Single-Stage Amplifiers

Many aspects of the performance of amplifiers are citical. We summarize the tarde-offs as whown below.

The amplifiers to be studied here include: CS and CG stages, source followers, and cascades. For each stage, we wish to study both the large-signal and small-signal properties.

Amplifier Categories

Common-Source Stage	Source Follower	Common-Gate Stage	Cascode
With Resistive Load With Diode-Connected Load With Current-Source Load With Active Load With Source Degeneration	With Resistive Bias With Current-Source Bias	With Resistive Load With Current-Source Load	Telescopic Folded

Common Source Stage

- Large-Signal Behavior

B. Razavi HO #2

What is the small-signal gain in this region?

At point A:
$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

How do we maximize the gain?

- Small-Signal Analysis

We assume that the bias currents and voltages are chosen such that M_1 is in saturation and Q_1 in forward active region.

$$V_{\rm in} \bigoplus_{=}^{+} V_1 \bigoplus_{=}^{+} g_{\rm m} V_1 \gtrless r_0 \gtrless R_{\rm D}$$

Voltage Gain:

Sometimes we don't want to use a resistive load. So we try other tricks:

This device can operate as a resistor. How about this:

B. Razavi HO #2

How do we maximize the voltage gain here?

Large Signal Behavior:

Example: Common Source with PMOS Diode Load

Both versions suffer from serious headroom limitations at low supply voltages.

CS Stage with Current Source Load

$$V_{\rm b} \bullet I = M_2$$

 $V_{\rm in} \circ I = M_1$

What happens to the gain as I_D decreases?

CS Stage with Active Load

CS Stage with Source Degeneration

It is useful to find the Gm of the stage:

Also, the output impedance:

Now let's compute the gain by noting that:

$$\mathbf{V}_{in} \bigcirc^{+} \bigcirc^{-} \mathbf{V}_{out} \mathbf{R}_{out} \frown^{-} \mathbf{V}_{out} = \frac{-g_m r_O R_D}{R_D + R_S + r_O + (g_m + g_{mb}) R_S r_O}$$

If λ =0 and g_{mb}=0, then:

Example

B. Razavi HO #2

Source Followers

- Large-Signal Behavior

Sketch the gain vs. input.

- Small-Signal Behavior

• Often use a current source in place R_s to have a better definition of the bias current.

B. Razavi HO #2

How good a buffer is a source follower? Input impedance =

Output Impedance:

Another method of finding the gain:

• Can eliminate body effect in PMOS version:

• Source followers are used only occasionally. They introduce noise and consume voltage headroom. For example:

Vin

Common-Gate Stage

- Large-Signal Behavior

Input Impedance

Example

• Output Impedance

Cascode Stage

How do we choose the bias conditions?

HO #2

B. Razavi HO #2

What is the maximum output voltage swing?

Gain Calculation:

Output Impedance:

Bias currents and voltages are chosen such that all **MOSFETs** are in saturation.

Voltage Gain:

How do we maximize the voltage gain?

Actual realization:

Gain calculation:

 $R_{out} = \{ [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2} \} || \{ [1 + (g_{m3} + g_{mb3}]r_{O3}]r_{O4} + r_{O3} \}$

$$A_v \approx g_{m1}[(g_{m2}r_{O2}r_{O1})||)g_{m3}r_{O3}r_{O4})]$$

Folded Cascode

The input and cascode devices need not be of the same type.

- Large-Signal Behavior Let the input decrease from V_{DD} to zero.

B. Razavi HO #2

Cascode

Current

V_{b2}• M_3 Source

 $V_{b1} \leftarrow \bigcup_{M_2}^{M_2} M_2$ $V_{in} \leftarrow \bigcup_{M_1}^{M_2} M_1$

- Small-Signal Behavior Similar to that of simple cascode.

Example

Other Applications of Cascodes

- **1. Reduction of Miller Effect**
- 2. Shielding

3. Stability

4. Reduction of Device Stress

