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17. Path-following methods

• central path

• short-step barrier method

• predictor-corrector method
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Introduction

Primal-dual pair of conic LPs

minimize cTx
subject to Ax � b

maximize −bTz
subject to ATz + c = 0

z �∗ 0

• A ∈ Rm×n with rank(A) = n

• inequalities are with respect to proper coneK and its dual coneK∗

• we will assume primal and dual problem are strictly feasible

This lecture

• feasible methods that follow the central path to find the solution

• complexity analysis based on theory of self-concordant functions
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Outline
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Barrier for the feasible set

Definition: as a barrier function for the feasible set we will use

ψ(x) = φ(b−Ax)

where φ is a θ-normal barrier forK

Notation (in this lecture):

‖v‖x∗ = (vT∇2ψ(x)−1v)1/2

Properties

• ψ is self-concordant with domain {x | Ax ≺ b}

• Newton decrement of ψ is bounded by
√
θ, i.e.,

‖∇ψ(x)‖2x∗ = ∇ψ(x)T∇2ψ(x)−1∇ψ(x) ≤ θ ∀x ∈ domψ

(proof on next page)
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Proof of bound on Newton decrement:

• gradient and Hessian of ψ are (with s = b−Ax)

∇ψ(x) = −AT∇φ(s), ∇2ψ(x) = AT∇2φ(s)A

• from page 16-24, ∇φ(s)T∇2φ(s)−1∇φ(s) = θ; therefore

∇ψ(x)T∇2ψ(x)−1∇ψ(x) = sup
v

(−vT∇2ψ(x)v + 2∇ψ(x)Tv)

= sup
v

(−(Av)T∇2φ(s)(Av)− 2∇φ(s)TAv)

≤ sup
w

(−wT∇2φ(s)w + 2∇φ(s)Tw)

= ∇φ(s)T∇2φ(s)−1∇φ(s)

= θ
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Central path

Definition: the set of minimizers x?(t), for t > 0, of

tcTx+ ψ(x) = tcTx+ φ(b−Ax)

Optimality conditions

AT∇φ(s) = tc, s = b−Ax

• implies that z = −(1/t)∇φ(s) is strictly dual feasible

• by weak duality,

cTx?(t)− p? ≤ cTx+ bTz = zTs =
θ

t

hence, cTx?(t)→ p? as t→∞
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Existence and uniqueness

Centering problem
minimize tcTx+ φ(s)
subject to Ax+ s = b

Lagrange dual (with dual cone barrier φ∗ of page 16-27)

maximize −tbTz − φ∗(z) + θ log t
subject to ATz + c = 0

• strictly feasible z for dual conic LP is feasible for dual centering problem

• if dual conic LP is strictly feasible, tcTx+ φ(b−Ax) is bounded below

• from self-concordance theory (page 16-12), x?(t) exists and is unique
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Dual points in neighborhood of central path

Newton step ∆x for

tcTx+ ψ(x) = tcTx+ φ(b−Ax)

• satisfies Newton equation

AT∇2φ(s)A∆x = −tc+AT∇φ(s), s = b−Ax

• Newton decrement is λt(x) =
(
∆xT∇2ψ(x)∆x

)1/2
Dual feasible point: define

z = −1

t

(
∇φ(s)−∇2φ(s)A∆x

)
• satisfies ATz + c = 0 by definition

• satisfies z �∗ 0 if λt(x) < 1 (see next page)
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Proof. z �∗ 0 follows from Dikin ellipsoid theorem

• Newton decrement is

λt(x)2 = ∆xT∇2ψ(x)∆x

= ∆xTAT∇2φ(s)A∆x

= vT∇2φ(s)−1v

where v = ∇2φ(s)A∆x

• define u = −∇φ(s); then ∇2φ∗(u) = ∇2φ(s)−1 (see page 16-28) and

λt(x)2 = vT∇2φ∗(u)v

• by Dikin ellipsoid theorem λt(x) < 1 implies

u+ v = −∇φ(s) +∇2φ(s)A∆x �∗ 0
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Duality gap in neighborhood of central path

cTx− p? ≤
(

1 +
λt(x)√
θ

)
θ

t
if λt(x) < 1

• from weak duality, using the dual point z on page 17-7

sTz =
1

t

(
θ − sT∇2φ(s)A∆x

)
≤ 1

t

(
θ + ‖∇2φ(s)1/2s‖2 ‖∇2φ(s)1/2A∆x‖2

)
=

θ +
√
θ λt(x)

t

• implies cTx− p? ≤ 2θ/t, since θ ≥ 1 holds for any θ-normal barrier φ

(φ is unbounded below, so its Newton decrement
√
θ ≥ 1 everywhere)
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Short-step methods

General idea: keep the iterates in the region of quadratic convergence for

tcTx+ ψ(x),

by limiting the rate at which t is increased (hence, ‘short-step’)

Quadratic convergence results (from self-concordance theory)

• if λt(x) ≤ 1/4, a full Newton step gives λt(x+) ≤ 2λt(x)2

• started at a point with λt(x) ≤ 1/4, an accuracy εcent is reached in

log2 log2(1/εcent) iterations

for practical purposes this is a constant (4–6 for εcent ≈ 10−5 . . . 10−20)
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Short-step method with exact centering

simplifying assumptions:

• x?(t) is computed exactly

• a central point x?(t0) is given

Algorithm: define a tolerance ε ∈ (0, 1) and parameter

µ = 1 +
1

4
√
θ

starting at t = t0, repeat until θ/t ≤ ε:

• compute x?(µt) by Newton’s method started at x?(t)

• set t := µt
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Newton iterations for recentering

Newton decrement at x = x?(t) for new value t+ = µt is

λt+(x) = ‖µtc+∇ψ(x)‖x∗
= ‖µ(tc+∇ψ(x))− (µ− 1)∇ψ(x)‖x∗
= (µ− 1)‖∇ψ(x)‖x∗
≤ (µ− 1)

√
θ

= 1/4

• line 3 follows because tc+∇ψ(x) = 0 for x = x?(t)

• line 4 follows from ‖∇ψ(x)‖x∗ ≤
√
θ (see page 17-3)

Conclusion

number of iterations to compute x?(t+) from x?(t) is bounded by a small constant
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Iteration complexity

Number of outer iterations: t(k) = µkt0 ≥ θ/ε when

k ≥ log(θ/(εt0))

logµ

Cumulative number of Newton iterations

O

(√
θ log

(
θ

εt0

))

(we used logµ ≥ (log 2)/(4
√
θ) by concavity of log(1 + u))

• multiply by flops per iteration to get polynomial worst-case complexity

•
√
θ dependence is lowest known complexity for interior-point methods
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Short-step method with inexact centering

Improvements of short-step method with exact centering

• keep iterates in region of quadratic region, but avoid complete centering

• at each iteration: make small increase in t, followed by one Newton step

Algorithm: define a tolerance ε ∈ (0, 1) and parameters

β =
1

8
, µ = 1 +

1

1 + 8
√
θ

• select x and t with λt(x) ≤ β

• repeat until 2θ/t ≤ ε:

t := µt, x := x−∇2ψ(x)−1 (tc+∇ψ(x))
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Newton decrement after update

we first show that λt(x) ≤ β at the end of each iteration

• if λt(x) ≤ β and t+ = µt, then

λt+(x) = ‖t+c+∇ψ(x))‖x∗
= ‖µ(tc+∇ψ(x))− (µ− 1)∇ψ(x)‖x∗
≤ µ‖tc+∇ψ(x)‖x∗ + (µ− 1)‖∇ψ(x)‖x∗
≤ µβ + (µ− 1)

√
θ

=
1

4

• from theory of Newton’s method for self-concordant functions (page 16-16)

λt+(x+) ≤ 2λt+(x)2 ≤ 1

8
= β
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Iteration complexity

• from page 17-9, stopping criterion implies cTx− p? ≤ ε

• stopping criterion is satisified when

t(k)

t0
= µk ≥ 2θ

εt0
, k ≥ log(2θ/(εt0))

logµ

• taking the logarithm on both sides gives an upper bound of

O

(√
θ log

(
θ

εt0

))
iterations

(using logµ ≥ log 2/(1 + 8
√
θ))
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Predictor-corrector methods

Short-step methods

• stay in narrow neighborhood of central path (defined by limit on λt)

• make small, fixed increases t+ = µt

as a result, quite slow in practice

Predictor-corrector method

• select new t using a linear approximation to central path (‘predictor’)

• recenter with new t (‘corrector’)

allows faster and ‘adaptive’ increases in t
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Global convergence bound for centering problem

minimize ft(x) = tcTx+ φ(b−Ax)

Convergence result (damped Newton algorithm of page 16-11 started at x)

#iterations ≤ ft(x)− infu ft(u)

ω(η)
+ log2 log2(1/εcent)

• εcent is accuracy in centering

• ω(η) = η − log(1 + η) and η ∈ (0, 1/4]

• for practical purposes, second term is a small constant

• first term depends on unknown optimal value infu ft(u)
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Bound from duality

Dual centering problem (see page 17-6)

maximize −tbTz − φ∗(z) + θ log t
subject to ATz + c = 0

strictly feasible z provides lower bound on infu ft(u):

inf
u
ft(u) ≥ −tbTz − φ∗(z) + θ log t

Bound on centering cost: ft(x)− infu ft(u) ≤ Vt(x, s, z) where

Vt(x, s, z) = t(cTx+ bTz) + φ(s) + φ∗(z)− θ log t

= tsTz + φ(s) + φ∗(z)− θ log t
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Potential function

Definition (for strictly feasible x, s, z)

Ψ(x, s, z) = inf
t
Vt(x, s, z)

= θ log
sTz

θ
+ φ(s) + φ∗(z) + θ

(optimal t is t = argmint Vt(x, s, z) = θ/sTz)

Properties

• homogeneous of degree zero: Ψ(αx, αs, αz) = Ψ(x, s, z) for α > 0

• nonnegative for all strictly feasible x, s, z

• zero only if x, s, z are centered

can be used as a global measure of proximity to the central path
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Tangent to central path

Central path equation[
0

s?(t)

]
=

[
0 AT

−A 0

] [
x?(t)
z?(t)

]
+

[
c
b

]
z?(t) = −1

t
∇φ(s?(t))

Derivatives ẋ = dx?(t)/dt, ṡ = ds?/dt, ż = dz?(t)/dt satisfy[
0
ṡ

]
=

[
0 AT

−A 0

] [
ẋ
ż

]
ż = −1

t
z?(t)− 1

t
∇2φ(s?(t))ṡ

Tangent direction: derivatives scaled by t (to simplify notation)

∆xt = tẋ, ∆st = tṡ, ∆zt = tż
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Predictor equations

with x = x?(t), s = s?(t), z = z?(t) (1/t)∇2φ(s) 0 I
0 0 AT

−I −A 0

 ∆st
∆xt
∆zt

 =

 −z0
0

 (1)

Equivalent equations I 0 (1/t)∇2φ∗(z)
0 0 AT

−I −A 0

 ∆st
∆xt
∆zt

 =

 −s0
0

 (2)

equivalence follows from primal-dual relations on central path

z = −1

t
∇φ(s), s = −1

t
∇φ∗(z),

1

t
∇2φ(s) = t∇2φ∗(z)

−1
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Properties of tangent direction

• from 2nd and 3rd block in (1): ∆sTt ∆zt = 0

• from first block in (1) and ∇2φ(s)s = −∇φ(s):

sT∆zt + zT∆st = −sTz

• hence, gap in tangent direction is

(s+ α∆st)
T (z + α∆zt) = (1− α)sTz

• from first block in (1)

‖∆st‖2s = ∆sTt ∇2φ(s)∆st = −tzT∆st

• similarly, from first block in (2)

‖∆zt‖2z = ∆zTt ∇2φ∗(z)∆zt = −tsT∆zt
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Predictor-corrector method with exact centering

Simplifying assumptions: exact centering, a central point x?(t0) is given

Algorithm: define tolerance ε ∈ (0, 1), parameter β > 0, and set

t := t0, (x, s, z) := (x?(t0), s
?(t0), z

?(t0))

repeat until θ/t ≤ ε:

• compute tangent direction (∆xt,∆st,∆zt) at (x, s, z)

• set (x, s, z) := (x, s, z) + α(∆xt,∆st,∆zt) with α determined from

Ψ(x+ α∆xt, s+ α∆st, z + α∆zt) = β

• set t := θ/(sTz) and compute (x, s, z) := (x?(t), s?(t), z?(t))
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Iteration complexity

Potential function in tangent direction (proof on next page)

Ψ(x+ α∆xt, s+ α∆st, z + α∆st) ≤ ω∗(α
√
θ)

= −α
√
θ − log(1− α

√
θ)

Lower bound on predictor step length: since ω∗ is an increasing function

α ≥ γ/
√
θ where ω∗(γ) = β

Reduction in duality gap after one predictor/corrector cycle

t/t+ = 1− α ≤ 1− γ/
√
θ ≤ exp(−γ/

√
θ)

Cumulative Newton iterations: t(k) ≥ θ/ε after

O

(√
θ log

(
θ

t0ε

))
Newton iterations
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Proof of upper bound on Ψ (with s+ = s+ α∆st, z+ = z + α∆zt)

• bounds on φ(s+) and φ∗(z+): from the inequality on page 16-8,

φ(s+)− φ(s) ≤ α∇φ(s)T∆st + ω∗(α‖∆st‖s)
= −αtzT∆st + ω∗(α‖∆st‖s)

φ∗(z
+)− φ∗(z) ≤ α∇φ(z)T∆zt + ω∗(α‖∆zt‖z)

= −αtsT∆zt + ω∗(α‖∆zt‖z)

• add the inequalities and use properties on page 17-23

φ(s+)− φ(s) + φ∗(z
+)− φ∗(z) ≤ αθ + ω∗(α‖∆st‖s) + ω∗(α‖∆zt‖z)

≤ αθ + ω∗(α
(
‖∆st‖2s + ‖∆zt‖2z

)1/2
)

= αθ + ω∗(α
√
θ)

• since (s+)Tz+ = (1− α)sTz,

Ψ(x+, s+, z+) ≤ θ log(1− α) + αθ + ω∗(α
√
θ) ≤ ω∗(α

√
θ)
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