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Abstract—The phase noise of a ring oscillator can be obtained
by multiplying its open-loop phase noise by a simple shaping func-
tion. The shaping function is computed using first principles and is
applicable to both flicker-noise-induced and white-noise-induced
phase noise, leading to compact equations for ring oscillators. It
is also shown that flicker noise upconversion in ring oscillators is
primarily a function of the total gate capacitance and inevitable
regardless of the risetime and falltime symmetry. Two oscillator
prototypes fabricated in 65-nm CMOS technology verify the va-
lidity of the results.

Index Terms—Flicker noise, inverter phase noise, jitter, oscil-
lator phase noise, phase noise, white noise.

I. INTRODUCTION

I T has been recognized for more than two decades that
delay lines exhibit less phase noise than ring oscillators

do [1]. This advantage is intuitively explained by the lack of
jitter accumulation in the former but has not been quantified
analytically.
The phase noise in ring oscillators has been studied exten-

sively [2]–[10]. In this paper, we offer an analysis that leads to a
direct relation between the phase noise of delay lines and that of
ring oscillators, allowing comparison of their performance for a
given power dissipation and operation frequency.We begin with
first principles and establish a unified relation for both white
and noise sources. As a byproduct, our analysis also shows
that the flicker-noise-induced phase noise is inversely propor-
tional to the total gate capacitance present in a ring oscillator
and relatively independent of the symmetry between rise and
fall transitions. The proposed relation is experimentally verified
on 9-stage and 19-stage prototypes fabricated in 65-nm CMOS
technology.
Section II deals with the phase noise of delay lines, ex-

pressing their jitter as two impulse trains. Section III analyzes
jitter accumulation in a ring oscillator and utilizes the results
from Section II to arrive at the the proposed relation. Section IV
derives some useful results, including compact phase noise
equations, and Section V and VI, respectively, present simula-
tion and experimental confirmations of the equations.
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Fig. 1. (a) Three-stage delay line with only one noisy inverter, (b) node volt-
ages in response to a frequency equal to the oscillation frequency of a three-stage
ring oscillator, (c) decomposition of the output voltage to an ideal noiseless
square wave and a noise waveform, and (d) approximation of the noise wave-
form in (c) to two uncorrelated weighted impulse trains.

II. PHASE NOISE OF DELAY LINES

Let us consider the chain of inverters shown in Fig. 1(a) as a
representative delay line, with the dummy load added to ensure
uniform delays. Since the inverters exhibit uncorrelated noise,
the overall phase noise (as a power quantity) is equal to that
of one multiplied by the number of stages (if they are identical).
For our purposes, we tentatively assume that only the second in-
verter in Fig. 1(a) has noise. We also select the input frequency
equal to the oscillation frequency of this chain as if it were re-
configured to become a ring oscillator, i.e., ,
where denotes the average gate delay. Thus, as propa-
gates to , it experiences three gate delays and the jitter of one
inverter [Fig. 1(b)]. In other words, the falling edges of are
aligned with the falling edges of but modulated by the second
inverter’s jitter.
The output of the third inverter in Fig. 1(a) can be decom-

posed into an ideal square wave and a train of narrow pulses
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[11], [12] that occur every seconds [Fig. 1(c)].
Since the jitters on the rising and falling edges arise from dif-
ferent noise sources and are uncorrelated [13], we denote them
by and , respectively. Now, in Fig. 1(c) it-
self can be approximated as the sum of a positive impulse train
weighted by and a negative impulse train weighted by

[Fig. 1(d)]:

(1)

With the aid of Fig. 1(d), we recognize that the phase noise of
the chain is equal to the sum of the power spectral densities
of and normalized to the power of the first har-
monic of [13]. We derive the phase noise expression in
Section IV.

III. PHASE NOISE OF RING OSCILLATORS

The perspective described above for the phase noise of delay
lines proves useful in the phase noise analysis of ring oscillators
aswell. Suppose the delay lineofFig. 1(a) is reconfigured to form
a ring oscillator as shown in Fig. 2(a) (without the dummy load).
We perform a “gedankenexperiment” in which (1) the voltage

source applies a noiseless rising edge to the input of the first
inverter at and is disconnected from the circuit at ,
and (2) the second inverter produces jitter only once (i.e., a single
time displacement) as this edge propagates through the chain and
remains noiseless thereafter. Thus, the input rising edge arrives at
with a delay equal to plus the jitter of the second inverter,
. As this edge circulates around the ring, it experiences no

more jitter; i.e., all of the subsequent edges are simply displaced
by a constant equal to . Fig. 2(b) illustrates this effect.
The output waveform obtained in the above experiment can

be decomposed as shown in Fig. 2(c) and expressed as a single
pulse of width , convolved with an alternating train of im-
pulses, . Note that for . We can consider
as “carrier” for the time displacements.
We now repeat the above experiment while assuming that the

second inverter is noisy at all times. The second time the os-
cillation edge passes through this inverter, the jitter causes one
additional displacement, , as depicted by the dark shading
in Fig. 2(d). The effect of this shift can be obtained by con-
volving a pulse of width with and adding the result
to an ideal, noiseless waveform. Note that this calculation holds
valid whether or not and are correlated.
The foregoing observations suggest that the ring oscillator

output can be decomposed into an ideal square waveform and a
noise component [Fig. 2(e)] given by

(2)

Fig. 2. (a) Three-stage ring oscillator retimed at with only one noisy in-
verter, (b) jitter on all edges due to a single jitter event on , (c) decomposition
of in (b) to an ideal noiseless square wave and a noise waveform, with
serving as a “carrier,” (d) jitter on edges when inverter #2 adds jitter on every
transition, (e) decomposition of in (d) to an ideal noiseless square wave and
a noise waveform.

From (1) and (2), it follows that the delay line phase noise,
, and the ring oscillator phase noise, , are

related as1

(3)

where denotes the spectrum of .
Equation (3) is a general result and merits a few remarks.

First, (3) applies to the phase noise due to both white noise and
flicker noise. Second, (3) holds for the phase noise arising from
all of the devices in the delay line and the ring. Third, (3) is not
limited to CMOS inverters and can be used for differential delay
stages and rings as well.
To determine , we first write

(4)

1Throughout this paper, all the spectra are two-sided, and the phase noise is
denoted by .
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Fig. 3. Fourier transform of .

and hence

(5)

which simplifies to

(6)
The unit step in (4) ensures the causality of jitter accumulation,
i.e., the jitter generated at any edge is present for only subse-
quent edges. Fig. 3 plots the magnitude of , revealing how
the delay line phase noise is shaped to produce the ring oscil-
lator phase noise.
At an offset frequency of with respect to the fundamental

frequency, , we have

(7)

Thus, (3) can be rewritten as

(8)

For offset frequencies much less than , we have
. Changing our nota-

tion from to , we write

(9)

This simple, fundamental relation holds for phase noise due to
both and white noise.

IV. USEFUL INSIGHTS

Equation (9) provides a multitude of interesting and useful
insights into the phase noise behavior of ring oscillators. Of
course, it confirms that white noise and flicker noise lead to

and phase noise profiles because the corre-

Fig. 4. (a) Delay line and ring oscillator with one equivalent noise source, ,
and (b) shown as a low-frequency component.

sponding delay line phase noise profiles are respectively flat
and proportional to [13]. This section presents some
other insights that may benefit the circuit designer.

A. Comparison of Delay Lines and Ring Oscillators

Equation (9) indicates that conversion of a delay line to a ring
oscillator shapes the phase noise by an function.
Since is usually much less than , we observe that

for a given power dissipation and
fundamental frequency. Why are low noise frequencies scaled
by a greater factor? Consider the scenario depicted in Fig. 4(a),
where one of the noise sources of the second inverter, , is
explicitly shown and placed in series with ; for example,

represents the noise of the PMOS transistor in the inverter.
Suppose varies at a rate much lower than the operation fre-
quency, [Fig. 4(b)]. We observe that the delay line simply
experiences a relatively constant phase shift at ,

, etc., so long as changes negligibly. In the
ring oscillator, on the other hand, the time displacements caused
by at , , etc., continue to accu-
mulate until changes polarity. The lower the frequency of
, the longer and larger this accumulation is, producing the

shaping function.

B. Compact Phase Noise Equations

The phase noise of an inverter is derived in [13] as

(10)
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for white noise sources and as

(11)

for flicker noise sources, where is the slew rate, the
load capacitance, the input period, the thermal noise
current, the flicker noise current, the Boltzmann con-
stant, the absolute temperature, and the equivalent “on”
time for each transistor [13].
In order to derive a compact expression for the delay line,

we make three simplifying assumptions. (1) The equivalent on
time, , is approximately equal to the gate delay, . (2) The
slew rate, , can be approximated as , where de-
notes the drain current of the on transistor when its gate voltage
is near the rail and its drain voltage around [13]. (3) The
slew rate can also be approximated as [14].
It follows from (10) and (11) that for noisy inverters in a

delay line,

(12)

(13)

where it is assumed is the same for NMOS and PMOS de-
vices. In the special case where the input period is equal to the
period of the corresponding ring oscillator, we have

, and (12) and (13) reduce to

(14)

(15)

With the aid of (9), we can now express the phase noise of an
-stage ring oscillator as:

(16)

(17)

Note that these spectra are two-sided (i.e., ).
Accounting for the factor of 2 difference between one-sided and
two-sided spectra, we observe that the phase noise given by
(17) is still twice that reported in [4]. As verified by the sim-
ulations in Section V, our result is correct. The factor of 2 error
in [4] can be explained as follows. For a voltage-controlled os-
cillator (VCO) sensing a small sinusoidal voltage of peak
and frequency , the relative magnitude of the sideband at the
output is given by , where is the gain
in Hz/V. It is tempting, but incorrect, to use this result directly
for random noise, i.e., to write for the phase
noise resulting from noise with spectral density [4]. Since
phase noise is in fact the spectrum of in ,
we integrate noise with respect to time and multiply the re-
sult by , obtaining . If de-
notes a one-sided spectrum, then this result must be divided by
a factor of 2 so as to represent a two-sided , producing

.
Equation (16) reveals that is independent of

the number of stages, as recognized in prior work [4], [5].
To confirm that is fundamentally related to the
power consumption (also recognized in [4], [5]), suppose two
rings incorporate identical inverters, but one contains
stages and the other , where . We add enough
capacitance to each node in the second ring so that the gate
delays of the two rings, and , respectively, satisfy the
relation and thus yield the same oscillation
frequency. Since the gate delays are proportional to the load
capacitances, it follows that and hence

. That is, equal os-
cillation frequencies guarantee equal power consumptions in
this case. Since the inverters are identical in the two designs,

and in (16) are the same for the two oscillators,
yielding the same .
Equation (17) shows that the phase noise due to flicker noise

falls as the number of stages increases [4]. This is also observed
in the simulation results of Section V.

C. Effect of Transition Symmetry on Flicker Noise
Upconversion

The fundamental relation expressed by (9) implies that if
flicker noise is upconverted in a delay line, so is it in a ring
oscillator utilizing that delay line. Thus, the upconversion phe-
nomenon can be studied in a simpler delay line environment.
The flicker-noise-induced phase noise of delay lines is formu-

lated by (11), with representing a quantity roughly equal to
half of the transition time caused by the NMOS or PMOS tran-
sistor in each stage. Interestingly, this equation suggests that
the flicker noise is upconverted regardless of the relationship
between and , a point in contradiction to
the analysis in [5], which predicts zero upconversion if the rise
and fall transitions are symmetric. In fact, as shown in Fig. 5(a),
phase noise simulations of a 9-stage 2.4-GHz ring oscillator re-
veal that the phase noise changes by only a few decibels as the
PMOS-to-NMOSwidth ratio varies from 1/4 to 4/1 and the rise-
time-to-falltime ratio from 3 to 0.76. This weak dependence is
also verified by examining the upconversion of a 1-MHz tone
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Fig. 5. (a) Phase noise and risetime-to-falltime ratio versus the PMOS-to-
NMOS width ratio of a 9-stage 2.4-GHz ring oscillator, (b) spur power when
a small sinusoidal voltage source is put in series with the gate of one NMOS
transistor in the ring, and (c) ISF reported in [5] and uncorrelated ISF’s for
NMOS and PMOS devices.

placed in series with the gate of one NMOS transistor in the
ring. Fig. 5(b) reveals that the FM sideband magnitude varies
little.
The flaw in [5] can be explained as follows. Since the flicker

noise currents injected by the NMOS and PMOS devices in a
ring are uncorrelated, each must be characterized by its own
impulse sensitivity function (ISF). Depicted in Fig. 5(c), the
NMOS and PMOS ISFs cannot have zero time average with any
choice of rise and fall transitions, thereby upconverting flicker
noise unconditionally.

D. Effect of Scaling on Phase Noise

The white-noise-induced phase noise appears to be funda-
mentally related to the power dissipation and not much to the

other factors. The effect of flicker noise, on the other hand, can
be articulated by rewriting (17) as

(18)

where it is assumed for velocity-satu-
rated devices and is assumed to be one-sided
and is therefore divided by 2. It follows that the principal param-
eter under the designer’s control for reducing the phase noise is
the total gate capacitance, , of the ring oscillator. For
example, as simulations confirm, varies by less than
1 dB as goes from 3 to 16 while and are con-
stant. Notwithstanding changes in with technology scaling,

rises with a lower if the total gate ca-
pacitance is kept constant.

V. SIMULATION RESULTS

In this section, three sets of simulation results are presented:
one to verify the fundamental shaping function, ,
another to show the dependence of the phase noise on the
number of delay stages, and the third to check the validity of
our compact phase noise equations, (16) and (17).
In order to verify the relation expressed by (8), we have sim-

ulated 9-stage and 19-stage delay lines and ring oscillators in
65-nm CMOS technology. Each inverter incorporates a channel
width of 0.6 m and 1.2 m for the NMOS and PMOS devices,
respectively, and a channel length of 60 nm. The circuits operate
with a 1-V supply. In each case, the frequency of the input ap-
plied to the delay line is chosen equal to the corresponding ring
oscillator frequency.
Fig. 6(a) plots the simulated phase noise for the 9-stage delay

line and the corresponding ring oscillator. The latter’s phase
noise is obtained using (8) as well as direct simulations. We note
good agreement in both flicker noise and white noise regimes.
The oscillation frequency is 3.8 GHz and the power consump-
tion 0.34 mW. Fig. 6(b) repeats the results for a 19-stage ar-
rangement operating at a frequency of 1.7 GHz and drawing
0.32 mW. The results agree well in this case, too.
Fig. 7 plots the simulated phase noise of three ring oscil-

lators operating at 9.54 GHz. Explicit capacitors are added to
all nodes of 3-stage and 5-stage rings. Since the power con-
sumption varies slightly, from 1.39 mW to 1.47 mW, as the
rings become longer, the phase noise plots are normalized to
the corresponding values. We observe that the white-noise-in-
duced phase noise remains unchanged as the number of stages
increases, but, as predicted by (17), the flicker-noise-induced
component decreases in proportion to .
Fig. 8 plots the simulated phase noise of the 9-stage ring oscil-

lator as well as the calculated phase noise using (16) and (17).
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Fig. 6. Simulated phase noise of delay lines and ring oscillators as well as cal-
culated phase noise of the ring oscillator using the phase noise of the delay line
for (a) 9-stage, and (b) 19-stage configurations.

Fig. 7. Simulated effect of number of delay cells on the phase noise of ring
oscillators.

Fig. 8. Simulated phase noise of a 9-stage ring oscillator and calculated phase
noise using compact equations (16) and (17).

Fig. 9. Die photograph.

(The flicker and white current noise spectra, and , re-
spectively, are obtained from simulations in Cadence).2

VI. EXPERIMENTAL RESULTS

The delay lines and ring oscillators described in Section V
have been fabricated in 65-nm CMOS technology and charac-
terized. Fig. 9 shows a die photograph of the prototypes. Each
circuit is followed by an on-chip open-drain buffer for driving
50- instrumentation.
The low phase noise of delay lines poses difficulties in mea-

surement. For this reason, the delay line prototype in fact incor-
porates 745 stages rather than 9 or 19, producing a readily mea-
surable phase noise (Fig. 10). This value is then scaled down by
a factor equal to 745/9 or 745/19 to obtain the phase noise of the
respective delay lines.
The phase noise of ring oscillators also proves difficult to

measure if low offset frequencies are of interest. The random
fluctuations of the free-running center frequency tend to smear
the phase noise profile. It is therefore beneficial to phase-lock
the oscillator to a low-noise input with a sufficiently small loop
bandwidth so as to negligibly affect the phase noise in the offset
frequency range of interest. Fig. 11 shows the test setup con-
structed around each ring oscillator to create a type-I phase-
locked loop (PLL). Here, an off-the-shelf mixer serves as a
phase detector, comparing the phases of an external RF signal

2The value of is obtained from transient simulations at the point when
. The and values corresponding to this case are then

used in a simple noise simulation of a single transistor.
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Fig. 10. Measured phase noise of 745-stage delay line at two different input
frequencies.

Fig. 11. Phase-locking of the ring oscillators for phase noise measurements.

and the ring oscillator output. The latter’s supply line acts as the
control voltage. The loop bandwidth is set by the choice of the
components in the low-pass filter.
Fig. 12(a) plots the phase noise of the 9-stage ring oscillator

obtained by (a) direct measurement, and (b) by multiplying the
measured delay line phase noise by . We observe
a reasonable agreement. Fig. 12(b) repeats the results for the
19-stage configuration. In both cases, the effect of the PLLman-
ifests itself at low offset frequencies.

VII. CONCLUSION

It is shown that the closed-loop phase noise of a ring os-
cillator is equal to its open-loop phase noise multiplied by a
simple shaping function, . This relation reveals
why delay lines exhibit much less noise than do ring oscilla-
tors. It also leads to compact phase noise equations and shows
why flicker noise is upconverted even with symmetric rise and
fall times. The flicker-noise-induced phase noise is not a strong
function of the PMOS-to-NMOS ratio and the minimum phase
noise does not necessarily happen when the rise and fall times
are symmetric. The validity of the shaping function has been
verified on two ring oscillators designed in 65-nm CMOS tech-
nology.
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Fig. 12. Measured phase noise of ring oscillators and the calculated phase noise
using the measured phase noise of delay line for (a) 9-stage, and (b) 19-stage
rings.
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