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TThe biquadratic filter, also known as 
the “biquad,” dates back to the 1960s 
[1]–[3] but still serves as an essential 
building block in analog filter design. 
In this article, we study this circuit’s 
properties and design issues.

The General Biquad
The biquad is a second-order filter 
whose transfer function is given, in 
the general case, by
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Here, the numerator coefficients can 
be chosen to yield a low-pass, band-
pass, or high-pass response. For ex-
ample, a b 01 1= =  leads to a low-pass 
filter (LPF), the focus of our study 
here. To realize higher-order filters, 
biquad sections can be cascaded.

The Need for Complex Poles
We typically begin the design of filters 
by deciding on the order and shape of 
their frequency response. For example, 
Wi-Fi receivers commonly employ a 
fifth-order LPF to suppress unwanted 
channels. However, for a given order, 
the roll-off from the passband to the 
stopband can be made sharper if some 
peaking or ripple is tolerable.

It is in this spirit that we turn to 
transfer functions having complex 
poles. We explain the thought process 
behind this point by means of an ex-
ample. Consider a low-pass biquad 

characterized by the following two 
(equivalent) transfer functions:
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Here, n~  denotes the natural fre-
quency, Q  the quality factor (also 
called the pole Q ), and g the damping 
factor. The first form is common in fil-
ter design and the second in control 
theory (e.g., in phase-locked loops). 
Noting that /( ),Q 1 2g=  we will use 
the two forms interchangeably.

We intuitively observe that, if ,Q " 3  
the two poles approach j n! ~  and the 
system becomes unstable. Thus, the 
value of Q  determines how much the 
poles depart from the real axis and how 
much peaking ( )H s j~=  has. The two 
poles can be expressed as
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taking on a complex value if .Q 1 2>  
But complex poles do not necessar-
ily imply peaking. Writing
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we find that the denominator falls to 
a minimum at / Q1 1 2n

2~ ~= -a ^ h   
if / .Q 2 22  In such a case, ( )H j~   
exh ib i ts  a  peak  equa l  to  Q  

/ Q1 1 4 2- ^ h  (Figure 1). It is helpful 
to remember that for ,Q 1=  the peak-
ing is about 1.15 dB, and it occurs at 

. .0 71a n~ ~=

With these preliminary develop-
ments, we can now evaluate the  
stopband attenuation of H  at a  
given frequency for the case of real 
or complex poles. As an example, 
we seek the rejection at a frequency 
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Figure 1: Peaking in biquad frequency response.



12	 spring 20 18	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

equal to twice the –3-dB bandwidth 
of the filter. This choice represents 
a scenario of interest in radio-fre-
quency (RF) receivers where the adja-

cent channel must be suppressed. 
The –3-dB bandwidth is given by
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If ,Q 1 2=  the two poles are real 
and equal (as in an open-loop cas-
cade of two first-order RC sections), 

. ,0 64dB n3~ ~=-  and the attenuation 
provided by H  in (5) at 2 dB3~-  is 
0.379. On the other hand, if ,Q 1=  

.1 27dB n3~ ~=-  and the attenua-
tion at 2 dB3~-  reaches 0.166. That 
is, by allowing 1.15 dB of peaking 
at the edge of the passband, we 
improve the rejection at 2 dB3~-  by 

( . / . ) . dB.log20 0 379 0 166 7 2.

Realization of Complex Poles
It can be shown that a passive net-
work consisting of only resistors and 
capacitors does not provide complex 
poles [4]. We must therefore seek 
active implementations that exploit 
feedback to create such poles.

Let us begin with the negative-
feedback system shown in Figure 2,  
where two lossless integrators ap-
pear in the loop. Note that Y  is ne-
gated as it enters the input summer. 
This negation can be removed if one 

integrator inverts and the other does 
not. We have for this system
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o bt a i n i ng  i m a g i n a r y  p o les  i f 
.k k 01 2 2  To stabilize the system, 

we must add a term proportional to 
s  in the denominator. This can be 
accomplished by a number of tech-
niques, for example, 1) we can add a 
zero to the open-loop transfer func-
tion, as practiced in type II phase-
locked loops, or 2) we can make 
one of the integrators lossy, e.g., 
we can change /k s1  to /( ).k s a1 +  
The latter is realized if a fraction of 
the integrator’s output is returned 
to its input without phase shift. 
Illustrated in Figure 3(a), such an 
arrangement yields

	 ( ) .A
B s

s k
k

1

1

a
=
+

� (8)

The circuit implementation is straight-
forward [Figure 3(b)] and gives
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We can now incorporate the lossy 
integrator of Figure 3(a) in the archi-
tecture of Figure 2 [Figure 4(a)]. In 
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Figure 2: A filter using two lossless inte-
grators in a loop.

α

A B
+

–

k1
s

R2

C1

R1
Vin Vout+

–

(a)

(b)

Figure 3: (a) A lossy integrator and (b) its 
circuit implementation.
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Figure 4: (a) The use of a lossy integrator in a biquad loop, (b) the Tow–Thomas biquad, and (c) its differential version.
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early filter designs, off-the-shelf op-
amps provided only a single-ended 
output, making it difficult to imple-
ment noninverting integrators. Thus, 
an inverting amplifier was inserted 
in the loop, leading to the circuit 
shown in Figure 4(b). Called the “Tow–
Thomas biquad” after Tow [2], [3] and 
Thomas [5], this topology requires 
only two op-amps if implemented in 
fully-differential form [Figure 4(c)].

The biquad depicted in Figure 4(c) 
provides the following transfer 
function:
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yielding
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Interestingly, n~  is independent of R2  
whereas ,Q R2?  i.e., the pole Q  can be 
adjusted without changing .n~  More-
over, both n~  and Q  are independent 
of ,R1  which sets the passband gain 
according to / / .V V R Rout in F 1=  These 
attributes facilitate tuning of the fil-
ter (discussed below). Also, since the 
first integrator’s output in Figure 4(c), 

,VX  is equal to ,V R C sout 3 2-  we write 
/ ( / )V V V V R C sout inX 3 2in =-  and con-

clude that the circuit can act as a band-
pass filter as well.

To arrive at another biquad imple-
mentation, let us first note that the in-
verting amplifier in Figure 4(b) can be 
moved to the input [Figure 5(a)] without 
changing the transfer function. Next, 
we observe that the loss-inducing path 
in Figure 3(a) and realized by R2 in Fig-
ure 3(b) need not return to the very in-
put of the integrator; this path can even 
traverse additional stages placed before 
or after the integrator if such stages are 
free from phase shift [Figure 5(b)]. It is, 
therefore, possible to tie the left termi-
nal of R2 to the input of the inverting 
amplifier, but we must ensure negative 
feedback. These thoughts lead to the 
Kerwin–Huelsman–Newcomb (KHN) bi-
quad depicted in Figure 5(c).

The KHN biquad’s transfer func-
tion is given by
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It follows that
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In this case, too, n~  is independent of 
,R2  but Q  is not. Thus, the pole Q  can 

be adjusted without affecting .n~

It is interesting to recognize that 
the Tow–Thomas and KHN biquads 
are fundamentally based on the 
same principle, namely, introducing 
loss in one integrator so as to control 
the .Q  That is, Figure 4(a) embodies 
both topologies. However, the disad-
vantage of the KHN circuit is that it 
requires three op-amps even in fully 
differential implementations. For 
this reason, we focus on the Tow–
Thomas biquad.

Sensitivity
The design of analog filters must deal 
with the sensitivity of the perfor-
mance to component variations. For 
example, the –3-dB bandwidth, the ,Q  
and the stopband rejection are func-
tions of resistor and capacitor values 
used in the circuit. We generally ask, 
if one component value changes by, 
say, 10%, how much is the percent-
age change in a given filter param-
eter, e.g., in the bandwidth? If the 
bandwidth also changes by 10%, the 

(a) (b)

α

β γ

(c)

Vin

R4

R5

R1

R1

R2

R3

C1 C2

+
–

+
–

+
–

Vout
A B

+
–

k1
s

R4

R1 R2

R5

R1 R3

C1 C2

Vin

+
–

+
–

+
–

Vout

Figure 5: (a) The Tow–Thomas filter with the inverting amplifier moved to front end, (b) a lossy integrator with additional stages in the loop, 
and (c) a KHN biquad.



14	 spring 20 18	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

corresponding sensitivity is unity. 
For example, the sensitivity of the 
pole Q  expressed by (12) is equal to 
one with respect to R2  but lower than 
one with respect to R3  or .RF

It is shown that the sensitivities of 
the Tow–Thomas biquad with respect 
to the passive devices are equal to or 
less than unity [2]. The same holds 
for the KHN circuit [1].

Effect of Finite Op-Amp Bandwidth
The tradeoffs among gain, band-
width, and power consumption of 
op-amps require that we design them 
for only as much bandwidth as nec-
essary for the proper operation of a 
filter. We intuitively expect that the 

additional poles contributed by the 
op-amps within the feedback loop of 
Figure 4(c) degrade the phase mar-
gin, thus creating additional peaking 
in the frequency response. Called “Q  
enhancement” in the filter literature, 
this phenomenon imposes a lower 
bound on the op-amps’ unity-gain 
bandwidth.

The analyses in [5] and [6] study this 
effect for high-Q  designs. We describe 
a different approach that is applicable 
to any Q  value. Our approximation 
is that the closed-loop filter transfer 
function is still in biquadratic form but 
with a greater .Q

Before delving into loop calculations, 
we must formulate the effect of the op-

amps’ bandwidth on the two integrators 
in Figure 6. Modeling the op-amp by a 
one-pole system, /( / ),A s10 0~+  we 
begin with the integrator in Figure 6(a) 
and write
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where it is assumed that A 10 &  and 
/( ).A R C10 0 1 1&~  Note that A0 0~  

is the unity-gain bandwidth of the 
op-amp. If the two poles of this 
transfer function, p1~  and ,p2~  are 
widely spaced, i.e., if ,p p1 2%~ ~  then 
we can apply the dominant-pole ap
proximation and write ( / )s1 p1~+

( / ) /( ) ( /s s1 1p p p p2
2

1 2 1~ ~ ~ ~+ = + +

/ ) /( ) ( / )s s1 1 1p p p p2
2

1 2 1.~ ~ ~ ~+ +

.s 1+  That is,
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Interestingly, the dominant pole is 
negligibly affected by the op-amp, 
and the nondominant pole is simply 
given by its unity-gain bandwidth.

We repeat the foregoing computa-
tion for the lossy integrator in Fig-
ure 6(b), arriving at
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where it is assumed that /R R2 1+

,A1 10% &  a n d  A R C0 2 1  i s  m u c h 
greater than /1 0~  and /( ).R R2 1 0~  The 
dominant-pole approximation yields

	 R C
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which follows the same observa-
tions made above. The key point 
here is that each op-amp contrib-
utes an additional phase equal to 

/( )tan A1
0 0~ ~- - 6 @ at a frequency .~

Let us return to the Tow–Thomas 
biquad of Figure 4(c) and summarize 
our findings. Figure 7 sketches the 
magnitude and phase of the biquad’s 
open-loop transfer function, ( ) .G s  
The magnitude begins at ( / )R R A2 1 0  
(the product of the two integrators’ 
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Figure 6: (a) Lossless and (b) lossy integrators with a one-pole op-amp model.
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low-frequency gains), deflects at the 
first pole /( )A R C1 0 3 2  (arising from 
the second integrator), falls at 20 dB/
dec up to the second pole /( ),R C1 2 1  
and then declines at 40 dB/dec. The 
two op-amp-induced poles at A0 0~  
lie beyond the unity-gain bandwidth, 

.u~  The phase reaches 135- c at the 
second pole, leading to an inadequate 
phase margin of 45c if /( ) .R C1 u2 1 1 ~  
In addition, the two poles at A0 0~  
must be high enough not to affect the 
phase margin significantly.

Now, suppose we design a low-pass 
biquad that exhibits a Q  of one (i.e., 
a peaking of 1.15 dB at a~ = .0 71 n~ ) 
with ideal op-amps. We wish to deter-
mine the minimum tolerable op-amp 
unity-gain bandwidth that raises the 
peaking by, at most, 1 dB.

We first observe that a negative-feed-
back system such as that in Figure 4(a) 
has an open-loop transfer function of 
the form /( ) ( / ),s s2 1n n~ g~+6 @  with a 
phase margin given by [7]

	 PM tan
4 1 2

21

4 2g g

g
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21
4
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For example, Q 1=  gives PM . .51 8= c

We then note from Figure 1 that a 
peaking of . dB dB . dB1 15 1 2 15+ =  
translates to . ,Q 1 16=  which, from (27),  
yields a phase margin of . .46 1c  That 
is, the additional allowable 1-dB peak-
ing is equivalent to a phase margin 
degradation of . . . .51 8 46 1 5 7- =c c c  
Thus, each op-amp must not contrib-
ute more than .2 85c of phase shift at a~  
in Figure 1:

	 . .tan A 2 85a1

0 0
#

~
~- c � (28)

It follows that

	 A 20 a0 0 $~ ~ � (29)

	 .14 n$ ~ � (30)

This simple rule of thumb proves 
useful in the design of the op-amps 
and can be readily revised for other 
Q  or peaking values.

Equation (30) translates to a high-
power consumption for the op-amps, 
but it is possible to select the filter val-

ues for a Q  lower than desired and per-
mit the op-amps to raise it. For example, 
if we begin with . (PM )Q 0 5 76= = c  
and choose . . ,A 4 7 3 3a n0 0 . .~ ~ ~  
then the equivalent Q  is about unity 
and the peaking about 1.15 dB. Such a 
strategy must, nonetheless, account for 
the other op-amp poles and the varia-
tion of Q  and A0 0~  with the process, 
supply voltage, and temperature (PVT).

Noise Considerations
In many applications, a filter’s noise 
contribution can limit the dynamic 
range. For example, the baseband 
channel-select filters in RF receivers 
must provide proper noise and lin-
earity levels to reject unwanted chan-
nels while negligibly corrupting the 
desired signal. For this reason, the 
noise performance of the biquad is 
of interest.

In the Tow–Thomas topology of 
Figure 4(c), resistors ,R1  ,R2  and RF  
contribute low-frequency input-
referred noise in the amount of 
( / / ),kTR kTR R kTR R2 4 4 4 F1 1

2
2 1

2+ +  
where the factor of two accounts for 
the resistors in the upper and lower 
paths. To minimize this noise we wish 
to reduce ,R1  but at the cost of loading 
the stage preceding the biquad. For 
low-bandwidth applications, a small 
R1  also translates to a large value for 
C1 and hence a significant area pen-
alty. The noise of R3  is less critical as 
it is divided by the first integrator’s 
gain if referred to the main input, a 
fortunate situation because this resis-
tor loads the first op-amp and should 
preferably have a high value.

The op-amp noise proves problem-
atic, too. It can be shown that the noise 
of the first op-amp in Figure 4(c), ,Vn1  
travels to Vout  according to the fol-
lowing transfer function:

( ) ,V
V s

R R C C s R C s R
R

R C s
R R
R1

out

n

F

F

1
3 2 1 2

2
3 2

2

2 1
1

2

=
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which reduces to /( ) /R R R1 F2 1+6 @  
( / )R RF2  at low frequencies. Divid-
ing this result by the passband gain, 

/ ,R RF 1  gives an input-referred noise 
o f  ( / /R R R1 1 2 1+ + ) .R VF n1  T hus ,  

/ /R R R RF1 2 1+  should be chosen well 
below unity, i.e., we wish to select 
relatively large low-frequency gains 
for the first integrator / )(R R2 1  and 
for the overall biquad ( / ).R RF 1  The 
second op-amp’s noise is less prob-
lematic as it is preceded by the first 
integrator’s gain.

Tuning
The PVT dependence of resistor and 
capacitor values requires that fil-
ters be tuned before they operate 
in a system. Equations (11) and (12) 
suggest that tuning can proceed as 
follows: 1) we set n~  by adjusting 

,R3  ,C1  or ,C2  and 2) we set Q  by 
adjusting R2  [the bandwidth is then 
defined by (6)]. The passband gain, 

/ ,R RF 1  can also be programmed by 
adjusting ,RF  a useful property if 
automatic gain control is necessary, 
but such an adjustment must occur 
before the two steps outlined above. 
Each programmable device typically 
consists of a constant, coarse com-
ponent in parallel or series with a 
variable, fine section.

Questions for the Reader
1)	Figure 8 shows a noninverting 

integrator [1]. Derive the condi-
tion for the elements so that the 
circuit acts as an ideal integrator. 
What is the principal difficulty 
with this topology?

2)	Suppose the Tow–Thomas biquad 
of Figure 4(c) senses a large, nar-
rowband undesired channel at 

.dB3~ ~= -  Which of the two inte-
grators produces greater voltage 
swings and hence experiences 
more nonlinearity?

+
–

R1

R2

R3 R4

C2

Vin

Vout

Figure 8: A noninverting integrator.

(continued on p. 109)
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in Engineering Award, the IEEE MTT 
Special Award, and the IEEE Region 
8 Student Paper Contest Award, were 
given to papers with the best practice 
implementation. All participants had 
the opportunity to present posters and 
demonstrations of their projects. The 
full-day event ended with the presenta-
tion of the awards for best project. The 
conference was very well received by  

the attendees of about 350 high school 
and academic students.

More information about the IEEESTEC 
Conference can be found at http://ieee 
.elfak.ni.ac.rs.

—Dr. Danijel Dankovíc  
Chapter Chair  

ED/SSC University of Niš Student Branch 
�  

A cake celebrating the 10th anniversary of 
the IEEESTEC Conference.

A Circuit for All Seasons (continued from p. 15)

Answers to Last Issue’s Questions
1)	By what factor is the integral non-

linearity (INL) of a differential 
current-steering digital-to-analog 
converter (DAC) lower than that of 
a single-ended topology if only the 
finite output impedance of the cur-
rent sources is considered?

It can be proven that the normal-
ized INLs of the single-ended and 
differential topologies are, respec-
tively, given by /( )NR r4L O  and 

/ / ,NR r 12 3L O
2^ ^h h  where N  is the 

number of current sources, RL  the 
load resistance, and rO  the single-
ended output resistance of each cur-
rent cell. The key point here is that 
the differential topology’s INL is pro-
portional to the square of /NR rL O  
and, hence, much less than that of 
the single-ended counterpart.

2)	 In the matrix architecture of Fig-
ure 9(a), each row experiences the 

same gradient from left to right. If 
each cell current is higher than the 
one to its left by ,ID  what is the 
maximum INL?
We begin with row 1 and note that 

its current cells can be expressed  
as ,( ), , ( ) .I I I I I7fD D+ +  Thus, if only  
the entire first row is activated, the out-
put current is equal to ( )I I I gD+ + + +

( ) .I I I I7 8 28D D+ = +  The next row 
has the same behavior. We can there-
fore plot the input–output character-
istic as shown in Figure 9(b), where 

ID  is assumed negative. We observe 
that Iout  is equal to ( )m I I8 28D+  if 
m  rows are activated. That is, points 

, , ,A A A1 2 8f  lie on a straight line, and 
the INL is simply the difference be-
tween the actual characteristic and 
this line [Figure 9(c)]. The maximum 
INL occurs in the middle of each row 
and is given by .I8D  This periodic INL 
behavior often manifests itself in mea-

surements and signifies the existence 
of gradients on the chip.
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