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Mesoscale modeling of electric double layer capacitors with three-dimensional
ordered structures
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< New boundary conditions were
derived to account for the Stern
layer without simulating formally it.

< Both the Stern and diffuse layers
were rigorously accounted for.

< The new boundary conditions were
valid for planar, cylindrical, and
spherical electrodes or pores.

< They made possible the simulations
of EDLCs with highly ordered porous
electrodes.

< Predictions of capacitances of an
EDLC with ordered bimodal meso-
porous carbons agreed well with
experimental results.
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a b s t r a c t

This paper presents general mathematical formulations for simulating electric double layer capacitors
(EDLCs) with three-dimensional ordered structures. For the first time, a general set of boundary condi-
tions was derived in order to account for the Stern layer without simulating it in the computational
domain. These boundary conditions were valid for planar, cylindrical, and spherical electrode particles or
pores. They made possible the simulations of EDLCs with complex geometries while rigorously
accounting for both the Stern and diffuse layers. The model also simultaneously accounted not only for 3D
electrode morphology but also for finite ion size and field-dependent electrolyte dielectric permittivity. It
was used to faithfully simulate the complex structure of an EDLC electrode consisting of ordered bimodal
mesoporous carbon featuring both macropores and mesopores. Areal and gravimetric capacitances were
predicted based on non-solvated and solvated ion diameters. These two cases set the upper and lower
bounds for the predicted capacitances. The capacitances predicted using non-solvated ion diameter were
found to be in good agreement with experimental data reported in the literature. All surfaces contributed
to the overall capacitance of EDLCs. The gravimetric capacitance of different bimodal carbons increased
linearly with increasing specific surface area corresponding to constant areal capacitance.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Electric double layer capacitors (EDLCs) have been the subject of
intense studies in recent years due to their promises as electrical
energy storage devices [1e5]. EDLCs store electric charges physi-
cally in the electric double layer forming at electrode/electrolyte
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interfaces accessible to ions present in the electrolyte [1e5].
Fig. 1(a) shows a schematic of the electric double layer structure
forming near a positively charged cylindrical or spherical electrode
particle. Solvated anions of diameter a migrate and adsorb to the
electrode surface due to electrostatic forces while the cations are
repelled [6e9]. The Stern layer is defined as the compact layer or
inner layer near the electrode surface [6e9]. Note that there are
no free charges within the Stern layer [6e8]. Beyond the Stern
layer is the so-called diffuse layer where anions and cations are
mobile under the coupled influence of electrostatic forces and
diffusion [6e9].

Electrodes in EDLCs are typically made of mesoporous materials
offering large surface area. Research efforts have focused on
increasing the energy and power densities of supercapacitors by
increasing the surface area of porous electrodes and tailoring their
morphology or pore size distribution [1e5]. In particular, electrodes
with three-dimensional ordered structures [10e27] have attracted
significant attention due to [23e29] (1) their small ion transport

resistance, (2) their uniform pore connection leading to short ion
diffusion length, and (3) their continuous electron transport
framework. For example,Woo et al. [15] synthesized highly-ordered
mesoporous carbon films as electrodes for EDLCs. These carbon
films had ordered “bimodal” structure featuring both inter-
connected macropores and mesopores. In particular, their “CP204-
S15” carbon film had specific surface area of SBET ¼ 1003 m2 g�1

[15]. The radius of the macropores and mesopores was reported to
be 95 nm and 7 nm [15], respectively. The surface area due to
microporeswith diameter around or less than 2 nmwas less than 6%
[15]. From the FE-SEM image (Fig. 3(a) in Ref. [15]), the radius of the
channels between macropores in “CP204-S15” carbon film was
estimated to be 20 nm while the carbon wall thickness was about
2 nm. The electrolyte was 1 mol L�1 (C2H5)4NBF4 (or TEABF4) in
propylene carbonate while the potential window was 2 V. The
capacitances were measured using galvanostatic charge/discharge
at low current density 40 mA g�1 using the three-electrode
method [15]. Finally, the areal and gravimetric capacitances for

a

b

Fig. 1. Schematic of the electric double layer structure illustrating the arrangement of
solvated anions and cations as well as the Stern and the diffuse layer forming near (a) a
cylindrical or spherical electrode particle [6,7] and (b) a cylindrical or spherical pore
with radius R0 and Stern layer thickness H [6,7].

a

b

Fig. 2. Schematic and coordinate systems of (a) ordered bimodal carbon electrodes as
synthesized in Ref. [15] and (b) the computational domain along with the boundary
conditions and coordinate system for the ordered bimodal carbon CP204-S15 simu-
lated in the present study.
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the “CP204-S15” carbon film were reported to be Cs ¼ 9.4 mF cm�2

and Cg ¼ 95 F g�1, respectively [15].
Numerous experimental studies have been devoted to charac-

terizing the performances of EDLCs and assessing the effects of
electrode morphology as well as of the physical or electrochemical
properties of electrodes and electrolytes [1e5,10e27]. Experimental
approaches are typically time consuming and costly. They also rely
on trial and errors in order to optimize EDLCs. On the contrary,
accurate and reliable numerical tools can facilitate the design and
optimization of the electrodemorphology in a more systematic and
efficient way. Moreover, they can be used to understand the elec-
trochemical and transport processes involved in EDLCs [30,31]. For
example, they can predict the local electric potential and ion
concentrations throughout the mesoporous electrodes [32e34]
which cannot be measured experimentally. However, such numer-
ical simulations are complicated by the multi-scales (from sub-
nanometer to micron) and multi-physics nature of the problem.
They should also be validated against experimental data.

This paper aims to develop a three-dimensional (3D) model
based on continuum theory for simulating EDLCs with ordered
mesoporous electrode structures. For the first time, the model
simultaneously and rigorously accounts for (1) 3D electrode
morphology, (2) finite ion size, (3) Stern and diffuse layers, and (4)

the dependency of the electrolyte dielectric permittivity on the
local electric field. First, a new set of boundary conditions was
derived to account for the Stern layer without simulating it in the
electrolyte domain. The model was then used to simulate faithfully
the electrode morphology of CP204-S15 mesoporous carbon EDLC
synthesized and characterized by Woo et al. [15].

2. Background

2.1. Traditional modeling approaches

Equivalent RC circuit models and more complex transmission
line models [35e37] have been traditionally used to simulate
EDLCs. However, these models inherently neglect ion diffusion and
non-uniform ion concentration in the electrolyte [30,31,38e40].
Thus, these models may not be valid for EDLCs under large electric
potential and electrolyte concentration [30,31,38e41]. Alterna-
tively, homogeneous models have also been developed to investi-
gate the charging/discharging dynamics of EDLCs [42e47]. These
models treat the heterogeneous microstructure of the electrodes as
homogeneous with some effective macroscopic properties deter-
mined from effective medium approximations and depending on
porosity and specific area [42e47]. In addition, they typically
impose the areal capacitance or volumetric capacitance rather than
predict them [42e47].

Moreover, the Helmholtz model [48e50] and GouyeChapmane
Stern (GCS) model [51] are frequently used to simulate EDLCs with
one- or two-dimensional electrode structure. In these models, the
electrolyte dielectric permittivity is either assumed to be constant
[50,51] or treated as a fitting parameter [48e50]. However, the
relative permittivity er of polar electrolytes is known to significantly
decrease as the electric field increases [52e54]. In addition, the GCS
model neglects the finite size of ions and treat ions as point-charges
[32e34,55,56]. This assumption breaks down when either
the electrolyte concentration cN or the electric potential is large
[30e34,55,56]. Therefore, the GCS model is invalid for practical
EDLCs with typical electrolyte concentration larger than 1 mol L�1

and potential window larger than 1 V [34].
Due to their intrinsic limitations, none of the above-mentioned

models can account for the three-dimensional mesoporous elec-
trode morphology. The first equilibrium simulations of EDLCs with
three-dimensional electrode morphology were reported by Pilon
and co-workers [32,33]. These simulations also accounted for finite
ion size as well as the dependency of the electrolyte dielectric
permittivity on the local electric field [32,33]. However, the
computations of the Stern and diffuse layer capacitances were
decoupled due to the complex electrode structures [32,33]. Our
recent study indicated that the Stern and diffuse layer need to be
simulated simultaneously in order to predict accurately the electric
double layer capacitances [34]. To the best of our knowledge, the
Stern and diffuse layers have been simultaneously simulated only
for one- or two-dimensional electrode structures such as planar
electrodes [30,31] and a single cylindrical or spherical electrode
particle or pore [34,48e51].

Under equilibrium conditions, the local electric potential j(r) at
location r in the electrolyte can be found by solving the modified
PoissoneBoltzmann (MPB) model with a Stern layer accounting for
the finite ion size and expressed as [34,55,56],

V$ðe0erVjÞ ¼ 0 in the Stern layer 1a

V$ðe0erVjÞ ¼
2z0eNAcNsinh

�
z0ej
kBT

�

1þ2nsinh2
�
z0ej
2kBT

� in thediffuse layer 1b
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b
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Fig. 3. Predicted Stern layer, diffuse layer, and total areal capacitances for (a) a cylin-
drical electrode particle and (b) a cylindrical pore as a function of radius R0 ranging
from 2.5 to 60 nm. Results were obtained using conventional and our new boundary
conditions (BC) with a ¼ 0:68 nm, cN ¼ 1 mol L�1, js ¼ 2 V, and electrolyte
permittivity given by Equation (5).
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Then, the local ion concentration c(r) is given by [55,56]

cðrÞ ¼ cNexpð � z0ej=kBTÞ
1þ 2n sinh2

�
z0ej
2kBT

� (2)

where e0 and er are the free space permittivity
(e0 ¼ 8.854 � 10�12 F m�1) and the relative permittivity of the
electrolyte solution, respectively. The valency of the symmetric
electrolyte is denoted by z0, while cN is the bulk molar concen-
tration of electrolyte, T is the absolute temperature, e is the
elementary charge (e ¼ 1.602 � 10�19 C), NA and kB are the Avo-
gadro’s number (NA ¼ 6.022 � 1023 mol�1) and the Boltzmann
constant (kB ¼ 1.381 � 10�23 m2kg K�1 s�2), respectively. The
packing parameter is defined as n ¼ 2a3NAcN where a is the effec-
tive ion diameter. It represents the ratio of the total bulk ion
concentration to the maximum ion concentration cm ¼ 1/NAa

3

assuming a simple cubic ion packing [40,55,56]. Therefore, n should
not be larger than unity for the model to be physically acceptable.

2.2. Conventional boundary conditions

Boundary conditions are required to predict the electric poten-
tial and ion concentration profile in the electrolyte. The electric
potential at the electrode/electrolyte interface is typically
prescribed under equilibrium conditions [6e9,32,34,56,57]. For
a sphere or cylinder of radius R0, it is given by

jðr ¼ R0Þ ¼ js; (3a)

In addition, the electric potential and displacement are contin-
uous across the Stern/diffuse layer interface located at r¼ R0 þ H so
that [6,30,31,58],

j
�
r ¼ R0þH�

�
¼ j

�
r ¼ R0þHþ

�
and

e0er
dj
dr

�
r ¼ R0þH�

�
¼ e0er

dj
dr

�
r ¼ R0þHþ

� (3b)

Far away from the electrode surface, the electric potential and
ion concentration are constant such that [30e34,38],

jðr ¼ R0 þ LiÞ ¼ 0 and ciðr ¼ R0 þ LiÞ ¼ cN (3c)

In fact, thepresence of the very thin Stern layer near the electrode
surface causes several numerical challenges. First, the Stern layer
complicates the computational domain by introducing an additional
length scale which is significantly smaller than that of the diffuse
layer. Therefore, the computational domain becomes extremely
complicated and the number of meshes prohibitively large for
simulating three-dimensional electrode structures. Second, the
governing equations for the electric potential and ion concentrations
in the Stern and diffuse layers are numerically solved separately and
coupled through the boundary conditions [Equation (3b)]. These
equations must be solved simultaneously thus requiring excessive
computational time and resources. Therefore, the MPB model with
a Stern layer [Equation (1)] and the conventional boundary condi-
tions [Equation (3)] [30,31,34,51] cannot be used to simulate three-
dimensional structures such as those encountered in practical
EDLCs.

Alternatively, the Stern layer forming near planar electrodes can
also be accounted for via a modified boundary condition without
simulating it explicitly in the electrolyte domain. In one-
dimensional Cartesian coordinates, the corresponding boundary
condition at the Stern/diffuse layer interface located at x ¼ H has
been derived as [38,40,55,56,59e66],

e0er
dj
dx

�
x ¼ H

�
¼ CSt

s ½js � jðx ¼ HÞ� (4)

where CSt
s ¼ e0er=H is the Stern layer capacitance for planar elec-

trodes [38,40,55,56,59e66]. Then, Equations (3c) and (4) form
a complete set of boundary conditions for the entire electric double
layer while simulating only the diffuse layer from x ¼ H to x ¼ Li. To
the best of our knowledge, no similar approach has been proposed
for simulating electric double layers near electrodes in other
geometries or coordinate systems.

This paper aims to develop a new set of boundary conditions to
account for the Stern layerwithout simulating it in the computational
domain for planar, cylindrical, and spherical electrode particles or
pores. This presents the advantages of simplifying the computational
domain by simulating only the diffuse layer and thus reducing the
number of finite elements and the computational cost and time.
Moreover, it also enables the simulations of three-dimensional
highly-ordered mesoporous electrode structures. Finally, this
approachwasdemonstratedandvalidatedagainst experimental data
for ordered bimodal carbon films reported in Ref. [15].

3. Analysis

3.1. Schematics and assumptions

Fig. 2(a) shows the schematic representation of the ordered
bimodal mesoporous carbon simulated in this study. Here, the
dimensions of the simulated electrode structure were identical to
those of the bimodal mesoporous carbon “CP204-S15” reported in
Ref. [15] as previously discussed. Note that the capacitances pre-
dicted by the MPB model with the Stern layer [Equation (1)] are
identical for the positive and negative electrodes in binary and
symmetric electrolytes [32,34,55,56] such as those considered here.
Therefore, it suffices to simulate only one electrode [32,34,55,56].
In addition, the present study simulated one unit cell of the 3D
porous electrode structure. Further increasing the number of unit
cells was found to have no effect on the predicted areal and
gravimetric capacitances under equilibrium conditions [32]. By
virtue of symmetry, it suffices to simulate only 1/12th of one unit
cell. Fig. 2(b) shows the schematic of the computational domain
simulated in this study. The density of carbon materials is about
r ¼ 1.8 g cm�3 in its amorphous phase [67]. Then, the number of
mesopores existing in the walls was adjusted so that the specific
area of the simulated electrode matched that of the actual bimodal
electrodes ranging from 492 to 1504 m2 g�1 [15]. Overall, the
specific area of the simulated structure [Fig. 2(b)] was adjusted to
be 960 m2 g�1 which falls within 5% of its experimental value of
1003m2 g�1 [15]. The thickness of the electrolyte region at the edge
of the electrode was specified to be Li ¼ 30 nm. Increasing this
thickness to Li¼ 60 nmwas found to have no effect on the predicted
areal and gravimetric capacitances due to the rapid decrease of the
electric potential from the electrode surface caused by the thin
electric double layer [32e34].

To make the problem mathematically tractable, the following
assumptions were made: (1) the electric potential and ion
concentrations reached their equilibrium states, (2) anions and
cations had the same effective diameter assumed to be constant and
independent of electrolyte concentration [55,56,68], (3) the elec-
trolyte relative permittivity was constant and uniform within the
Stern layer. Note that the electrolyte relative permittivity is typically
defined for media with characteristic length larger than 1 or 2 nm
[69,70], (4) isothermal conditions prevailed throughout the elec-
trode and electrolyte, (5) advection of the electrolyte was assumed
to be negligible, (6) the ions could only accumulate at the Stern/

H. Wang, L. Pilon / Journal of Power Sources 221 (2013) 252e260 255



Author's personal copy

diffuse layer interface and could not diffuse into the electrode, i.e.,
there was no ion insertion, and (7) the specific ion adsorption due
to non-electrostatic forces were assumed to be negligible.

3.2. Constitutive relations

In order to solve Equations (1) and (3), the electrolyte properties
er, z0, cN, and a along with the temperature T and the surface
potential js are needed. In the diffuse layer, the Booth model was
used to account for the dependency of electrolyte dielectric
permittivity on the local electric field [32,34,52e54],

erðEÞ ¼ n2 þ
�
erð0Þ � n2

� 3
bE

�
cothðbEÞ � 1

bE

�
for

E � 107V m�1 ð5aÞ

er ¼ erð0Þ for E < 107V m�1 (5b)

where E ¼ j�Vjj is the norm of the local electrical field vector, er(0)
is the relative permittivity at zero electric field, and n is the index of
refraction of the electrolyte at zero electric field frequency. In the
Stern layer, the electrolyte dielectric permittivity was imposed as
constant and uniform [assumption (3)]. Its value was evaluated
using Equation (5) and the computed local electric field at the
Stern/diffuse layer interface.

The electrolyte solution used in Ref. [15] was TEABF4 in
propylene carbonate solution at room temperature (T ¼ 298 K)
characterized by the following properties: er(0)¼ 64.4 [71], n¼ 1.42
[72], b ¼ 1.314 � 10�8 m V�1 [32], and z0 ¼ 1. The ion diameter of
non-solvated TEAþ and BF4

� ions are a ¼ 0.68 and 0.34 nm [73],
respectively. Their solvated ion diameters were reported to be
a ¼ 1.36 and 1.40 nm [74,75], respectively. The electrolyte
concentration and the surface electric potential were chosen to be
the same as those used in Ref. [15], namely, cN ¼ 1.0 mol L�1 and
js ¼ 2 V. In addition, the Stern layer thickness Hwas approximated
as the radius of solvated ions, i.e., H ¼ a/2 [7e9].

3.3. Derivation of generalized boundary conditions

This section presents the derivation of a generalized boundary
condition valid for cylindrical and spherical electrode particles or
pores. For a cylindrical electrode of radius R0 (Fig.1(a)), Equation (1)
in the Stern layer is expressed as [30,31,51]

d
dr

�
e0err

dj
dr

�
¼ 0 for R0 � r < R0 þ H (6)

where er ¼ er(EH) is the uniform electrolyte relative permittivity
within the Stern layer [assumption (3)]. Its value is evaluated at the
Stern/diffuse layer interface located at rH ¼ R0 þ H using Booth
model [Equation (5)] based on the local electric field EH(rH). Then,
integrating Equation (6) twice with respect to r from r ¼ R0 to
r ¼ R0 þ H using the boundary condition given by Equations (3a)
and (3b) yields,

j
�
r
	 ¼ �½js � jðr ¼ R0 þ HÞ� logðr=R0Þ

logð1þ H=R0Þ
þ js (7)

Differentiation of Equation (7) with respect to r yields the
following boundary condition at the Stern/diffuse layer interface at
r ¼ R0 þ H,

�e0erðEHÞ
dj
dr

ðr ¼ R0 þ HÞ ¼ e0erðEHÞ
R0logð1þ H=R0Þ

R0
R0 þ H

�½js � jðr ¼ R0 þ HÞ� (8)

Equation (8) relates the local electric potential to its gradient at
r ¼ R0 þ H. It serves as a new boundary condition at the Stern/
diffuse layer interface.

Similarly, for spherical electrodes, the boundary condition at the
Stern/diffuse layer interface can be derived as,

�e0erðEHÞ
dj
dr

ðr ¼ R0 þ HÞ ¼ e0erðEHÞ
H

�
1þ H

R0

��
R0

R0 þ H

�2

�½js � jðr ¼ R0 þ HÞ� (9)

Note that Equations (4), (8) and (9) can be rewritten in a gener-
alized form for planar, cylindrical, and spherical electrodes as,

�e0erðEHÞVj$
�
rH
rH

�
¼ CH

s

�
R0

R0 þ H

�p

½js � jðrHÞ� (10)

where rH is the local position vector at the Stern/diffuse layer
interface located at rH ¼ R0 þ H for cylindrical and spherical elec-
trodes. Note that rH/rH represents the local outward normal unit
vector at the Stern/diffuse layer interface. Here, CH

s is the Stern layer
capacitance predicted by the Helmholtz model assuming constant
er within the Stern layer and given by [34,76],

CH
s ¼ e0erðEHÞ

H
for planar electrode 11a

CH
s ¼ e0erðEHÞ

R0logð1þ H=R0Þ
for cylindrical electrode 11b

CH
s ¼ e0erðEHÞ

H

�
1þ H

R0

�
for spherical electrode 11c

The value of p in Equation (10) is given by,

p ¼ 0 for planar electrodes 12a

p ¼ 1 for cylindrical electrodes 12b

p ¼ 2 for spherical electrodes 12c

Moreover, for cylindrical and spherical pores of radius R0 illus-
trated in Fig. 1(b), the new boundary condition at the Stern/diffuse
layer interface located at rH ¼ R0 � H can be similarly derived as,

�e0erðEHÞVj$
�
rH
rH

�
¼ CH

s

�
R0

R0 � H

�p

½js � jðrHÞ� (13)

where p ¼ 1 or 2 for cylindrical or spherical pores, respectively.
Here also, the Stern layer capacitance CH

s for cylindrical or spherical
pores is given by the Helmholtz model assuming constant er within
the Stern layer and expressed as [76],

CH
s ¼ e0erðEHÞ

R0log
�

R0
R0�H

� for cylindrical poresof radius R0 14a

CH
s ¼ e0erðEHÞ

H

�
R0�H
R0

�
for spherical poresof radius R0 14b

3.4. Method of solution and data processing

Equation (1) was solved using the commercial finite element
solver COMSOL 4.2, along with the boundary conditions given by
Equations (3c) and (10) or (13) and field-dependent permittivity
erðEÞ given by Equation (5). The simulations were run on a Dell
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workstation Precision 690with two 2.66 GHz Quad-Core Intel Xeon
CPUs and 64 GB of RAMs.

Due to charge conservation [Equation (1)], the total amount of
charges Q stored near the electrode surfaces As is equal to that
present at the Stern/diffuse layer interface denoted by Ad. Then, it
can be computed by integrating the surface charge density
(e0erE$n) along As or Ad and expressed as [8,77],

Q ¼
Z
As

e0erðEÞE$n dA ¼
Z
Ad

e0erðEÞE$n dA (15)

where E ¼ �Vj is the local electric field vector, n is the local
outward normal unit vector at the electrode surface As or at the
electrode/electrolyte interface Ad. Then, the overall gravimetric
capacitance was estimated as [33],

Cg ¼ Q
rVjs

(16)

where r and V are the density and volume of the amorphous carbon
electrode, respectively. The diffuse layer areal capacitance CD

s and
the total areal capacitance Cs were respectively estimated as
[32,33],

CD
s ¼ Q

jdAd
¼ 1

jdAd

Z
Ad

e0erðEÞE$n dA and Cs ¼ Q
jsAs

(17)

Note that the total areal capacitance Cs can be also equivalently
calculated using the one-dimensional series formula
1=Cs ¼ 1=CSt

s þ1=CD
s when the Stern layer thickness is much smaller

than the electrode or pore diameter as considered here. In addition,
the Stern layer areal capacitance CSt

s was given by the Helmholtz
model [Equation (11) or Equation (14)].

The numerical convergence criterion was defined such that the
maximum relative differences in the predicted capacitances
CSt
s ;CD

s ;Cs, and Cg was less than 1.5% when decreasing themesh size
by a factor two. The mesh size was the smallest at the Stern/diffuse
layer interface due to the large electric potential gradient and then
gradually increased. The maximum mesh size was specified to be
about 0.1 nm at all Stern/diffuse layer interfaces and remained less
than 2.5 nm anywhere else in the computational domain. The total
number of finite elements was on the order of 107 for the simula-
tions of bimodal ordered carbon CP204-S15 with 1/12th of one unit
cell shown in Fig. 2(b).

Finally, the numerical tool was validated based on two equilib-
rium cases reported in the literature. First, the equilibrium electric
potential profile in the diffuse layer predicted by solving the MPB
model was validated against the exact solution for planar elec-
trodes [6,8,58] with er ¼ 78:5, cN ¼ 0:01 and 0.001 mol L�1,
n ¼ 0, and jD ¼ 0:1 V. Second, the computed capacitances for the
Stern and diffuse layers obtained from the MPB model were vali-
dated against their theoretical formula assuming constant elec-
trolyte permittivity [34,55,56] for js ¼ 2 V, cN ¼ 1 mol L�1, and
a ¼ 0:68 or 1.40 nm. Good agreement was obtained between our
results and reported electric potential profiles [6,8,58] or capaci-
tances [34,55,56] for all cases considered.

4. Results and discussions

4.1. Validity of the new boundary conditions

The new boundary conditions [Equations (10) and (13)] were
used to compute the capacitances for a single cylindrical electrode
particle and a cylindrical pore by solving Equations (1b), (3c) and
(10) or Equation (13), respectively. The parameters were chosen

such that a ¼ 0:68 nm, cN ¼ 1:0 mol L�1, and js ¼ 2 V with field-
dependent electrolyte permittivity erðEÞ given by Equation (5). The
results were compared with those obtained by simulating both the
Stern and diffuse layers in the electrolyte domain using the
conventional boundary conditions given by Equation (3). Fig. 3
shows the Stern layer, diffuse layer, and total areal capacitances
predicted using these two approaches as a function of particle or
pore radius R0 ranging from 2.5 to 60 nm. The relative difference in
the values of CSt

s , CD
s , and Cs predicted using these two approaches

was less than 0.2% for all cases considered here. In addition, it is
evident that the predicted CSt

s was much smaller than CD
s for all

cases considered. Therefore, the double layer capacitance Cs was
dominated by CSt

s which is consistent with the conclusion drawn in
our previous study [34] when accounting for field-dependent
electrolyte permittivity. Note that for particle or pore radius
larger than 40 nm, the predicted capacitance reached a plateau of
Cs ¼ 10:2 mF cm�2 corresponding to that of planar electrodes as
discussed in Refs. [32e34,49,50].

Similarly, the predicted capacitances CSt
s , CD

s , and Cs using these
two approaches were compared for a spherical electrode and
a spherical pore with various radii ranging from 2.5 to 60 nm.
Excellent agreement was observed in all cases. Overall, these
results demonstrate that the Stern layer can be accurately
accounted for by using the new boundary conditions given by
Equation (10) or Equation (13) for cylindrical and spherical elec-
trodes or pores without explicitly simulating the Stern layer in the
electrolyte domain. Note that the total number of finite elements
decreased by about 30%e60% when using the new boundary
conditions for simulating a single cylindrical and spherical elec-
trode or pore with radius ranging from 2.5 to 60 nm. The corre-
sponding computational time was reduced by about 10%e30%. This
reduction in finite elements and computational time became more
significant with increasing radius and geometric complexity. This
clearly demonstrates the advantage of the new boundary
conditions.

4.2. Capacitances of ordered bimodal carbons

The double layer capacitances CSt
s , CD

s , and Cs of the ordered
bimodal carbon shown in Fig. 2(b) were predicted by solving
Equation (1b) in the diffuse layer along with the new boundary
conditions given by Equations (3c) and (10) or Equation (13). The
electrode surface was divided in three sections (i) the inner surface
of the pores of radius 95 nm, (ii) the outer surface of radius 97 nm,
and (iii) the mesopore with 7 nm in radius located in the walls
separating the macropores. The boundary condition given by
Equation (10) was imposed at the outer surfaces while Equation
(13) was imposed at the mesopore and inner pore surfaces,
respectively. Note that without these new boundary conditions, it
was impossible to solve the coupled governing equations for such
a complex domain due to (i) the difficulty in creating the geometry
and (ii) an excessively large number of finite elements.

Table 1 summarizes the predicted Stern layer, diffuse layer, and
total areal capacitances as well as the gravimetric capacitance at the
inner, outer, and mesopore surfaces of the ordered bimodal carbon.
Results were obtained based on the non-solvated effective ion
diameter a ¼ 0:68 nm [73] with field-dependent electrolyte
permittivity erðEÞ given by Equation (5). The areal capacitances
predicted for planar electrodes for the same parameters were also
reported in Table 1 for comparison purposes.

It is evident that the Stern layer areal capacitance CSt
s was about

one-third smaller than the diffuse layer areal capacitance CD
s at all

surfaces. Thus, the total areal capacitance Cs was controlled by the
Stern layer. In addition, the total areal capacitances Cs at the inner
and outer surfaces were 10.2 mF cm�2 which was identical to that
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for planar electrodes. Indeed, electrodes with radius of curvature
larger than 40 nm behave like planar electrodes as established in
Refs. [32,34] and also shown in Fig. 3. Similarly, the areal capaci-
tance Cs at mesopore surfaces was 10.1 mF cm�2 which fell within
1% of that of planar electrodes. In fact, it was found that the areal
capacitance Cs of mesopores decreased with increasing pore depth
(or carbon wall thickness) (not shown). This was due to the
confinement of the electric field in small pores leading to reduced
surface charge density and capacitance as previously discussed
[32,33]. However, this effect appeared to be negligible for small
pore depth (i.e., carbon wall thickness) of 2 nm such as those
considered here. In addition, the mesopores contributed about 30%
less to the gravimetric capacitance Cg than the inner and outer pore
surfaces. This was due to the small carbon wall thickness and thus
the relatively small mesopore surface area compared with those of
inner and outer pore surfaces.

Table 1 also summarizes the predicted capacitances for the
electrode structure shown in Fig. 2(b) but using solvated ion
diameter a ¼ 1:40 nm [75]. It demonstrates that, for larger effec-
tive ion diameter, the Stern layer areal capacitance CSt

s had the same
order of magnitude as the diffuse layer areal capacitance CD

s at all
surfaces. Consequently, the capacitances CSt

s and CD
s contributed

nearly equally to the total areal capacitance Cs. Here also, the inner
and outer pore surfaces contributed slightly more to the gravi-
metric capacitance than mesopores. However, both the local areal
and gravimetric capacitances decreased by about 30% when using
the solvated ion diameter a ¼ 1:40 nm instead of a ¼ 0:68 nm.
This was due to the associated reduction in the maximum ion
concentration cm ¼ 1=NAa3 at the electrode surface as ion diam-
eter a increases.

Finally, for the relatively large surface potential js ¼ 2 V
considered, the ion concentration given by Equation (2) reached its
maximum value cm at all surfaces in the simulations (not shown)
regardless of the value chosen for the effective ion diameter a.

4.3. Comparison with experimental data

Table 2 shows the predicted overall areal and gravimetric
capacitances Cs and Cg defined by Equations (16) and (17) and
accounting for the contribution of all electrode surfaces. The
experimental values reported in Ref. [15] are also reproduced for
comparison. It is worth noting that the values of Cs and Cg predicted
using non-solvated ion diameter a ¼ 0:68 nmwere about 8.5% and
3% larger than their respective experimental counterparts. On the
other hand, Cs and Cg predicted using solvated ion diameter
a ¼ 1:40 nm underestimated the experimental values by about
24%. In fact, the predictions using non-solvated and solvated ion

diameters set the upper and lower bounds for the capacitances,
respectively. The capacitances predicted using non-solvated ion
diameter (a ¼ 0:68 nm [73]) showed better agreement with
experimental data. We speculate that these results could be
attributed to two possible reasons. First, as the electrolyte concen-
tration increases, the dissolved electrolyte ions become
less solvated, i.e., they are surrounded by less solvent molecules
[16,78e80]. Consequently, the effective ion diameter decreaseswith
increasing electrolyte concentration [16,78,79]. Note also that the
solubility of TEABF4 in propylene carbonate is about 1 mol L�1 at
room temperature [81]. Second, the effective ion diameter of TEAþ

tends to decrease under large local electric field [82]. In fact, TEAþ

ionswas found to become distorted and able to adsorb in poreswith
diameter even smaller than the non-solvated TEAþ [82e84]. Thus,
the effective ion diameter near the electrode surfaces approaches
that of the non-solvated ions, i.e., a ¼ 0:68 nm [82e84]. Overall, the
predicted capacitances agreed well with experimental data. These
results validate the numerical models, boundary conditions, and
constitutive relationships developed here for simulating EDLCswith
three-dimensional ordered structures. The new boundary condi-
tions were essential in obtaining such results.

Thanks to this experimentally validated numerical model, it
becomes possible to numerically explore the effects of the electrode
architecture on its energy storage capabilities. Fig. 4 shows the
predicted gravimetric capacitance Cg of bimodal carbon structures
as a function of their specific surface area ranging from 910 to
1030 m2 g�1. Here, the specific surface area was varied by changing
the inner pore radius R0 from 50 to 150 nm while other geometric
parameters such as the carbon wall thickness and mesopore radius
remained identical to those of CP204-S15 carbon shown in Fig. 2(b).

Table 1
Predicted Stern layer CsSt, diffuse layer CsD, and total Cs areal capacitances as well as
gravimetric capacitance for the ordered bimodal carbon (Fig. 2(b)) computed at the
inner, outer, and mesopore surfaces. Results were obtained by solving Equations
(1b), (3c) and (10) or Equation (13) using non-solvated or solvated ion diameter
a ¼ 0:68 or a ¼ 1:40 nm, respectively along with cN ¼ 1 mol L�1, js ¼ 2 V, and
electrolyte permittivity given by Equation (5). Predictions for planar electrodes are
reported for comparison.

Ion diameter Capacitance Planar
electrode

Inner
surface

Outer
surface

Mesopores

a ¼ 0:68 nm CSt
s (mF cm�2) 13.4 13.3 13.4 12.8

CD
s (mF cm�2) 43.2 44.6 43.8 47.3

Cs (mF cm�2) 10.2 10.2 10.2 10.1
Cg (F g�1) d 39.0 35.0 23.0

a ¼ 1:40 nm CSt
s (mF cm�2) 13.0 11.8 11.9 10.0

CD
s (mF cm�2) 17.7 21.4 20.7 28.5

Cs (mF cm�2) 7.5 7.5 7.5 7.4
Cg (F g�1) d 29.2 25.1 17.8

Table 2
Predicted overall areal and gravimetric capacitances of the ordered bimodal carbon
using (a) non-solvated ion diameter a ¼ 0:68 nm and (b) solvated ion diameter
a ¼ 1:40 nm in comparison with experimental data reported in Ref. [15]. Results
were obtained by solving Equations (3c), (1b) and (10) or Equation (13) with
cN ¼ 1 mol L�1 and js ¼ 2 V.

Specific area (m2 g�1) Cs (mF cm�2) Cg (F g�1)

Measured [15] 1003 9.4 95
a ¼ 0.68 nm 960 10.2 97.9
a ¼ 1:40 nm 960 7.5 72.0

Fig. 4. Predicted and experimentally measured [15] gravimetric capacitance Cg for
bimodal carbons as a function of their specific surface area. Numerical results were
obtained by solving Equation (1b) using boundary conditions given by Equations (3c)
and (10) or Equation (13) with non-solvated ion diameter a ¼ 0:68 nm,
cN ¼ 1 mol L�1, js ¼ 2 V, and the electrolyte permittivity given by Equation (5). The
inner pore radius R0 was varied from 50 to 150 nm.

H. Wang, L. Pilon / Journal of Power Sources 221 (2013) 252e260258



Author's personal copy

The results were obtained by solving Equation (1b) subject to
boundary conditions given by Equations (3c) and (10) or Equation
(13) using both solvated and non-solvated ion diameters, i.e.,
a ¼ 1:40 nm and a ¼ 0:68 nm, respectively. Other parameters
were identical to those used to generate the results presented in
Table 1. Fig. 4 also shows the measured gravimetric capacitance of
different bimodal carbon films [15] obtained using 1 mol L�1

TEABF4 electrolyte. It is evident that predicted and experimentally
measured gravimetric capacitance Cg increased linearly with
increasing specific surface area. The slope of Cg vs. specific
surface area corresponds to a constant areal capacitance of
Csz7:4 or 10:2 mF cm�2 when using solvated or non-solvated
ion diameter, respectively. Note that this trend is consistent with
experimental data reporting a linear relationship between gravi-
metric capacitance and specific surface area with an areal capaci-
tance of 9.4 mF cm�2 [15]. Overall, very good agreement was
observed between experimental measurements and model
predictions.

Finally, it is evident that the new boundary conditions [Equa-
tions (10) and (13)] developed here made possible the simulations
of EDLCs with three-dimensional ordered electrode structures.
These simulations can give detailed information such as the local
charge storage, electric potential, and ion concentrations within the
electrolyte which cannot be measured experimentally. Note also
that these boundary conditions [Equations (10) and (13)] can be
readily employed to simulate the dynamic charging and discharg-
ing of EDLCs with ordered electrode structures. Then, the model
could be used to identify the optimum electrode architecture and
provide design rules to achievemaximum charging performance by
EDLCs.

5. Conclusion

This paper developed a three-dimensional (3D) model based on
continuum theory for simulating EDLCs with ordered electrode
structures. For the first time, a new set of boundary conditions was
derived to account for the Stern layer forming near planar, cylin-
drical, and spherical electrodes as well as cylindrical and spherical
pores. They made possible the simulations of EDLCs with 3D
ordered electrode structures while simultaneously and accurately
accounting for (i) both the Stern and diffuse layers, (ii) finite ion
size, and (iii) the dependency of electrolyte permittivity on the local
electric field. The model was used to faithfully simulate an actual
EDLC consisting of complex 3D ordered bimodal carbons in
1 mol L�1 TEABF4/propylene carbonate electrolyte solution [15].
The predicted gravimetric capacitance of different bimodal carbons
was found to increase linearly with increasing specific surface area
corresponding to constant areal capacitance. Numerical predictions
were in very good agreement with experimental data [15].
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