Problem: 12.30

\[
(V/W)_1 = (V/W)_2 = \frac{15}{15 + 10 + 10} = \frac{3}{5}
\]

\[
V_{in} = \frac{1}{2} \left(V_{out} + V_{out} \right) = \frac{V_{out}}{2}
\]

Thus, the charging of \(C_2 \) on an average will be given by a time constant \(\tau = \frac{C_2}{V_{in}} \).

Assuming that \(V_{in} = 3V \), \(V_{out} = 0.7V \).

Initially, when \(CK \) goes high, \(C_1 \) gets charged to \(V_{in} = 2V \).

When \(CK \) goes low, \(M_1 \) is ON and charge is shared between \(C_1 \) and \(C_2 \). Since, \(C_1 = C_2 \), \(V_x = V_{out} = 1V \). When \(CK \) goes high, \(M_2 \) is OFF. \(M_2 \) turns ON and \(C_1 \) again charges to 2V.

When \(CK \) goes low, \(V_x = V_{out} = \frac{2C_1 + 2C_2}{C_1 + C_2} = 1.5V \), and so on.

If \(M_1, M_2 \) are identical, when \(CK = 1 \) to 0, \(CK = 0 \) to 1, there will be an error in voltage at \(V_x \) since both the clock feedthrough will cancel off.

When \(CK = 0 \) to 1, there will be some feedthrough to \(V_{out} \), which we undo when \(CK = 1 \) to 0 at the end of the cycle.

Hence, the feedthrough does not affect the output voltage in steady state. Hence, no error is introduced in the op because of feedthrough.

Charge injection: When \(CK \) goes low, \(M_2 \) goes on. The worst case will be when all the charge in the inversion layer go towards the right. Error in \(V_x \) due to this will be \((V/W)_1 \times (V_{out} - V_{in} - V_{in}) \times 1 \).

Corresponding error at the output will be half of this value.

When \(M_2 \) goes off, the channel charge splits equally between \(C_1 \) and \(C_2 \). However, in order to turn ON, \(M_2 \) would have taken that same amount of charge from \(C_1, C_2 \) which it gives back when it goes OFF. Hence, channel charge from \(M_2 \) does not cause any error in output.

Hence, total error in the output from charge injection is only due in \(M_1 \). Thus, max. error = \(\frac{(V/W)_1 \times (V_{out} - V_{in} - V_{in})}{2C_1} \).

Max. total error in output = \(\frac{(V/W)_1 \times (V_{out} - V_{in} - V_{in})}{2C_1} \).

When \(M_2 \) is ON, rms noise voltage at \(V_x \) is given as \(V_{in} \).

\[
V_{in} = \frac{V_{th}}{\tau C_1} \sqrt{\frac{2e^2}{C_1}} = \sqrt{\frac{KT}{C_1}}
\]

Half of this noise voltage will appear at the output when \(M_2 \) is ON.

When \(M_2 \) is ON,

\[
\frac{V_{out}}{V_{in}} - \frac{V_{th}}{C_1} = \frac{V_{out}}{C_2}
\]
Problem 12.11

\[V_{in} = V_0 \sin(\omega t + \phi) \]

\[V_{out} = V_0 \sin(\omega t + \phi) \]

\[f = 2 \pi \times 10^{10} \text{ Hz} \]

The total noise power at output

\[P_{out} = \left(\frac{20}{\pi} \right) \frac{V_{in}^2}{T} + \frac{4V^2}{\pi^2 T} \]

\[V_{out} = \frac{V_{in}}{1 + \frac{C}{T} + \frac{1}{Cfrq}} \]

The total output voltage is given by

\[V_{out} = \frac{V_{in}}{1 + \frac{C}{T} + \frac{1}{Cfrq}} \]
Problem 12.15

\[C_1 = C_2 = 1 \text{ pF} \]
\[f_{\text{in}} = 100 \text{ MHz} \]
\[\text{Vin} = 0.5 \cos(2\pi(100 \text{ MHz})t) \]

\[\text{S}_1, \text{S}_2 \text{ and } C_1 \text{ form a resistor of value } R = \frac{1}{R_{\text{in}} C_1} = 10 \text{K}\Omega \]

\[\text{Vin} = \frac{-1}{R_{\text{in}} C_1} \int \text{Vin} \, dt \]
\[\text{Vout} = \frac{-1}{R_{\text{in}}} \int 0.5 \cos(2\pi(100 \text{ MHz})t) \, dt \]
\[= -0.5 \times \frac{\sin[2\pi(100 \text{ MHz})t]}{2\pi(100 \text{ MHz})} \times 10 \text{K}\Omega \]

Hence, o/p amplitude = 0.796 V.
When S_0 turns on, V_{ref} = a, i.e., V_{out} changes overall from V_a to a.

Hence, V_{out} will change from a + ΔV_{out} to $\{a, V_a + \Delta V_{out}\}$.

where ΔV_{out} is only an offset.