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A Study of Phase Noise in CMOS Oscillators
Behzad Razavi,Member, IEEE

Abstract—This paper presents a study of phase noise in two
inductorless CMOS oscillators. First-order analysis of a linear
oscillatory system leads to a noise shaping function and a new
definition of Q. A linear model of CMOS ring oscillators is used
to calculate their phase noise, and three phase noise phenomena,
namely, additive noise, high-frequency multiplicative noise, and
low-frequency multiplicative noise, are identified and formulated.
Based on the same concepts, a CMOS relaxation oscillator is also
analyzed. Issues and techniques related to simulation of noise in
the time domain are described, and two prototypes fabricated in a
0.5-�m CMOS technology are used to investigate the accuracy of
the theoretical predictions. Compared with the measured results,
the calculated phase noise values of a 2-GHz ring oscillator and
a 900-MHz relaxation oscillator at 5 MHz offset have an error
of approximately 4 dB.

I. INTRODUCTION

VOLTAGE-CONTROLLED oscillators (VCO’s) are an
integral part of phase-locked loops, clock recovery cir-

cuits, and frequency synthesizers. Random fluctuations in the
output frequency of VCO’s, expressed in terms of jitter and
phase noise, have a direct impact on the timing accuracy
where phase alignment is required and on the signal-to-noise
ratio where frequency translation is performed. In particular,
RF oscillators employed in wireless tranceivers must meet
stringent phase noise requirements, typically mandating the use
of passive LC tanks with a high quality factor . However,
the trend toward large-scale integration and low cost makes it
desirable to implement oscillators monolithically. The paucity
of literature on noise in such oscillators together with a lack of
experimental verification of underlying theories has motivated
this work.

This paper provides a study of phase noise in two induc-
torless CMOS VCO’s. Following a first-order analysis of a
linear oscillatory system and introducing a new definition of

, we employ a linearized model of ring oscillators to obtain
an estimate of their noise behavior. We also describe the
limitations of the model, identify three mechanisms leading
to phase noise, and use the same concepts to analyze a CMOS
relaxation oscillator. In contrast to previous studies where
time-domain jitter has been investigated [1], [2], our analysis
is performed in the frequency domain to directly determine the
phase noise. Experimental results obtained from a 2-GHz ring
oscillator and a 900-MHz relaxation oscillator indicate that,
despite many simplifying approximations, lack of accurate
MOS models for RF operation, and the use of simple noise
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models, the analytical approach can predict the phase noise
with approximately 4 to 6 dB of error.

The next section of this paper describes the effect of
phase noise in wireless communications. In Section III, the
concept of is investigated and in Section IV it is generalized
through the analysis of a feedback oscillatory system. The
resulting equations are then used in Section V to formulate
the phase noise of ring oscillators with the aid of a linearized
model. In Section VI, nonlinear effects are considered and
three mechanisms of noise generation are described, and in
Section VII, a CMOS relaxation oscillator is analyzed. In
Section VIII, simulation issues and techniques are presented,
and in Section IX the experimental results measured on the
two prototypes are summarized.

II. PHASE NOISE IN WIRELESS COMMUNICATIONS

Phase noise is usually characterized in the frequency do-
main. For an ideal oscillator operating at the spectrum
assumes the shape of an impulse, whereas for an actual
oscillator, the spectrum exhibits “skirts” around the center
or “carrier” frequency (Fig. 1). To quantify phase noise, we
consider a unit bandwidth at an offset with respect to
calculate the noise power in this bandwidth, and divide the
result by the carrier power.

To understand the importance of phase noise in wire-
less communications, consider a generic transceiver as
depicted in Fig. 2, where the receiver consists of a low-
noise amplifier, a band-pass filter, and a downconversion
mixer, and the transmitter comprises an upconversion
mixer, a band-pass filter, and a power amplifier. The
local oscillator (LO) providing the carrier signal for both
mixers is embedded in a frequency synthesizer. If the
LO output contains phase noise, both the downconverted
and upconverted signals are corrupted. This is illustrated
in Fig. 3(a) and (b) for the receive and transmit paths,
respectively.

Referring to Fig. 3(a), we note that in the ideal case, the
signal band of interest is convolved with an impulse and thus
translated to a lower (and a higher) frequency with no change
in its shape. In reality, however, the wanted signal may be
accompanied by a large interferer in an adjacent channel, and
the local oscillator exhibits finite phase noise. When the two
signals are mixed with the LO output, the downconverted band
consists of two overlapping spectra, with the wanted signal
suffering from significant noise due to tail of the interferer.
This effect is called “reciprocal mixing.”

Shown in Fig. 3(b), the effect of phase noise on the transmit
path is slightly different. Suppose a noiseless receiver is to
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Fig. 1. Phase noise in an oscillator.

Fig. 2. Generic wireless transceiver.

detect a weak signal at while a powerful, nearby tranmitter
generates a signal at with substantial phase noise. Then,
the wanted signal is corrupted by the phase noise tail of the
transmitter.

The important point here is that the difference between
and can be as small as a few tens of kilohertz while each of
these frequencies is around 900 MHz or 1.9 GHz. Therefore,
the output spectrum of the LO must be extremely sharp. In
the North American Digital Cellular (NADC) IS54 system,
the phase noise power per unit bandwidth must be about 115
dB below the carrier power (i.e., 115 dBc/Hz) at an offset
of 60 kHz.

Such stringent requirements can be met through the use of
LC oscillators. Fig. 4 shows an example where a transcon-
ductance amplifier with positive feedback establishes a
negative resistance to cancel the loss in the tank and a varactor
diode provides frequency tuning capability. This circuit has a
number of drawbacks for monolithic implementation. First,
both the control and the output signals are single-ended,

(a)

(b)

Fig. 3. Effect of phase noise on (a) receive and (b) transmit paths.

making the circuit sensitive to supply and substrate noise.
Second, the required inductor (and varactor)is typically
greater than 20, prohibiting the use of low-integrated
inductors. Third, monolithic varactors also suffer from large
series resistance and hence a low Fourth, since the LO
signal inevitably appears on bond wires connecting to (or
operating as) the inductor, there may be significant coupling
of this signal to the front end (“LO leakage”), an undesirable
effect especially in homodyne architectures [3].

Ring oscillators, on the other hand, require no external
components and can be realized in fully differential form, but
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Fig. 4. LC oscillator.

their phase noise tends to be high because they lack passive
resonant elements.

III. D EFINITIONS OF

The quality factor, is usually defined within the context
of second-order systems with (damped) oscillatory behavior.
Illustrated in Fig. 5 are three common definitions ofFor an
RLC circuit, is defined as the ratio of the center frequency
and the two-sided 3-dB bandwidth. However, if the inductor
is removed, this definition cannot be applied. A more general
definition is: times the ratio of the stored energy and the
dissipated energy per cycle, and can be measured by applying a
step input and observing the decay of oscillations at the output.
Again, if the circuit has no oscillatory behavior (e.g., contains
no inductors), it is difficult to define “the energy dissipated
per cycle.” In a third definition, an LC oscillator is considered
as a feedback system and the phase of theopen-looptransfer
function is examined at resonance. For a simple LC circuit
such as that in Fig. 4, it can be easily shown that theof
the tank is equal to where is the resonance
frequency and denotes the slope of the phase of the
transfer function with respect to frequency. Called the “open-
loop ” herein, this definition has an interesting interpretation
if we recall that for steady oscillations, the total phase shift
around the loop must be precisely 360. Now, suppose the
oscillation frequency slightly deviates from Then, if the
phase slope is large, a significant change in the phase shift
arises, violating the condition of oscillation and forcing the
frequency to return to In other words, theopen-loop
is a measure of how much theclosed-loopsystem opposes
variations in the frequency of oscillation. This concept proves
useful in our subsequent analyses.

While the third definition of seems particularlly well-
suited to oscillators, it does fail in certain cases. As an
example, consider the two-integrator oscillator of Fig. 6, where
the open-loop transfer function is simply

(1)

yielding and Since this circuit
does indeed oscillate, this definition of is not useful here.

Fig. 5. Common definitions ofQ:

Fig. 6. Two-integrator oscillator.

Fig. 7. Linear oscillatory system.

IV. L INEAR OSCILLATORY SYSTEM

Oscillator circuits in general entail “compressive” nonlin-
earity, fundamentally because the oscillation amplitude is not
defined in a linear system. When a circuit begins to oscillate,
the amplitude continues to grow until it is limited by some
other mechanism. In typical configurations, the open-loop gain
of the circuit drops at sufficiently large signal swings, thereby
preventing further growth of the amplitude.

In this paper, we begin the analysis with a linear model. This
approach is justified as follows. Suppose an oscillator employs
strong automatic level control (ALC) such that its oscillation
amplitude remains small, making the linear approximation
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Fig. 8. Noise shaping in oscillators.

valid. Since the ALC can be relatively slow, the circuit
parameters can be considered time-invariant for a large number
of cycles. Now, let us gradually weaken the effect of ALC
so that the oscillator experiences increasingly more “self-
limiting.” Intuitively, we expect that the linear model yields
reasonable accuracy for soft amplitude limiting and becomes
gradually less accurate as the ALC is removed. Thus, the
choice of this model depends on theerror that it entails
in predicting the response of the actual oscillator to various
sources of noise, an issue that can be checked by simulation
(Section VIII). While adequate for the cases considered here,
this approximation must be carefully examined for other types
of oscillators.

To analyze phase noise, we treat an oscillator as a feedback
system and consider each noise source as an input (Fig. 7).
The phase noise observed at the output is a function of: 1)
sources of noise in the circuit and 2) how much the feedback
system rejects (or amplifies) various noise components. The
system oscillates at if the transfer function

(2)

goes to infinity at this frequency, i.e., if For
frequencies close to the carrier, the open-loop
transfer function can be approximated as

(3)

and the noise tranfer function is

(4)

Since and for most practical cases
(4) reduces to

(5)

This equation indicates that a noise component at
is multiplied by when it appears at the
output of the oscillator. In other words, the noise power

spectral density is shaped by

(6)

This is illustrated in Fig. 8. As we will see later, (6) assumes
a simple form for ring oscillators.

To gain more insight, let and
hence

(7)

Since for (6) can be written as

(8)

We define the open-loop as

(9)

Combining (8) and (9) yields

(10)

a familiar form previously derived for simple LC oscillators
[4]. It is interesting to note that in an LC tank at resonance,

and (9) reduces to the third definition of given
in Section III. In the two-integrator oscillator, on the other
hand, and Thus, the
proposed definition of applies to most cases of interest.

To complete the discussion, we also consider the case
shown in Fig. 9, where Therefore,

is given by (5). For, we have

(11)

giving the following noise shaping function:

(12)
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Fig. 9. Oscillatory system with nonunity-gain feedback.

(a)

(b)

Fig. 10. CMOS VCO: (a) block diagram and (b) implementation of one
stage.

V. CMOS RING OSCILLATOR

Submicron CMOS technologies have demonstrated potential
for high-speed phase-locked systems [5], raising the possibility
of designing fully integrated RF CMOS frequency synthesiz-
ers. Fig. 10 shows a three-stage ring oscillator wherein both
the signal path and the control path are differential to achieve
high common-mode rejection.

To calculate the phase noise, we model the signal path in
the VCO with a linearized (single-ended) circuit (Fig. 11). As
mentioned in Section IV, the linear approximation allows a
first-order analysis of the topologies considered in this paper,
but its accuracy must be checked if other oscillators are of
interest. In Fig. 11, and represent the output resistance
and the load capacitance of each stage, respectively,

, and is the gain required for steady
oscillations. The noise of each differential pair and its load
devices are modeled as current sources– injected onto
nodes 1–3, respectively. Before calculating the noise transfer
function, we note that the circuit of Fig. 11 oscillates if, at

each stage has unity voltage gain and 120of phase shift.
Writing the open-loop transfer function and imposing these
two conditions, we have and The

Fig. 11. Linearized model of CMOS VCO.

open-loop transfer function is thus given by

(13)

Therefore, and
It follows from (6) or (10) that if a noise current is
injected onto node 1 in the oscillator of Fig. 11, then its power
spectrum is shaped by

(14)

This equation is the key to predicting various phase noise
components in the ring oscillator.

VI. A DDITIVE AND MULTIPLICATIVE NOISE

Modeling the ring oscillator of Fig. 10 with the linearized
circuit of Fig. 11 entails a number of issues. First, while the
stages in Fig. 10 turn off for part of the period, the linearized
model exhibits no such behavior, presenting constant values
for the components in Fig. 11. Second, the model does not
predict mixing or modulation effects that result from nonlin-
earities. Third, the noise of the devices in the signal path has a
“cyclostationary” behavior, i.e., periodically varying statistics,
because the bias conditions are periodic functions of time. In
this section, we address these issues, first identifying three
types of noise: additive, high-frequency multiplicative, and
low-frequency multiplicative.

A. Additive Noise

Additive noise consists of components that are directly
added to the output as shown in Fig. 7 and formulated by
(6) and (14).

To calculate the additive phase noise in Fig. 10 with the aid
of (14), we note that for the voltage gain in each stage
is close to unity. (Simulations of the actual CMOS oscillator
indicate that for MHz and noise injected at

MHz onto one node, the components
observed at the three nodes differ in magnitude by less than
0.1 dB.) Therefore, the total output phase noise power density
due to - is

(15)

where it is assumed For the differential
stage of Fig. 10, the thermal noise current per unit bandwidth
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Fig. 12. High-frequency multiplicative noise.

is equal to Thus,

(16)

In this derivation, the thermal drain noise current of MOS
devices is assumed equal to For short-
channel devices, however, the noise may be higher [6]. Using
a charge-based model in our simulation tool, we estimate the
factor to be 0.873 rather than 2/3. In reality, hot-electron
effects further raise this value.

Additive phase noise is predicted by the linearized model
with high accuracy if the stages in the ring operate linearly for
most of the period. In a three-stage CMOS oscillator designed
for the RF range, the differential stages are in the linear region
for about 90% of the period. Therefore, the linearized model
emulates the CMOS oscillator with reasonable accuracy. How-
ever, as the number of stages increases or if each stage entails
more nonlinearity, the error in the linear approximation may
increase.

Since additive noise is shaped according to (16), its effect is
significant only for components close to the carrier frequency.

B. High-Frequency Multiplicative Noise

The nonlinearity in the differential stages of Fig. 10, es-
pecially as they turn off, causes noise components to be
multiplied by the carrier (and by each other). If the input/output
characteristic of each stage is expressed as

then for an input consisting of the carrier and a
noise component, e.g., the
output exhibits the following important terms:

Note that appears in band if is small, i.e., if
it is a low-frequencycomponent, but in a fully differential
configuration, because Also,
is negligible because leaving as the only
significant cross-product.

This simplified one-stage analysis predicts thefrequencyof
the components in response to injected noise, but not their
magnitude. When noise is injected into the oscillator, the
magnitude of the observed response at and
depends on the noise shaping properties of the feedback

Fig. 13. Frequency modulation due to tail current noise.

oscillatory system. Simulations indicate that for the oscilla-
tor topologies considered here, these two components have
approximately equal magnitudes. Thus, the nonlinearity folds
all the noise components below to the region above and
vice versa, effectively doubling the noise power predicted by
(6). Such components are significant if they are close to
and are herein called high-frequency multiplicative noise. This
phenomenon is illustrated in Fig. 12. (Note that a component
at is also translated to but its magnitude
is negligible.)

This effect can also be viewed as sampling of the noise
by the differential pairs, especially if each stage experi-
ences hard switching. As each differential pair switches twice
in every period, a noise component at is translated to

Note that for highly nonlinear stages, the Taylor
expansion considered above may need to include higher order
terms.

C. Low-Frequency Multiplicative Noise

Since the frequency of oscillation in Fig. 10 is a function
of the tail current in each differential pair, noise components
in this current modulate the frequency, thereby contributing
phase noise [classical frequency modulation (FM)]. Depicted
in Fig. 13, this effect can be significant because, in CMOS
oscillators, must be adjustable by more than20% to
compensate for process variations, thus making the frequency
quite sensitive to noise in the tail current. This mechanism is
illustrated in Fig. 14.

To quantify this phenomenon, we find the sensitivity or
“gain” of the VCO, defined as in
Fig. 13, and use a simple approximation. If the noise per unit
bandwidth in is represented as a sinusoid with the same
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Fig. 14. Low-frequency multiplicative noise.

power: then the output signal of the oscillator
can be written as

(17)

(18)

For radian (“narrowband FM”)

(19)

Thus, the ratio of each sideband amplitude to the carrier
amplitude is equal to i.e.,

with respect to carrier (20)

Since can be easily evaluated in simulation or mea-
surement, (20) is readily calculated.

It is seen that modulation of the carrier brings the low
frequency noise components of the tail current to the band
around Thus, flicker noise in becomes particularly
important.

In the differential stage of Fig. 3(b), two sources of low-
frequency multiplicative noise can be identified: noise in
and noise in and For comparable device size, these
two sources are of the same order and must be both taken
into account.

D. Cyclostationary Noise Sources

As mentioned previously, the devices in the signal path
exhibit cyclostationary noise behavior, requiring the use of pe-
riodically varying noise statistics in analysis and simulations.
To check the accuracy of the stationary noise approximation,
we perform a simple, first-order simulation on the two cases
depicted in Fig. 15. In Fig. 15(a), a sinusoidal current source
with an amplitude of 2 nA is connected between the drain and
source of to represent its noise with the assumption that

carries half of In Fig. 15(b), the current source is also
a sinusoid, but its amplitude is a function of the drain current
of Since MOS thermal noise current (in the saturation
region) is proportional to we use a nonlinear dependent
source in SPICE [7] as where

MHz. The factor is chosen such that
when (balanced

(a) (b)

Fig. 15. Gain stage with (a) stationary and (b) cyclostationary noise.

Fig. 16. Addition of output voltages ofN oscillators.

condition). Simulations indicate that the sideband magnitudes
in the two cases differ by less than 0.5 dB.

It is important to note that this result may not be accurate
for other types of oscillators.

E. Power-Noise Trade-Off

As with other analog circuits, oscillators exhibit a trade-
off between power dissipation and noise. Intuitively, we note
that if the output voltages of identical oscillators are added
in phase (Fig. 16), then the total carrier power is multiplied
by , whereas the noise power increases by(assuming
noise sources of different oscillators are uncorrelated). Thus,
the phase noise (relative to the carrier) decreases by a factor

at the cost of a proportional increase in power dissipation.
Using the equations developed above, we can also formulate

this trade-off. For example, from (16), since we
have

(21)

To reduce the total noise power by must increase by the
same factor. For any active device, this can be accomplished
by increasing the width and the bias current by(To maintain
the same frequency of oscillation, the load resistor is reduced
by .) Therefore, for a constant supply voltage, the power
dissipation scales up by
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TABLE I
COMPARISON OFTHREE-STAGE AND FOUR-STAGE RING OSCILLATORS

F. Three-Stage Versus Four-Stage Oscillators

The choice of number of stages in a ring oscillator to
minimize the phase noise has often been disputed. With
the above formulations, it is possible to compare rings with
different number of stages (so long as the approximations
remain valid). For the cases of interest in RF applications,
we consider three-stage and four-stage oscillators designed to
operate at the same frequency. Thus, the four-stage oscillator
incorporates smaller impedance levels and dissipates more
power. Table I compares various aspects of the two circuits.
We make three important observations. 1) Simulations show
that if the four-stage oscillator is to operate at the same speed
as the three-stage VCO, the value ofin the former must
be approximately 60% of that in the latter. 2) The’s of
the two VCO’s (10) are roughly equal. 3) The total additive
thermal noise of the two VCO’s is about the same, because
the four-stage topology has more sources of noise, but with
lower magnitudes.

From these rough calculations, we draw two conclusions.
First, the phase noise depends on not only the, but the
number and magnitude of sources of noise in the circuit.
Second, four-stage VCO’s have no significant advantage
over three-stage VCO’s, except for providing quadrature
outputs.

G. Supply and Substrate Noise

Even though the gain stage of Fig. 10 is designed as a dif-
ferential circuit, it nonetheless suffers from some sensitivity to
supply and substrate noise (Fig. 17). Two phenomena account
for this. First, device mismatches degrade the symmetry of the
circuit. Second, the total capacitance at the common source of
the differential pair (i.e., the source junction capacitance of
and and the capacitance associated with the tail current
source) converts the supply and substrate noise to current,
thereby modulating the delay of the gain stage. Simulations
indicate that even if the tail current source has a high dc output
impedance, a 1- supply noise component at 10 MHz
generates sidebands 60 dB below the carrier at
MHz).

Fig. 17. Substrate and supply noise in gain stage.

VII. CMOS RELAXATION OSCILLATOR

In this section, we apply the analysis methodology described
thus far to a CMOS relaxation oscillator [Fig. 18(a)]. When
designed to operate at 900 MHz, this circuit hardly “relaxes”
and the signals at the drain and source ofand are close
to sinusoids. Thus, the linear model of Fig. 7 is a plausible
choice. To utilize our previous results, we assume the signals at
the sources of and are fully differential1 and redraw the
circuit as in Fig. 18(b), identifying it as a two-stage ring with
capacitive degeneration . The total capacitance
seen at the drain of and is modeled with and
respectively. (This is also an approximation because the input
impedance of each stage is not purely capacitive.) It can be
easily shown that the open-loop transfer function is

(22)

where and denotes the transconductance of
each transistor. For the circuit to oscillate at
and each stage must have a phase shift of 180, with 90
contributed by each zero and the remaining 90by the two
poles at and It follows from the second
condition that

(23)

i.e., is the geometric mean of the poles at the drain and
source of each transistor. Combining this result with the first
condition, we obtain

(24)

After lengthy calculations, we have

(25)

and

(26)

1This assumption is justified by decomposingC into two series capacitors,
each one of value2C; and monitoring the midpoint voltage. The common-
mode swing at this node is approximatley 18 dB below the differential swings
at the source ofM1 andM2:
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(a) (b)

(c) (d)

Fig. 18. (a) CMOS relaxation oscillator, (b) circuit of (a) redrawn, (c) noise
current of one transistor, and (d) transformed noise current.

For reaches its maximum value—unity. In
other words, the maximum occurs if the (floating) timing
capacitor is equal to the load capacitance. The noise shaping
function is therefore equal to

Since the drain-source noise current of and appears
between two internal nodes of the circuit [Fig. 18(c)], the
transformation shown in Fig. 18(d) can be applied to allow
the use of our previous derivations. It can be shown that

(27)

and the total additive thermal noise observed at each drain is

(28)

This power must be doubled to account for high-frequency
multiplicative noise.

VIII. SIMULATION RESULTS

A. Simulation Issues

The time-varying nature of oscillators prohibits the use
of the standard small-signal ac analysis available in SPICE
and other similar programs. Therefore, simulations must be
performed in the time domain. As a first attempt, one may
generate a pseudo-random noise with known distribution,
introduce it into the circuit as a SPICE piecewise linear
waveform, run a transient analysis for a relatively large number
of oscillation periods, write the output as a series of points
equally spaced in time, and compute the fast Fourier transform
(FFT) of the output. The result of one such attempt is shown in
Fig. 19. It is important to note that 1) many coherent sidebands

Fig. 19. Simulated oscillator spectrum with injected white noise.

appear in the spectrum even though the injected noise is white,
and 2) the magnitude of the sidebands does not directly scale
with the magnitude of the injected noise!

To understand the cause of this behavior, consider a much
simpler case, illustrated in Fig. 20. In Fig. 20(a), a sinusoid at
1 GHz is applied across a 1- resistor, and a long transient
simulation followed by interpolation and FFT is used to obtain
the depicted spectrum. (The finite width results from the finite
length of the data record and the “arches” are attributed to
windowing effects.) Now, as shown in Fig. 20(b), we add a
30-MHz squarewave with 2 ns transition time and proceed as
before. Note that the two circuits share only the ground node.
In this case, however, the spectrum of the 1-GHz sinusoid
exhibits coherent sidebands with 15 MHz spacing! Observed in
AT&T’s internal simulator (ADVICE), HSPICE, and Cadence
SPICE, this effect is attributed to the additional points that
the program must calculate at each edge of the squarewave,
leading to errors in subsequent interpolation.

Fortunately, this phenomenon does not occur if only sinu-
soids are used in simulations.

B. Oscillator Simulations

In order to compute the response of oscillators to each
noise source, we approximate the noise per unit bandwidth
at frequency with an impulse (a sinusoid) of the same
power at that frequency. As shown in Fig. 21, the “sinusoidal
noise” is injected at various points in the circuit and the output
spectrum is observed. This approach is justified by the fact that
random Gaussian noise can be expressed as a Fourier series of
sinusoids with random phase [8], [9]. Since only one sinusoid
is injected in each simulation, the interaction among noise
components themselves is assumed negligible, a reasonable
approximation because if two noise components at, say,60
dB are multiplied, the product is at120 dB.

In the simulations, the oscillators were designed for a center
frequency of approximately 970 MHz. Each circuit and its
linearized models were simulated in the time domain in steps
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(a)

(b)

Fig. 20. Simple simulation revealing effect of pulse waveforms, (a) sin-
gle sinusoidal source and (b) sinusoidal source along with a square wave
generator.

of 30 ps for 8 s, and the output was processed in MATLAB
to obtain the spectrum. Since simulations of the linear model
yield identical results to the equations derived above, we will
not distinguish between the two hereafter.

Shown in Fig. 22 are the output spectra of the linear model
and actual circuit of a three-stage oscillator in 0.5-m CMOS
technology with a 2- 980-MHz sinusoidal current injected
into the signal path (the drain of one of the differential pairs).

Fig. 21. Simulated configuration.

The vertical axis represents Note that the observed
magnitude of the 980-MHz component differs by less than 0.2
dB in the two cases, indicating that the linearized model is
indeed an accurate representation. As explained in Section VI-
B, the 960-MHz component originates from third-order mixing
of the carrier and the 980-MHz component and essentially
doubles the phase noise.

In order to investigate the limitation of the linear model, the
oscillator was made progressively more nonlinear. Shown in
Fig. 23 is the output spectra of a four-stage CMOS oscillator,
revealing approximately 1 dB of error in the prediction by the
linear model. The error gradually increases with the number of
stages in the ring and reaches nearly 6 dB for an eight-stage
oscillator.

For bipolar ring oscillators (differential pairs with no emitter
followers), simulations reveal an error of approximately 2 dB
for three stages and 7 dB for four stages in the ring.

IX. EXPERIMENTAL RESULTS

A. Measurements

Two different oscillator configurations have been fabricated
in a 0.5- m CMOS technology to compare the predictions in
this paper with measured results. Note that there are three sets
of results: theoretical calculations based on linear models but
including multiplicative noise, simulated predictions based on
the actual CMOS oscillators, and measured values.

The first circuit is a 2.2-GHz three-stage ring oscillator.
Fig. 24 shows one stage of the circuit along with the measured
device parameters. The sensitivity of the output frequency to
the tail current of each stage is about 0.43 MHz/A The
measured spectrum is depicted in Fig. 25(a) and (b) with
two different horizontal scales. Due to lack of data on the
flicker noise of the process, we consider only thermal noise
at relatively large frequency offsets, namely, 1 MHz and 5
MHz.

It is important to note that low-frequency flicker noise
causes the center of the spectrum to fluctuate constantly. Thus,
as the resolution bandwidth (RBW) of the spectrum analyzer is
reduced [from 1 MHz in Fig. 25(a) to 100 kHz in Fig. 25(b)],
the carrier power is subject to more averaging and appears to
decrease. To maintain consistency with calculations, in which
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(a)

(b)

Fig. 22. Simulated output spectra of (a) linear model and (b) actual circuit
of a three-stage CMOS oscillator.

the phase noise is normalized to aconstantcarrier power,
this power (i.e., the output amplitude) is measured using an
oscilloscope.

The noise calculation proceeds as follows. First, find the
additive noise power in (16), and double the result to account
for third-order mixing (high-frequency multiplicative noise).
Next, calculate the low-frequency multiplicative noise from
(20) for one stage and multiply the result by three. We
assume (from simulations) that the internal differential voltage
swing is equal to (0.353 ) and the drain noise
current of MOSFET’s is given by For

MHz, calculations yield

high-frequency multiplicative noise 100.1 dBc/Hz (29)

low-frequency multiplicative noise 106.3 dBc/Hz (30)

total normalized phase noise 99.2 dBc/Hz. (31)

(a)

(b)

Fig. 23. Simulated output spectra of (a) linear model and (b) actual circuit
of a four-stage CMOS oscillator.

Fig. 24. Gain stage used in 2-GHz CMOS oscillator.

Simulations of the actual CMOS oscillator predict the total
noise to be 98.1 dBc/Hz. From Fig. 25(b), with the carrier
power of Fig. 25(a), the phase noise is approximately equal
to 94 dBc/Hz.
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(a)

(b)

Fig. 25. Measured output spectrum of ring oscillator (10 dB/div. vertical
scale). (a) 5 MHz/div. horizontal scale and 1 MHz resolution bandwidth, (b)
1 MHz horizontal scale and 100 kHz resolution bandwidth.

Similarly, for MHz, calculations yield

high-frequency multiplicative noise 114.0 dBc/Hz (32)

low-frequency multiplicative noise 120.2 dBc/Hz (33)

total normalized phase noise 113.1 dBc/Hz (34)

and simulations predict 112.4 dBc/Hz, while Fig. 25(a)
indicates a phase noise of109 dBc/Hz. Note that these values
correspond to a center frequency of 2.2 GHz and should be
lowered by approximately 8 dB for 900 MHz operation, as
shown in (9).

The second circuit is a 920-MHz relaxation oscillator,
depicted in Fig. 26. The measured spectra are shown in
Fig. 27. Since simulations indicate that the low-frequency
multiplicative noise is negligible in this implementation, we
consider only the thermal noise in the signal path. For

MHz, calculations yield a relative phase noise of
105 dBc/Hz, simulations predict 98 dB, and the spectrum

in Fig. 27 gives 102 dBc/Hz. For MHz,
the calculated and simulated results are119 dBc/Hz and

Fig. 26. Relaxation oscillator parameters.

(a)

(b)

Fig. 27. Measured output spectrum of relaxation oscillator (10 dB/div.
vertical scale). (a) 2 MHz/div. horizontal scale and 100 kHz resolution
bandwidth and (b) 1 MHz horizontal scale and 10 kHz resolution bandwidth.

120 dBc/Hz, respectively, while the measured value is115
dBc/Hz.

B. Discussion

Using the above measured data points and assuming a noise
shaping function as in (10) with a linear noise-power trade-off
(Fig. 16), we can make a number of observations.
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How much can the phase noise be lowered by scaling
device dimensions? If the gate oxide of MOSFET’s is re-
duced indefinitely, their transconductance becomes relatively
independent of their dimensions, approaching roughly that
of bipolar transistors. Thus, in the gain stage of Fig. 24
the transconductance of and (for

A would go from (214 ) to (66 ) Scaling down
the load resistance proportionally and assuming a constant
oscillation frequency, we can therefore lower the phase noise
by dB. For the relaxation oscillator, on
the other hand, the improvement is about 10 dB. These are,
of course, greatly simplified calculations, but they provide
an estimate of the maximum improvement expected from
technology scaling. In reality, short-channel effects, finite
thickness of the inversion layer, and velocity saturation further
limit the transconductance that can be achieved for a given
bias current.

It is also instructive to compare the measured phase noise
of the above ring oscillator with that of a 900-MHz three-stage
CMOS ring oscillator reported in [10]. The latter employs
single-ended CMOS inverters with rail-to-rail swings in a 1.2-

m technology and achieves a phase noise of83 dBc/Hz at
100 kHz offset while dissipating 7.4 mW from a 5-V supply.

Assuming that

Relative Phase Noise (35)

where denotes the internal voltage swing and is
the total supply current, we can utilize the measured phase
noise of one oscillator to roughly estimate that of the other.
With the parameters of the 2.2-GHz oscillator and accounting
for different voltage swings and supply currents, we obtain a
phase noise of approximately93 dBc/Hz at 100 kHz offset
for the 900-MHz oscillator in [10]. The 10 dB discrepancy is
attributed to the difference in the minimum channel length,

noise at 100 kHz, and the fact that the two circuits
incorporate different gain stages.
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