L. Vandenberghe EE236A (Fall 2013-14)

Lecture 16
Self-dual formulations

e self-dual linear programs
e self-dual embedding

e interior-point method for self-dual embedding
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Optimality and infeasibility

minimize ¢’z maximize —b'z
subject to Ax +s=10 subject to Alz+4+c¢=0
s >0 z>0

e optimality: x, s, z are optimal if

Ax +s =0, Atz 4+ ¢=0, clae+blz=0, s>0, z>0

e primal infeasibility: z certifies primal infeasibility if

e dual infeasibility: x certifies dual infeasibility if
Ax <0, cle=—1
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Initialization and infeasibility detection

barrier method (lecture 14)

e requires a phase | to find strictly feasible x

e fails if problem is not strictly dual feasible (central path does not exist)

infeasible primal-dual method (lecture 15)

e does not require feasible starting points

e fails if problem is not primal and dual feasible

self-dual formulations (this lecture): embed LP in larger LP such that

e larger LP is primal and dual feasible, with known feasible points

e from solution can extract optimal solutions or certificates of infeasibility

Self-dual formulations 16-3



Outline

e self-dual linear programs
e self-dual embedding

e interior-point method for self-dual embedding



Self-dual linear program

primal problem (variables u, v, w)
minimize  flu+ g'v
biect 0| ¢ D U
subject to ol = _pr B ;
v>0, w=>0

C' and E are skew-symmetric: C = —C*, E = —E7T

~ ~

dual problem (variables @, v, W)

maximize —fla — g’
biect t 0| C D u
subject to 51 =1 _pr g .
v>0, w>0

Self-dual formulations
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derivation of dual:

e eliminate w and write primal problem as

minimize  flu+ glv

subject to :—C’ —D: ;Lj = f
DT —E [ u g

<
0 —I__v__[()]

e apply dual from page 6—12 and use skew-symmetry
maximize —f'a — g’

. C .
subject to [ _pT ]u—l— [

5>0, @>0
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Optimality condition

complementarity: feasible u, v, w are optimal if and only if

viow =0

proof
e if (u,v,w) is primal optimal, then (@, v,w) = (u,v,w) is dual optimal
e from optimality conditions for LPs on page 16—4:

wlv+0Tw=0

for any primal optimal (u,v,w) and any dual optimal (@, v, w)
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Strict complementarity

if the self-dual LP is feasible, it has an optimal solution that satisfies

viw =0, v+w >0

e the LPs on p.16—4 have strictly complementary solutions (ex.72), with
v; +w; > 0, w; +v; >0 for all 2
e at the optimum, we also have v!w = 0 and o'W = 0 (page 16-6):

v,w; = 0, v;w; = 0 for all ¢

e this leaves only two possible sign patterns for every ¢

V; | W; QNJZ ’U~}Z
Ol +1]0]|+
+10|+1]0
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Outline

e self-dual linear programs
e self-dual embedding

e interior-point method for self-dual embedding



Basic self-dual embedding

minimize (

subject to

variables s, x, x, 2z, T

e a self-dual LP with a trivial solution (all variables zero)

e all feasible points are optimal and satisfy z's + 7k = 0

(to see this directly, take the inner product of each side with (z, z, 7))

e hence, problem cannot be strictly feasible
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Classification of nonzero solution

let s, K, x, z, T be a strictly complementary solution:
st—l—m':O, s+ 2z>0, k+17>0
we distinguish two cases, depending on the sign of x and 7
e case 1 (7 > 0 and k = 0): define
§=s/T, T=ux/T, Z=z/T

x, §, Z are primal, dual optimal for the original LPs and satisfy

B ESHEN

§>0, 2 >0, §t2=0

Ny =
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e case 2 (1 =0, k > 0): this implies
cle+bl2<0

soclxz < 0orblz <0 or both

— if b2 <0, then 2 = z/(—b! 2) is a certificate of primal infeasibility:
Atz =0, blz = -1, 2>0
— if cl'x <0, then £ = 2/(—cl'x) is a certificate of dual infeasibility:

Az <0, cla=—1

note: strict complementarity is only used to ensure k +7 > 0
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Extended self-dual embedding

minimize  (m + 1)6

0 0 AT cC Qg x 0
. s | | A O b q. 2 0
subject to P e R A S - + 0
| 0 ] _—qu —qz —qr 0 | |0 - m+1
s>0, k>0, 220, 720
e variables s, k, x, z, 7, 0
® (., ¢, ¢ are chosen so that the point
T
2o So + 1
0) = 1, o, 2o, 1, =2
(57 K, T, 2, T, ) (807 » L0y <0 m + 1 )

is feasible, for some given sg > 0, g, z9 > 0
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Properties of extended self-dual embedding

e problem is strictly feasible by construction
o if s, kK, x, z, T, O satisfy the equality constraint, then

e_st—Hm—
 om+1

(take inner product with (x, z, 7, 6) of each side of the equality)
e at optimum, s’z 4+ k7 = 0 (from optimality conditions on page 16-6)
e at optimum, # = 0 and problem reduces to basic embedding (p.16-8)

e classification of p.16-9 also applies to solutions of extended embedding
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Outline

e self-dual linear programs
e self-dual embedding

e interior-point method for self-dual embedding



Central path for extended embedding

0 0 AT cC Qg x 0
s | | A 0 b q. Z . 0
k| | =cI' =b" 0 ¢, T 0
| 0 ] _—qa]; —ql —q- 0 |60 | m+1
(s,k,2,7) >0, soz=ul, KT = [

e inner product with (x, z,7,0) shows that on the central path

ZT8—|—HJ7'
9: :M
m + 1

e by construction (¢, ¢, ¢- on page 16-11), if sg o zg = 1, the point
(s, k, , 2, T, 0) = (s0, 1, xo, 20, 1, (2250 +1)/(m + 1))
is on the central path with = (s{zo +1)/(m+1) =1
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Simplified central path equations

o
I

(s,k,2,7) >0,

e we eliminated variable 6 because # = 1 on the central path

e we removed the 4th equality, because it is implied by the first three

—A 0 b

-8 0

soz=pul,

o
+ U | g
| qr
KT = |4

(this follows by taking inner product with (x, z, 7))

e can be viewed as a ‘shifted central path’ for basic embedding (p.16-8)

Self-dual formulations
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Basic update

let §, &, &, Z, T be the current iterates (with $§ >0, £ >0, 2> 0, 7 > 0)

e determine As, Ax, Ax, As, A1 by linearizing central path equations

0 | [0 AT el [ = ] [ gy |
s | =1 —-A 0 b z | +op| q.
| K _—cT —bT 0] 7 | qr
soz=ojl, KT = O}
where ji = (872 + &7)/(m +1) and 0 € [0, 1]
e make an update
(8, k2, 2,7) :=(8,R,%,2,7) + a (As, Ar, Ax, Az, AT)

that preserves positivity of s, &, 2, T

Self-dual formulations
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Linearized central path equations

a set of 2m + n + 2 equations in variables As, Ak, Az, Az, AT:

0 0 AT ¢ | [ Az ] qx Ty
As | —| -A 0 b Az | =op| q. | — | 72 (1)
A _—cT —b! 0| | AT | | qr T
SoAz+20As = opl—502 (2)
RAT 4+ TAK = ol — KT (3)
where L _ -
0 0 AT ¢ T
r=18 | -] —A 0 b z
A ] —c' =t 0 1 L7

AAAAA
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Properties of search direction

e from equations (2) and (3) and definition of ji:

STAZ + 2T As+ RAT + TAK A
=—(1—-o)p
m —+ 1

e if r = fiq, primal and dual steps are orthogonal
AsTAz + AkAT =0
(proof on next page)

e hence, gap depends linearly on stepsize

(5 + alAs)l' (2 + alAz) + (k + aAk) (T + aAT)
m+ 1

— (1-a(l - o)
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proof of orthogonality

e if r = [ig, we can combine (1) and the definition of r to write

0 0 Al ¢ | [ Az+(1—-0)3
As+(1—-0o)s | =| A 0 b Az+(1—0)2
| Axk+(1—o0)R " = 0| | AT+ (1—0)T |

e the matrix on the right-hand side is skew-symmetric:

- T - -

Az + (1 —0)2 0
0 = Az+(1—0)2 As+ (1 —0)5
AT+ (1-0)7 | | Ak+(1—0)R

= AsTAz+ AsAT+ (1 —0) (87 Az + 2T As + RAT + 7AK)
+(1—0)*(8"2 + &%)
= As'Az+ ArAT

last step follows from first property on page 16—17 and definition of [
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Gap and residual after update

notation: gap and residual as a function of steplength «

(5 + aAs)T (2 + alz) + (k + aAk) (7 + aAT)

properties: if r = jiq, then residual and gap decrease at the same rate

ple) = (1 =l —a))i,

0
s+ alAs
k+ alAk

m—+ 1
0 AT ¢ ]
—A 0 b

—ct —pT O_

e first identity was already noted on page 16-17

e 2nd identity follows from definition of r and search directions (p.16-16)

e hence, update preserves relation 7 = [iq

Self-dual formulations
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z 4+ alz
T+ aAT

r(a) = f(a)q




Path-following algorithm

choose starting points s, &, 2, with s >0, 2> 0;set k :=1, 7:=1

1. compute residuals and gap

0 0 AT ¢ 1 [ 2 ]
r = s | -1 —A 0 b Z
_/%_ _—cT —bT 0 _%_
. §Tz 4+ k7
o= m—+ 1

2. evaluate stopping criteria: terminate if

e I/7 and Z/7 are approximately optimal
e or Z is an approximate certificate of primal infeasibility
e or T is an approximate certificate of dual infeasibility
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3. compute affine scaling direction: solve the linear equation

0] [0 AT ¢ [ Az, |
As, | — | —A 0 b Az, = —r
A, I —c' —pT 0 | | ATa |
SoAz,+20As, = —502%
RAT, +TAK, = —RT

4. select barrier parameter: find
a=max{a € [0,1] | (8K, 2,7) + a(Asa, Aka, Azy, AT,) >0}

and take
oc:=(1—a)°

d is an algorithm parameter (a typical value is § = 3)
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5. compute search direction: solve the linear equation

0
As
I Ak

0 AT ¢ Az
—A 0 b Az
—c' —pt" 0 1L AT ]

SsoAz+20As
RAT + TAK

—(1 —o)r

ol —502

ofi — k7

6. update iterates: find maximum step to the boundary

a=max{a € [0,1] | (8 k,2,7) + a(As, Ar, Az, AT) > 0}

and make an update with stepsize & = min{1,0.99a}:

AAAAA

return to step 1

Self-dual formulations
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Discussion

e the vector ¢ is not used, but defined implicitly via » = fig

e step 3: the linearized central path equation (page 16-16) with o = 0

e step 4: same heuristic as on p.15-9, but simplified using p.16—-17

S ((§ + als.)T (2 4+ alz,) + (R + alAka)(F + @Ara)) 5

§T2 + k7

e step 5: the linearized central path equation (page 16-16), with r = figq
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Mehrotra correction

replace equation in step 5 with

e motivation for extra terms is the same as in lecture 15 (page 15-13)

0
As

_AH;

0 AL
—A 0

c | [ Az
b Az

-8 0 AT

SoAz+20As =

RAT + TAKk =

e the important identity

STAZz 4+ 3T As + AT + TAK B

=—(1—o)r

oitl —50z— As, oAz,

oft — RT — AR, AT,

m+1

(1— o)

(see page 16-17) still holds because Asl Az, + Arx, A, = 0

Self-dual formulations
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Linear algebra complexity

e essentially the same as for the method on page 15-8

e eliminating A7, Ak in steps 3 and 5 requires solution of an extra system

0 AT Az | | c
A —-Sz71 AzZ | |b
with S = diag($), Z = diag(2)

e this increases the number of linear equations solved per iteration to 3
(from 2 equations in the method on page 15-8)
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