algorithm: define tolerance ¢ € (0, 1), parameter 5 > 0, and set

ti=ty, (2,8,2):= (x*(to), s*(to), 2*(to))

repeat until 6/t < e:

e compute tangent direction (Axy, Asy, Az) at (x, s, 2)

o set(z,s,z):=(z,s,2)+ a(Ax, As, Az) with a determined from

U(x 4+ aAxg, s + alAsy, 2 + alzy) = B

e sett:=0/(s!z) and compute (z, s, z) := (z*(t), s*(¢), 2*(t))
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Iteration complexity

Potential function in tangent direction (proof on next page)

U(x 4+ alxzy, s + als, z + alsy) < w(aVo)
= —avh —log(l —aV6)

Lower bound on predictor step length: since w* is an increasing function

a>~v/V0 where w*(y) =

Reduction in duality gap after one predictor/corrector cycle

t/tt =1—a <1—+/Vl < exp(—v/V6)

Cumulative Newton iterations: ¢(*) > 0 /¢ after

@) (\/mog (g)) Newton iterations
o€
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Proof of upper bound on ¥ (with s = s + aAs, 27 = 2z + aAz)

e bounds on ¢(s™) and ¢, (z™): from the inequality on page 16-8,

A(s7) —(s) < aVe(s) Ase +w*(af Ass)
—atzh Asy + w* (]| Asel[s)
aVo(2)T Az + w* (o[ Az]].)
—atst Az + w*(a||Az|.)

©
*

N
=
|
©

*
&
VAN

e add the inequalities and use properties on page 17-23

B(sT) = 6(s) + 6u(2T) — dulz) < b +w* (0| Asils) + w (]| Az]2)
< ab+w(a (|As? + | Az)2) )

af + w*(aV0)

IA

e since (s7)1zt = (1 —a)slz,

U(at, s, 2T) < Olog(l — @) + b + w* (V) < w*(aVh)
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