Analysis and Design of RF Circuits and Systems

Instructor: Behzad Razavi
56-147D, Eng. IV
(310) 206-1633, razavi@ee.ucla.edu
Office Hours: TR, 10:30-12:00
Handouts posted at http://www1.ee.ucla.edu/~brweb/teaching.html

Time: TR, 4:00-5:50 pm

Place: Boelter 8500

Use of laptops is prohibited during lectures (and exams).

Prerequisites: EE215A (Preferably with a grade of A- or higher)
Working Knowledge of Cadence

Credit: 4 Units

Grading:
Midterm 30%
Final 30%
Homeworks 20% (Late HW Policy: 25% deduction per day)
Final Project 20%

(MS and PhD students are graded on the same curve.)

Course Textbook:

Reference Book:

Audit Policy: Individuals can audit if they do not collect the handouts.

Important Dates:
Thur. Jan. 17 (Start Cadence sims today!) HW#1 Due
Thur. Jan. 24 HW#2 Due
Tue. Feb. 5 HW#3 Due
Thur. Feb. 14 HW#4 Due
Tue. Feb. 19 Midterm Exam
Fri., March 15 Final Project Due
Thur. March 21, 11:30 am-2:30 pm Final Exam
Outline

● Basic Concepts
 - Harmonic and Intermodulation Distortion, Third Intercept Point, Cascaded Stages
 - Random Processes and Noise, PDF, PSD, Noise Figure, Cascaded Stages
 - Sensitivity and Dynamic Range

● Brief Communications Background
 - Analog and Digital Modulation, AM, FM, QPSK Family, FSK, GMSK
 - Bandwidth and Power Efficiency
 - Multiple Access Techniques (FDMA, TDMA, CDMA)
 - Wireless Standards (IS-54, GSM, DECT, IS-95, WCDMA, WiFi)

● RF Transceiver Architectures
 - Heterodyne, Direct Conversion, and Image-Reject Receivers
 - Two-Step and Direct-Conversion Transmitters

● Low-Noise Amplifiers and Mixers
 - CMOS LNAs
 - Passive and Active Mixers
 - DSB and SSB Noise Figures
 - CMOS Mixers

● Oscillators
 - Basic LC Oscillator Topologies
 - Phase Noise
 - Phase Noise Mechanisms
 - CMOS VCOs
 - Quadrature Signal Generation

● Frequency Synthesizers
 - Phase-Locked Loops (Loop Dynamics, Building Blocks, Types I and II)
 - Phase-Locked Synthesizer Architectures (Integer-N, Fractional-N)
 - Frequency Dividers and Prescalers