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Introduction to Switched-Capacitor
Circuits

Our study of amplifiers in previous chapters has dealt with only cases where the input signal is

continuously available and applied to the circuit and the output signal is continuously observed.

Called “continuous-time” circuits, such amplifiers find wide application in audio, video, and high-

speed analog systems. In many situations, however, we may sense the input only at periodic instants

of time, ignoring its value at other times. The circuit then processes each “sample,” producing a

valid output at the end of each period. Such circuits are called “discrete-time” or “sampled-data”

systems.

In this chapter, we study a common class of discrete-time systems called “switched-capacitor

(SC) circuits.” Our objective is to provide the foundation for more advanced topics such as filters,

comparators, ADCs, and DACs. Most of our study deals with switched-capacitor amplifiers but

the concepts can be applied to other discrete-time circuits as well. Beginning with a general view

of SC circuits, we describe sampling switches and their speed and precision issues. Next, we

analyze switched-capacitor amplifiers, considering unity-gain, noninverting, and multiply-by-two

topologies. Finally, we examine a switched-capacitor integrator.

12.1 General Considerations

In order to understand the motivation for sampled-data circuits, let us first consider the simple

continuous-time amplifier shown in Fig. 12.1(a). Used extensively with bipolar op amps, this

circuit presents a difficult issue if implemented in CMOS technology. Recall that, to achieve a

high voltage gain, the open-loop output resistance of CMOS op amps is maximized, typically

approaching hundreds of kilo-ohms. We therefore suspect that R2 heavily drops the open-loop

gain, degrading the precision of the circuit. In fact, with the aid of the simple equivalent circuit

395
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Figure 12.1. (a) Continuous-time feedback amplifier, (b) equivalent circuit of (a).

shown in Fig. 12.1(b), we can write

�Av(
Vout � Vin
R1 +R2

R1 + Vin)�Rout

Vout � Vin
R1 +R2

= Vout; (12:1)

and hence

Vout
Vin

= �R2

R1
�

Av � Rout

R2

1 +
Rout

R1
+Av +

R2

R1

: (12:2)

Equation (12.2) implies that, compared to the case where Rout = 0, the closed-loop gain suffers

from inaccuracies in both the numerator and the denominator. Also, the input resistance of the

amplifier, approximately equal to R1, loads the preceding stage while introducing thermal noise.

In the circuit of Fig. 12.1(a), the closed-loop gain is set by the ratio of R2 and R1. In order to

avoid reducing the open-loop gain of the op amp, we postulate that the resistors can be replaced by

capacitors [Fig. 12.2(a)]. But, how is the bias voltage at node X set? We may add a large feedback
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Figure 12.2. (a) Continuous-time feedback amplifier using capacitors, (b) use of resistor to define
bias point.

resistor as in Fig. 12.2(b), providing dc feedback while negligibly affecting the ac behavior of the

amplifier in the frequency band of interest. Such an arrangement is indeed practical if the circuit

senses only high-frequency signals. But suppose, for example, the circuit is to amplify a voltage
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t
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Figure 12.3. Step response of the amplifier of Fig. 12.2(b).

step. Illustrated in Fig. 12.3, the response contains a step change due to the initial amplification

by the circuit consisting of C1; C2, and the op amp, followed by a “tail” resulting from the loss of

charge on C2 through RF . From another point of view, the circuit may not be suited to amplify

wideband signals because it exhibits a high-pass transfer function. In fact, the transfer function is

given by

Vout
Vin

(s) � �
RF

1
C2s

RF +
1
C2s

� 1
C1s

(12.3)

= � RFC1s

RFC2s+ 1
; (12.4)

indicating that Vout=Vin � �C1=C2 only if ! � (RFC2)
�1.

The above difficulty can be remedied by increasingRFC2, but in many applications the required

values of the two components become prohibitively large. We must therefore seek other methods

of establishing the bias while utilizing capacitive feedback networks.

Let us now consider the switched-capacitor circuit depicted in Fig. 12.4, where three switches

control the operation: S1 and S3 connect the left plate of C1 to Vin and ground, respectively, and

outVinV
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Figure 12.4. Switched-capacitor amplifier.

S2 provides unity-gain feedback. We first assume the open-loop gain of the op amp is very large

and study the circuit in two phases. First, S1 and S2 are on and S3 is off, yielding the equivalent
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Figure 12.5. Circuit of Fig. 12.4 in (a) sampling mode, (b) amplification mode.

circuit of Fig. 12.5(a). For a high-gain op amp, VB = Vout � 0, and hence the voltage across C1 is

approximately equal to Vin. Next, at t = t0, S1 and S2 turn off and S3 turns on, pulling node A to

ground. Since VA changes from Vin0 to 0, the output voltage must change from zero to Vin0C1=C2.

The output voltage change can also be calculated by examining the transfer of charge. Note

that the charge stored on C1 just before t0 is equal to Vin0C1. After t = t0, the negative feedback

through C2 drives the op amp input differential voltage and hence the voltage across C1 to zero

(Fig. 12.6). The charge stored on C1 at t = t0 must then be transferred to C2, producing an output
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Figure 12.6. Transfer of charge from C1 to C2.

voltage equal to Vin0C1=C2. Thus, the circuit amplifies Vin0 by a factor of C1=C2.

Several attributes of the circuit of Fig. 12.4 distinguish it from continuous-time implementa-

tions. First, the circuit devotes some time to “sample” the input, setting the output to zero and

providing no amplification during this period. Second, after sampling, for t > t0, the circuit ignores

the input voltage Vin, amplifying the sampled voltage. Third, the circuit configuration changes
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considerably from one phase to another, as seen in Fig. 12.5(a) and (b), raising concern about its

stability.

What is the advantage of the amplifier of Fig. 12.4 over that in Fig. 12.1? In addition to

sampling capability, we note from the waveforms depicted in Fig. 12.5 that after Vout settles, the

current throughC2 approaches zero. That is, the feedback capacitor does not reduce the open-loop

gain of the amplifier if the output voltage is given enough time to settle. In Fig. 12.1, on the other

hand, R2 continuously loads the amplifier.

The switched-capacitor amplifier of Fig. 12.4 lends itself to implementation in CMOS technol-

ogy much more easily than in other technologies. This is because discrete-time operations require

switches to perform sampling as well as a high input impedance to sense the stored quantities with

no corruption. For example, if the op amp of Fig. 12.4 incorporates bipolar transistors at its input,

the base current drawn from the inverting input in the amplification phase [Fig. 12.5(b)] creates

an error in the output voltage. The existence of simple switches and a high input impedance have

made CMOS technology the dominant choice for sampled-data applications.

The foregoing discussion leads to the conceptual view illustrated in Fig. 12.7 for switched-

capacitor amplifiers. In the simplest case, the operation takes place in two phases: sampling and

inV outV

CK

t

Sample

Amplify

Figure 12.7. General view of switched-capacitor amplifier.

amplification. Thus, in addition to the analog input, Vin, the circuit requires a clock to define each

phase.

Our study of SC amplifiers proceeds according to these two phases. First, we analyze various

sampling techniques. Second, we consider SC amplifier topologies.
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12.2 Sampling Switches

12.2.1 MOSFETS as Switches

A simple sampling circuit consists of a switch and a capacitor [Fig. 12.8(a)]. A MOS transistor

can serve as a switch [Fig. 12.8(b)] because (a) it can be on while carrying zero current, and (b) its

C
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(a) (b)

H H

M 1

Figure 12.8. (a) Simple sampling circuit, (b) implementation of the switch by a MOS device.

source and drain voltages are not “pinned” to the gate voltage, i.e., if the gate voltage varies, the

source or drain voltage need not follow that variation. By contrast, bipolar transistors lack both of

these properties, typically necessitating complex circuits to perform sampling.

To understand how the circuit of Fig. 12.8(b) samples the input, first consider the simple

cases depicted in Fig. 12.9, where the gate command, CK , goes high at t = t0. In Fig.
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Figure 12.9. Response of a sampling circuit to different input levels and initial conditions.

12.9(a), we assume that Vin = 0 for t � t0 and the capacitor has an initial voltage equal to

VDD. Thus, at t = t0, M1 senses a gate-source voltage equal to VDD while its drain voltage

is also equal to VDD . The transistor therefore operates in saturation, drawing a current of ID1 =
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(�nCox=2)(W=L)(VDD�VTH)2 from the capacitor. As Vout falls, at some point Vout = VDD�VTH ,

driving M1 into the triode region. The device nevertheless continues to discharge CH until Vout

approaches zero. We note that for Vout � 2(VDD�VTH), the transistor can be viewed as a resistor

equal to Ron = [�nCox(W=L)(VDD � VTH)]�1.

Now consider the case in Fig. 12.9(b), where Vin = +1 V, Vout(t = t0) = 0 V, and VDD = 3 V.

Here, the terminal ofM1 connected to CH acts as the source, and the transistor turns on with VGS =

+3 V, but VDS = +1 V. Thus, M1 operates in the triode region, charging CH until Vout approaches

+1 V. ForVout � +1 V,M1 exhibits an on-resistance ofRon = [�nCox(W=L)(VDD�Vin�VTH)]�1.

The above observations reveal two important points. First, a MOS switch can conduct current in

either direction simply by exchanging the role of its source and drain terminals. Second, as shown

in Fig. 12.10, when the switch is on, Vout follows Vin and when the switch is off, Vout remains

C
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H H

Figure 12.10. Track and hold capabilities of a sampling circuit.

constant. Thus, the circuit “tracks” the signal when CK is high and “freezes” the instantaneous

value of Vin across CH when CK goes low.

Example 12.1

In the circuit of Fig. 12.9(a), calculate Vout as a function of time. Assume � = 0.

Solution. Before Vout drops below VDD � VTH , M1 is saturated and we have:

Vout(t) = VDD � ID1t

CH

(12.5)

= VDD � 1
2
�nCox

W

L
(VDD � VTH)

2 t

CH

: (12.6)

After

t1 =
2VTHCH

�nCox

W

L
(VDD � VTH)

2
; (12:7)
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M1 enters the triode region, yielding a time-dependent current. We therefore write:

CH

dVout
dt

= �ID1 (12.8)

= �1
2
�nCox

W

L
[2(VDD � VTH)Vout � V 2

out] t > t1: (12.9)

Rearranging (12.9), we have

dVout
[2(VDD � VTH)� Vout]Vout

= �1
2
�n
Cox

CH

W

L
dt; (12:10)

which, upon separation into partial fractions, is written as

[
1
Vout

+
1

2(VDD � VTH)� Vout
]

dVout
VDD � VTH

= ��nCox

CH

W

L
dt: (12:11)

Thus,

lnVout � ln[2(VDD � VTH)� Vout] = �(VDD � VTH)�n
Cox

CH

W

L
(t� t1); (12:12)

that is,

ln
Vout

2(VDD � VTH)� Vout
= �(VDD � VTH)�n

Cox

CH

W

L
(t� t1): (12:13)

Taking the exponential of both sides and solving for Vout, we obtain

Vout =
2(VDD � VTH) exp[�(VDD � VTH)�n

Cox

CH

� W
L

(t� t1)]

1 + exp[�(VDD � VTH)�n
Cox

CH

� W
L

(t� t1)]
: (12:14)

In the circuit of Fig. 12.9(b), we assumed Vin = +1 V (Fig. 12.11). Now suppose Vin = VDD .

C

outVinV

CK

H

t

CK
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M 1
= VDD

V VTH−DD

Figure 12.11. Maximum output level in an NMOS sampler.
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How does Vout vary with time? Since the gate and drain of M1 are at the same potential, the

transistor is saturated and we have:

CH

dVout
dt

= ID1 (12.15)

=
1
2
�nCox

W

L
(VDD � Vout � VTH)

2; (12.16)

where channel-length modulation is neglected. It follows that

dVout
(VDD � Vout � VTH)2

=
1
2
�n
Cox

CH

W

L
dt; (12:17)

and hence
1

VDD � Vout � VTH
jV out0 =

1
2
�n
Cox

CH

W

L
tjt0; (12:18)

where body effect is neglected and Vout(t = 0) is assumed zero. Thus,

Vout = VDD � VTH � 1
1
2
�n
Cox

CH

W

L
t+

1
VDD � VTH

: (12:19)

Equation (12.19) implies that as t!1, Vout ! VDD � VTH . This is because as Vout approaches

VDD � VTH , the overdrive voltage of M1 vanishes, reducing the current available for charging

CH to negligible values. Of course, even for Vout = VDD � VTH , the transistor conducts some

subthreshold current and, given enough time, eventually brings Vout to VDD. Nonetheless, as

mentioned in Chapter 3, for typical operation speeds, it is reasonable to assume that Vout does not

exceed VDD � VTH .

The foregoing analysis demonstrates a serious limitation of MOS switches: if the input signal

level is close to VDD , then the output provided by an NMOS switch cannot track the input. From

another point of view, the on-resistance of the switch increases considerably as the input and output

voltages approach VDD �VTH . We may then ask: what is the maximum input level that the switch

can pass to the output faithfully? In Fig. 12.11, for Vout � Vin, the transistor must operate in deep

triode region and hence the upper bound of Vin equals VDD�VTH . As explained below, in practice

Vin must be quite lower than this value.

Example 12.2

In the circuit of Fig. 12.12, calculate the minimum and maximum on-resistance of M1. Assume

�nCox = 50 �A/V2, W=L = 10=1; VTH = 0:7 V; VDD = 3 V, and  = 0.

Solution. We note that in the steady state, M1 remains in the triode region because the gate

voltage is higher than both Vin and Vout by a value greater than VTH . If fin = 10 MHz, we predict
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Figure 12.12.

that Vout tracks Vin with a negligible phase shift due to the on-resistance of M1 and CH . Assuming

Vout � Vin, we need not distinguish between the source and drain terminals, obtaining

Ron1 =
1

�nCox

W

L
(VDD � Vin � VTH)

: (12:20)

Thus, Ron1;max � 1:11 kΩ and Ron1;min � 870 Ω. By contrast, if the maximum input level is

raised to 1.5 V, then Ron1;max = 2:5 kΩ.

MOS devices operating in deep triode region are sometimes called “zero-offset” switches to

emphasize that they exhibit no dc shift between the input and output voltages of the simple sampling

circuit of Fig. 12.8(b).1 This is evident from examples of Fig. 12.9, where the output eventually

becomes equal to the input. Nonexistent in bipolar technology, the zero offset property proves

crucial in precise sampling of analog signals.

We have thus far considered only NMOS switches. The reader can verify that the foregoing

principles apply to PMOS switches as well. In particular, as shown in Fig. 12.13, a PMOS transistor

fails to operate as a zero-offset switch if its gate is grounded and its drain terminal senses an input

C
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outV

M 1
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Figure 12.13. Sampling circuit using PMOS switch.

voltage of jVTHP j or less. In other words, the on-resistance of the device rises rapidly as the input

and output levels drop to jVTHP j above ground.

1We assume the circuit following the sampler draws no input dc current.



Chapter 12. Introduction to Switched-Capacitor Circuits 405

12.2.2 Speed Considerations

What determines the speed of the sampling circuits of Fig. 12.8? We must first define the speed

here. Illustrated in Fig. 12.14, a simple, but versatile measure of speed is the time required for

C

outVinV

CK
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t

CK
0

VDD

outV0

M 1
= Vin0 Vin0

0

V∆

t S

Figure 12.14. Definition of speed in a sampling circuit.

the output voltage to go from zero to the maximum input level after the switch turns on. Since

Vout would take infinite time to become equal to Vin0, we consider the output settled when it is

within a certain “error band,” ∆V; around the final value. For example, we say the output settles

to 0.1% accuracy after tS seconds, meaning that in Fig. 12.14, ∆V=Vin0 = 0:1%. Thus, the speed

specification must be accompanied by an accuracy specification as well. Note that after t = tS , we

can consider the source and drain voltages to be approximately equal.

From the circuit of Fig. 12.14, we surmise that the sampling speed is given by two factors:

the on-resistance of the switch and the value of the sampling capacitor. Thus, to achieve a higher

speed, a large aspect ratio and a small capacitor must be used. However, as illustrated in Fig.

12.12, the on-resistance also depends on the input level, yielding a greater time constant for more

positive inputs (in the case of NMOS switches). From Eq. (12.20), we plot the on-resistance of

the switch as a function of the input level [Fig. 12.15(a)], noting the sharp rise as Vin approaches

V VTH−DD inV0

Ron,N

VTHP inV0

Ron,P

(a) (b)

Figure 12.15. On-resistance of (a) NMOS and (b) PMOS devices as a function of input voltage.

VDD�VTH . For example, if we restrict the variation ofRon to a range of 4 to 1, then the maximum
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input level is given by

1

�nCox

W

L
(VDD � Vin;max � VTH)

=
4

�nCox

W

L
(VDD � VTH)

: (12:21)

That is,

Vin;max =
3
4
(VDD � VTH): (12:22)

This value falls around VDD=2, translating to severe swing limitations. Note that the device

threshold voltage directly limits the voltage swings.2

In order to accommodate greater voltage swings in a sampling circuit, we first observe that a

PMOS switch exhibits an on-resistance that decreases as the input voltage becomes more positive

[Fig. 12.15(b)]. It is then plausible to employ “complementary” switches so as to allow rail-to-tail

swings. Shown in Fig. 12.16(a), such a combination requires complementary clocks, producing

V VTH−DD inV
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M 1

M 2

Figure 12.16. (a) Complementary switch, (b) on-resistance of the complementary switch.

an equivalent resistance:

Ron;eq = Ron;N jjRon;P (12.23)

=
1

�nCox(
W

L
)N (VDD � Vin � VTHN)

jj 1

�nCox(
W

L
)P (Vin � jVTHP j)

(12.24)

=
1

�nCox(
W

L
)N (VDD � VTHN)� [�nCox(

W

L
)N � �pCox(

W

L
)P ]Vin � �pCox(

W

L
)PVTHP

:(12.25)

Interestingly, if �nCox(W=L)N = �pCox(W=L)P , then Ron;eq is independent of the input level.3

Fig. 12.16(b) plots the behavior of Ron;eq in the general case, revealing much less variation than

that corresponding to each switch alone.
2By contrast, the output swing of cascode stages is typically limited by overdrive voltages rather than the threshold

voltage.
3In reality, VTHN and VTHP vary with Vin through body effect but we ignore this variation here.
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For high-speed input signals, it is critical that the NMOS and PMOS switches in Fig. 12.16(a)

turn off simultaneously so as to avoid ambiguity in the sampled value. If, for example, the NMOS

device turns off ∆t seconds earlier than the PMOS device, then the output voltage tends to track the

input for the remaining ∆t seconds, but with a large, input-dependent time constant (Fig. 12.17).

This effect gives rise to distortion in the sampled value. For moderate precision, the simple circuit
CK

CK

∆ t

inV

outV

t

Figure 12.17. Distortion generated if complementary switches do not turn off simultaneously.

shown in Fig. 12.18 provides complementary clocks by duplicating the delay of inverter I1 through

in

G 2

VDD

CK

CK

CK
I 1

Figure 12.18. Simple circuit generating complementary clocks.

the gate G2.

12.2.3 Precision Considerations

Our foregoing study of MOS switches indicates that a larger W=L or a smaller sampling capacitor

results in a higher speed. In this section, we show that these methods of increasing the speed

degrade the precision with which the signal is sampled.

Three mechanisms in MOS transistor operation introduce error at the instant the switch turns

off. We study each effect individually.
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Channel Charge Injection Consider the sampling circuit of Fig. 12.19 and recall that for a

MOSFET to be on, a channel must exist at the oxide-silicon interface. Assuming Vin � Vout, we

C

outVinV

CK

H

M 1

Figure 12.19. Charge injection when a switch turns off.

use our derivations in Chapter 2 to express the total charge in the inversion layer as

Qch =WLCox(VDD � Vin � VTH); (12:26)

where L denotes the effective channel length. When the switch turns off, Qch exits through the

source and drain terminals, a phenomenon called “channel charge injection.”

The charge injected to the left side on Fig. 12.19 is absorbed by the input source, creating no

error. On the other hand, the charge injected to the right side is deposited on CH , introducing an

error in the voltage stored on the capacitor. For example, if half of Qch is injected onto CH , the

resulting error equals

∆V =
WLCox(VDD � Vin � VTH)

2CH

: (12:27)

Illustrated in Fig. 12.20, the error for an NMOS switch appears as a negative “pedestal” at the

C

outVinV

CK

H

M 1
∆V

Figure 12.20. Effect of charge injection.

output. Note that the error is directly proportional to WLCox and inversely proportional to CH .

An important question that arises now is: why did we assume in arriving at (12.27) that exactly

half of the channel charge in injected onto CH? In reality, the fraction of charge that exits through

the source and drain terminals is a relatively complex function of various parameters such as the

impedance seen at each terminal to ground and the transition time of the clock [1, 2]. Investigations
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of this effect have not yielded any rule of thumb that can predict the charge splitting in terms of such

parameters. Furthermore, in many cases, these parameters, e.g., the clock transition time, are poorly

controlled. Also, most circuit simulation programs model charge injection quite inaccurately. As

a worst-case estimate, we can assume that the entire channel charge is injected onto the sampling

capacitor.

How does charge injection affect the precision? Assuming all of the charge is deposited on the

capacitor, we express the sampled output voltage as

Vout � Vin � WLCox(VDD � Vin � VTH)

CH

; (12:28)

where the phase shift between the input and output is neglected. Thus,

Vout = Vin(1 +
WLCox

CH

)� WLCox

CH

(VDD � VTH); (12:29)

suggesting that the output deviates from the ideal value through two effects: a non-unity gain equal

to 1 +WLCox=CH ,4 and a constant offset voltage �WLCox(VDD � VTH)=CH (Fig. 12.21). In

other words, since we have assumed channel charge is a linear function of the input voltage, the

circuit exhibits only gain error and dc offset.

inV

Sampled

outV

Ideal

With
Charge

Injection

Figure 12.21. Input/output characteristic of sampling circuit in the presence of charge injection.

In the foregoing discussion, we tacitly assumed that VTH is constant. However, for NMOS

switches (in an n-well technology), body effect must be taken into account.5 Since VTH =

VTH0 + (
p

2�B + VBS �
p

2�B), and VBS � �Vin, we have

Vout = Vin � WLCox

CH

(VDD � Vin � VTH0 � 
q

2�B + Vin � 
q

2�B); (12.30)

= Vin(1� WLCox

CH

)� 
WLCox

CH

q
2�B + Vin � WLCox

CH

(VDD � VTH0 � 
q

2�B):(12.31)

4The voltage gain is greater than unity because the pedestal becomes smaller as the input level rises.
5Even for PMOS switches, the n-well is connected to the most positive supply voltage because the source and drain

terminals of the switch may interchange during sampling.
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It follows that the nonlinear dependence of VTH upon Vin introduces nonlinearity in the input/output

characteristic.

In summary, charge injection contributes three types of errors in MOS sampling circuits: gain

error, dc offsets, and nonlinearity. In many applications, the first two can be tolerated or corrected

whereas the last cannot.

It is instructive to consider the speed-precision trade-off resulting from charge injection. Rep-

resenting the speed by a simple time constant � and the precision by the error ∆V due to charge

injection, we define a figure of merit as F = (�∆V )�1. Writing

� = RonCH (12.32)

=
1

�nCox(W=L)(VDD � Vin � VTH)
CH ; (12.33)

and

∆V =
WLCox

CH

(VDD � Vin � VTH); (12:34)

we have

F =
�n
L2
: (12:35)

Thus, to the first order, the trade-off is independent of the switch width and the sampling capacitor.

Clock Feedthrough In addition to channel charge injection, a MOS switch couples the clock

transitions to the sampling capacitor through its gate-drain or gate-source overlap capacitance.

Depicted in Fig. 12.22, the effect introduces an error in the sampled output voltage. Assuming the

C

outVinV

H

M 1

VCK

0

Figure 12.22. Clock feedthrough in a sampling circuit.

overlap capacitance is constant, we express the error as

∆V = VCK
WCov

WCov + CH

; (12:36)

whereCov is the overlap capacitance per unit width. The error ∆V is independent of the input level,

manifesting itself as a constant offset in the input/output characteristic. As with charge injection,

clock feedthrough leads to a trade-off between speed and precision as well.
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kT=C Noise Recall from Example 7.1 that a resistor charging a capacitor gives rise to a total rms

noise voltage of
q
kT=C . As shown in Fig. 12.23, a similar effect occurs in sampling circuits.

C

outVinV

H

Ron

C

VinV

H

in +Vn

Figure 12.23. Thermal noise in a sampling circuit.

The on-resistance of the switch introduces thermal noise at the output and, when the switch turns

off, this noise is stored on the capacitor along with the instantaneous value of the input voltage. It

can be proved that the rms voltage of the sampled noise in this case is still approximately equal toq
kT=C [3, 4].

The problem of KT=C noise limits the performance in many high-precision applications. In

order to achieve a low noise, the sampling capacitor must be sufficiently large, thus loading other

circuits and degrading the speed.

12.2.4 Charge Injection Cancellation

The dependence of charge injection upon the input level and the trade-off expressed by (12.35)

make it necessary to seek methods of cancelling the effect of charge injection so as to achieve a

higher F . We consider a few such techniques here.

To arrive at the first technique, we postulate that the charge injected by the main transistor can

be removed by means of a second transistor. As shown in Fig. 12.24, a “dummy” switch, M2,

driven by CK is added to the circuit such that after M1 turns off and M2 turns on, the channel

C

inV

H

outV

CKCK

∆q 1

M 1
M 2

q 2∆

Figure 12.24. Addition of dummy device to reduce charge injection and clock feedthrough.

charge deposited by the former on CH is absorbed by the latter to create a channel. Note that both

the source and drain of M2 are connected to the output node.
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How do we ensure that the charge injected by M1, ∆q1, is equal to that absorbed by M2, ∆q2?

Suppose half of the channel charge of M1 is injected onto CH , i.e.,

∆q1 =
W1L1Cox

2
(VCK � Vin � VTH1): (12:37)

Since ∆q2 = W2L2Cox(VCK � Vin � VTH2), if we choose W2 = 0:5W1 and L2 = L1, then

∆q2 = ∆q1. Unfortunately, the assumption of equal splitting of charge between source and drain is

generally invalid, making this approach less attractive.

Interestingly, with the choice W2 = 0:5W1 and L2 = L1, the effect of clock feedthrough is

suppressed. As depicted in Fig. 12.25, the total charge in Vout is zero because

C

inV

H

CKCK

M M 2
outV

1 CH

CKCK

1W Cov Cov2W2

Figure 12.25. Clock feedthrough suppression by dummy switch.

� VCK
W1Cov

W1Cov + CH + 2W2Cov

+ VCK
2W2Cov

W1Cov + CH + 2W2Cov

= 0: (12:38)

Another approach to lowering the effect of charge injection incorporates both PMOS and NMOS

devices such that the opposite charge packets injected by the two cancel each other (Fig. 12.26).

For ∆q1 to cancel ∆q2, we must have W1L1Cox(VCK � Vin � VTHN) = W2L2Cox(Vin � jVTHP j).

CK

CK

C

outV

H

inV

∆q 1M 1

M 2 ∆q 2

Electrons

Holes

Figure 12.26. Use of complementary switches to reduce charge injection.

Thus, the cancellation occurs for only one input level. Even for clock feedthrough, the circuit

does not provide complete cancellation because the gate-drain overlap capacitance of NFETs is not

equal to that of PFETs.
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Our knowledge of the advantages of differential circuits suggests that the problem of charge

injection may be relieved through differential operation. As shown in Fig. 12.27, we surmise that

the charge injection appears as a common-mode disturbance. But, writing ∆q1 = WLCox(VCK �

C

V

H

CK

q∆

in2

Vin1

CHM 1

M 2

q 2∆

1

V

Vout1

out2

Figure 12.27. Differential sampling circuit.

Vin1 � VTH1), and ∆q2 = WLCox(VCK � Vin2 � VTH2), we recognize that ∆q1 = ∆q2 only if

Vin1 = Vin2. In other words, the overall error is not suppressed for differential signals. Nevertheless,

this technique both removes the constant offset and lowers the nonlinear component. This can be

understood by writing

∆q1 � ∆q2 = WLCox[(Vin2 � Vin1) + (VTH2 � VTH1)] (12.39)

= WLCox[Vin2 � Vin1 + (
q

2�F + Vin2 �
q

2�F + Vin1)]: (12.40)

Since for Vin1 = Vin2, ∆q1�∆q2 = 0, the characteristic exhibits no offset. Also, the nonlinearity of

body effect now appears in both square-root terms of (12.40), leading to only odd-order distortion

(Chapter ??).

The problem of charge injection continues to limit the speed-precision envelope in sampled-data

systems. Many cancellation techniques have been introduced but each leading to other trade-offs.

One such technique, called “bottom-plate sampling,” is widely used in switched-capacitor circuits

and is described later in this chapter.

12.3 Switched-Capacitor Amplifiers

As mentioned in Section 12.1 and exemplified by the circuit of Fig. 12.4, CMOS feedback

amplifiers are more easily implemented with a capacitive feedback network than a resistive one.

Having examined sampling techniques, we are now ready to study a number of switched-capacitor

amplifiers. Our objective is to understand the underlying principles as well as the speed-precision

trade-offs encountered in the design of each circuit.
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Before studying SC amplifiers, it is helpful to briefly look at the physical implementation of

capacitors in CMOS technology. A simple capacitor structure is shown in Fig. 12.28(a), where the

“top plate” is realized by a polysilicon layer and the “bottom plate” by a heavily-doped n+ region.

p −substrate

n+

CP

C

C

AB

P

(a) (b)

2

Poly
A

B

SiO

Figure 12.28. (a) Monolithic capacitor structure, (b) circuit model of (a) including parasitic
capacitance to the substrate.

The dielectric is the thin oxide layer used in MOS devices as well.6 An important concern in using

this structure is the parasitic capacitance between each plate and the substrate. In particular, the

bottom plate suffers from substantial junction capacitance to the underlying p region - typically

about 10 to 20% of the oxide capacitance. For this reason, we usually model the capacitor as in

Fig. 12.28(b). Monolithic capacitors are described in more detail in Chapters ?? and ??.

12.3.1 Unity-Gain Sampler/Buffer

While a unity-gain amplifier can be realized with no resistors or capacitors in the feedback network

[Fig. 12.29(a)], for discrete-time applications, it still requires a sampling circuit. We may therefore

outVinV

C

inV

H

outV

(a) (b)

S 1

Figure 12.29. (a) Unity-gain buffer, (b) sampling circuit followed by unity-gain buffer.

conceive the circuit shown in Fig. 12.29(b) as a sampler/buffer. However, the input-dependent

charge injected by S1 onto CH limits the accuracy here.

Now consider the topology depicted in Fig. 12.30(a), where three switches control the sampling

and amplification modes. In the sampling mode,S1 andS2 are on and S3 is off, yielding the topology

6The oxide thickness in this type of amplifier is typically thicker than that of MOS gate area because silicon dioxide
grows faster on a heavily-doped material.
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(b)
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Figure 12.30. (a) Unity-gain sampler, (b) circuit of (a) in sampling mode, (c) circuit of (a) in
amplification mode.

shown in Fig. 12.30(b). Thus, Vout = VX � 0, and the voltage across CH tracks Vin. At t = t0,

when Vin = V0, S1 and S2 turn off and S3 turns on, placing the capacitor around the op amp

and entering the circuit into the amplification mode [Fig. 12.30(c)]. Since the op amp’s high

gain requires that node X still be a virtual ground and since the charge on the capacitor must be

conserved, Vout rises to a value approximately equal to V0. This voltage is therefore “frozen” and

it can be processed by subsequent stages.

With proper timing, the circuit of Fig. 12.30(a) can substantially alleviate the problem of

channel charge injection. As Fig. 12.31 illustrates in “slow motion,” in the transition from the

∆q 2

outVinV
C

S 1

H

S 2

X

(a)

(b)

outVinV
C

S 1

H

S 2

X outVCH

S

X

3

(c)

Figure 12.31. Operation of the unity-gain sampler in slow motion.

sampling mode to the amplification mode, S2 turns off slightly before S1 does. We carefully
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examine the effect of the charge injected by S2 and S1. When S2 turns off, it injects a charge packet

∆q2 onto CH , producing an error equal to ∆q2=CH . However, this charge is quite independent of

the input level because node X is a virtual ground. For example, if S2 is realized by an NMOS

device whose gate voltage equals VCK , then ∆q2 = WLCox(VCK � VTH � VX). Although body

effect makes VTH a function of VX , ∆q2 is relatively constant because VX is quite independent of

Vin.

The constant magnitude of ∆q2 means that channel charge of S2 introduces only an offset (rather

than gain error or nonlinearity) in the input/output characteristic. As described below, this offset

can easily be removed by differential operation. But, how about the charge injected by S1 onto

CH? Let us set Vin to zero and suppose S1 injects a charge packet ∆q1 onto node P [Fig. 12.32(a)].

If the capacitance connected from X to ground (including the input capacitance of the op amp) is

outVinV
CH X

(a)

(b) (c)

S 1

∆q 1

outV

CH X

CX

X

CX

CH

outV

A v1

P

inV
S 1

∆q 1

P

Figure 12.32. Effect of charge injected by S1 with (a) zero and (b) finite op amp input capacitance,
(c) transition of circuit to amplification of mode.

zero, VP and VX jump to infinity. To simplify the analysis, we assume a total capacitance equal

to CX from X to ground [Fig. 12.32(b)], and we will see shortly that its value does not affect the

results. In Fig. 12.32(b), each of CH and CX carries a charge equal to ∆q1. Now, as shown in Fig.

12.32(c), we place CH around the op amp, seeking to obtain the resulting output voltage.

To calculate the output voltage, we must make an important observation: the total charge at

node X cannot change after S2 turns off because no path exists for electrons to flow into or out of

this node. Thus, if before S1 turns off, the total charge on the right plate of CH and the top plate of

CX is zero, it must still add up to zero after S1 injects charge because no resistive path is connected

to X . The same holds true after CH is placed around the op amp.

Now consider the circuit of Fig. 12.32(c), assuming the the total charge at node X is zero. We

can write CXVX � (Vout � VX )CH = 0, and VX = �Vout=Av1. Thus, �(CX + CH)Vout=Av1 �
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VoutCH = 0, i.e., Vout = 0. Note that this result is independent of ∆q1, capacitor values, or the gain

of the op amp, thereby revealing that the charge injection by S1 introduces no error if S2 turns off

first.

In summary, in Fig. 12.30(a), after S2 turns off, node X “floats,” maintaining a constant total

charge regardless of the transitions at other nodes of the circuit. As a result, after the feedback

configuration is formed, the output voltage is not influenced by the charge injection due to S1.

From another point of view, node X is a virtual ground at the moment S2 turns off, freezing the

instantaneous input level across CH and yielding a charge equal to V0CH on the left plate of CH .

After settling with feedback, node X is again a virtual ground, forcing CH to still carry V0CH and

hence the output voltage to be approximately equal to V0CH .

The effect of the charge injected by S1 can be studied from yet another perspective. Suppose in

Fig. 12.32(c), the output voltage is finite and positive. Then, since VX = Vout=(�Av1), VX must

be finite and negative, requiring negative charge on the top plate of CX . For the total charge at X

to be zero, the charge on the left plate of CH must be positive and that on its right plate negative,

giving Vout < 0. Thus, the only valid solution is Vout = 0.

The third switch in Fig. 12.30(a), S3, also merits attention. In order to turn on, S3 must

establish an inversion layer at its oxide interface. Does the required channel charge come fromCH

or from the op amp? We note from the foregoing analysis that after the feedback circuit has settled,

the charge on CH equals V0CH , unaffected by S3. The channel charge of this switch is therefore

entirely supplied by the op amp, introducing no error.

Our study of Fig. 12.30(a) thus far suggests that, with proper timing, the charge injected by S1

and S3 is unimportant and the channel charge of S2 results in a constant offset voltage. Fig. 12.33

depicts a simple realization of the clock edges to ensure S1 turns off after S2 does.

outVinV
C

S 1

S

H

3

X

CK
S 2

Figure 12.33. Generation of proper clock edges for unity-gain sampler.

The input-independent nature of the charge injected by the reset switch allows complete cancel-

lation by differential operation. Illustrated in Fig. 12.34, such an approach employs a differential

op amp along with two sampling capacitors so that the charge injected by S2 and S 0

2 appears as a
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Figure 12.34. Differential realization of unity-gain sampler.

common-mode disturbance at nodes X and Y . This is in contrast to the behavior of the differential

circuit shown in Fig. 12.27, where the input-dependent charge injection still leads to nonlinearity.

In reality, S2 and S 0

2 exhibit a finite charge injection mismatch, an issue resolved by adding another

switch, Seq, that turns off slightly after S2 and S 0

2 (and before S1 and S 0

1), thereby equalizing the

charge at nodes X and Y .

Precision Considerations The circuit of Fig. 12.30(a) operates as a unity-gain buffer in the

amplification mode, producing an output voltage approximately equal to the voltage stored across

the capacitor. How close to unity is the gain here? As a general case, we assume the op amp

exhibits a finite input capacitance Cin and calculate the output voltage when the circuit goes

from the sampling mode to the amplification mode (Fig. 12.35). Owing to the finite gain of

the op amp, VX 6= 0 in the amplification mode, giving a charge equal to CinVX on Cin. The

outVinV
CH

X

outV

CHX
V0

Cin Cin A v1
A v1

Figure 12.35. Equivalent circuit for accuracy calculations.

conservation of charge at X requires that CinVX come from CH , raising the charge on CH to

CHV0 +CinVX .7 It follows that the voltage across CH equals (CHV0 +CinVX)=CH . We therefore

7The charge on CH increases because moving positive charge from the left plate of CH to the top plate of Cin
leads to a more positive voltage across CH .
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write Vout � (CHV0 + CinVX)=CH = VX and VX = �Vout=Av1. Thus,

Vout =
V0

1 +
1
Av1

(
Cin

CH

+ 1)
(12.41)

� V0[1� 1
Av1

(
Cin

CH

+ 1)]: (12.42)

As expected, if Cin=CH � 1, then Vout � V0=(1 + A�1
v1 ). In general, however, the circuit suffers

from a gain error of approximately �(Cin=CH + 1)=Av1, suggesting that the input capacitance

must be minimized even if speed is not critical. Recall from Chapter 9 that to increase Av1,

we may choose a large width for the input transistors of the op amp, but at the cost of higher

input capacitance. An optimum device size must therefore yield minimum gain error rather than

maximum Av1.

Example 12.3

In the circuit of Fig. 12.35, Cin = 0:5 pF and CH = 2 pF. What is the minimum op amp gain that

guarantees a gain error of 0.1%?

Solution. Since Cin=CH = 0:25, we have Av1;min = 1000� 1:25 = 1250.

Speed Considerations Let us first examine the circuit in the sampling mode [Fig. 12.36(a)].

What is the time constant in this phase? The total resistance in series with CH is given by Ron1

outVinV
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0

Figure 12.36. (a) Unity-gain sampler in sampling mode, (b) equivalent circuit of (a).

and the resistance between X and ground, RX . Using the simple op amp model shown in Fig.

12.36(b), where R0 denotes the open-loop output impedance of the op amp, we have

(IX �GmVX)R0 + IXRon2 = VX ; (12:43)
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that is,

RX =
R0 +Ron2

1 +GmR0
: (12:44)

Since typicallyRon2 � R0 andGmR0 � 1, we have RX � 1=Gm. For example, in a telescopic op

amp employing differential to single-ended conversion, Gm equals the transconductance of each

input transistor.

The time constant in the sampling mode is thus equal to

�sam = (Ron1 +
1
Gm

)CH: (12:45)

The magnitude of �sam must be sufficiently small to allow settling in the test case of Fig. 12.14 to

the required precision.

Now let us consider the circuit as it enters the amplification mode. Shown in Fig. 12.37

along with both the op amp input capacitance and the load capacitance, the circuit must begin

X

CH

outV
CLCin

t

VX

0

outV

V0
V0−

t 0

Figure 12.37. Time response of unity-gain sampler in amplification mode.

with Vout � 0 and eventually produce Vout � V0. If Cin is relatively small, we can assume that

the voltages across CL and CH do not change instantaneously, concluding that if Vout � 0 and

VCH � V0, then VX = �V0 at the beginning of the amplification mode. In other words, the input

difference sensed by the op amp initially jumps to a large value, possibly causing the op amp to

slew. But, let us first assume the op amp can be modeled by a linear model and determine the

output response.

To simplify the analysis, we represent the charge on CH by an explicit series voltage source,

VS , that goes from zero to V0 at t = t0 whileCH carries no charge itself (Fig. 12.38). The objective

is to obtain the transfer function Vout(s)=VS(s) and hence the step response. We have

Vout(
1
R0

+ CLs) +GmVX = (VS + VX � Vout)CHs: (12:46)

Also, since the current through Cin equals VXCins,

VX
Cins

CHs
+ VX + VS = Vout: (12:47)
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Figure 12.38. Equivalent circuit of unity-gain circuit in amplification mode.

Calculating VX from (12.47) and substituting in (12.46), we arrive at the transfer function:

Vout
VS

(s) = R0
(Gm + Cins)CH

R0(CLCin + CinCL + CHCL)s+GmR0CH + CH + Cin

: (12:48)

Note that for s = 0, (12.48) reduces to a form similar to (12.41). Since typically GmR0CH �
CH ; Cin, we can simplify (12.48) as

Vout
VS

(s) =
(Gm + Cins)CH

(CLCin + CinCL + CHCL)s+GmCH

: (12:49)

Thus, the response is characterized by a time constant equal to

�amp =
CLCin + CinCL + CHCL

GmCH

; (12:50)

which is independent of the op amp output resistance. This is because a higherR0 leads to a greater

loop gain, evetually yielding a constant closed-loop speed. If Cin � CL; CH , then (12.50) reduces

to CL=Gm, an expected result because with negligible Cin, the output resistance of the unity-gain

buffer is equal to 1=Gm .

We now study the slewing behavior of the circuit, considering a telescopic op amp as an

example. Upon entering the amplification mode, the circuit may experience a large step at the

inverting input (Fig. 12.37). As shown in Fig. 12.39, the tail current of the op amp’s input

differential pair is then steered to one side, charging the capacitance seen at the output. Since M2

is off during slewing, Cin is negligible and the slew rate is approximately equal to ISS=CL. The

slewing continues until VX is sufficiently close to the gate voltage of M1, after which point the

settling progresses with the time constant given in (12.50).

Our foregoing studies reveal that the input capacitance of the op amp degrades both the speed

and the precision of the unity-gain sampler/buffer. For this reason, the bottom plate of CH in Fig.

12.30 is usually driven by the input signal or the output of the op amp and the top plate is connected

to node X (Fig. 12.40), minimizing the parasitic capacitance seen from node X to ground. This

technique is called “bottom-plate sampling.”
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Figure 12.39. Unity-gain sampler during slewing.
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Figure 12.40. Connection of capacitor to the unity-gain sampler.

It is instructive to compare the performance of the sampling circuits shown in Figs. 12.29(b)

and 12.30(a). In Fig. 12.29(b), the sampling time constant is smaller because it depends on only the

on-resistance of the switch. More importantly, in Fig. 12.29(b), the amplification after the switch

turns off is almost instantaneous whereas in Fig. 12.30, it requires a finite settling time. However,

the critical advantage of the unity-gain sampler is the input-independent charge injection.

12.3.2 Noninverting Amplifier

In this section, we revisit the amplifier of Fig. 12.4, studying its speed and precision properties.

Repeated in Fig. 12.41(a), the amplifier operates as follows. In the sampling mode, S1 and S2 are

on and S3 is off, creating a virtual ground at X and allowing the voltage across C1 to track the input

voltage [Fig. 12.41(b)]. At the end of the sampling mode, S2 turns off first, injecting a constant

charge, ∆q2, onto node X . Subsequently, S1 turns off and S3 turns on [Fig. 12.41(c)]. Since VP

goes from Vin0 to 0, the output voltage changes from 0 to approximately Vin0(C1=C2), providing a

voltage gain equal toC1=C2. We call the circuit a “noninverting amplifier” because the final output

has the same polarity as Vin0 and the gain can be greater than unity.
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Figure 12.41. (a) Noninverting amplifier, (b) circuit of (a) in sampling mode, (c) transition of
circuit to amplification mode.

As with the unity-gain circuit of Fig. 12.30(a), the noninverting amplifier avoids input-

dependent charge injection by proper timing, namely, turning S2 off before S1 (Fig. 12.42).

After S2 is off, the total charge at node X remains constant, making the circuit insensitive to

∆q 2

outVinV
S 1

S 2

X

C2

P C1

Vin0

Figure 12.42. Transition of noninverting amplifier to amplification mode.

charge injection of S1 or charge “absorption” of S3. Let us first study the effect of S1 carefully.

As illustrated in Fig. 12.43, the charge injected by S1, ∆q1, changes the voltage at node P by

approximately ∆VP = ∆q1=C1, and hence the output voltage by �∆q1C1=C2. However, after S3

turns on, VP drops to zero. Thus, the overall change in VP is equal to 0�Vin0 = �Vin0, producing

an overall change in the output equal to �Vin0(�C1=C2) = Vin0C1=C2.

The key point here is that VP goes from a fixed voltage, V0, to another, 0, with an intermediate

perturbation due to S1. Since the output voltage of interest is measured after node P is connected

to ground, the charge injected by S1 does not affect the final output. From another perspective, as

shown in Fig. 12.44, the charge on the right plate of C1 at the instant S2 turns off is approximately
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Figure 12.43. Effect of charge injected by S1.
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Figure 12.44. Charge redistribution in noninverting amplifier.

equal to �Vin0C1. Also, the total charge at node X must remain constant after S2 turns off. Thus,

when node P is connected to ground and the circuit settles, the voltage across C1 and hence its

charge are nearly zero, and the charge �Vin0C1 must reside on the left plate of C2. In other words,

the output voltage is approximately equal to Vin0 regardless of the intermediate excursions at node

P .

The foregoing discussion indicates that two other phenomena have no effect on the final output.

First, from the timeS2 turns off until the timeS1 turns off, the input voltage may change significantly

(Fig. 12.45) without introducing any error. In other words, the sampling instant is defined by the

turn-off of S2. Second, when S3 turns on, it requires some channel charge but since the final

value of VP is zero, this charge is unimportant. Neither of these effects introduces error because

the total charge at node X is conserved and VP is eventually set by a fixed (zero) potential. To

emphasize that VP is initially and finally determined by fixed voltages, we say node P is “driven”

or node P switches from a low-impedance node to another low-impedance node. Here the term

low-impedance distinguishes node P , at which charge is not conserved, from “floating” nodes such

as X , where charge is conserved.
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Figure 12.45. Effect of input change after S2 turns off.

In summary, proper timing in Fig. 12.41(a) ensures that nodeX is perturbed by only the charge

injection of S2, making the final value of Vout free from errors due to S1 and S3. The constant offset

due to S2 can be suppressed by differential operation (Fig. 12.46).

inV

CS 1

S 3

S 2

X

S 1 C

S 3

S 2

Y

’

’

’

S eq Vout

1

1

C2

C2

Figure 12.46. Differential realization of noninverting amplifier.

Example 12.4

In the differential circuit of Fig. 12.46, suppose the equalizing switch is not used and S2 and S 0

2

exhibit a threshold voltage mismatch of 10 mV. If C1 = 1 pF, C2 = 0:5 pF, VTH = 0:6 V, and for

all switches WLCox = 50 fF, calculate the dc offset measured at the output assuming all of the

channel charge of S2 and S 0

2 is injected onto X and Y , respectively.

Solution. Simplifying the circuit as in Fig. 12.47, we have Vout � ∆q=C2, where ∆q =

WLCox∆VTH . Note that C1 does not appear in the result because X is a virtual ground, i.e., the

voltage across C1 changes only negligibly. Thus, the injected charge resides primarily on the left

plate of C2, giving an output error voltage equal to ∆Vout =WLCox∆VTH=C2 = 1 mV.
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Figure 12.47.

Precision Considerations As mentioned above, the circuit of Fig. 12.41(a) provides a nominal

voltage gain of C1=C2. We now calculate the actual gain if the op amp exhibits a finite open-loop

gain equal to Av1. Depicted in Fig. 12.48 along with the input capacitance of the op amp, the

X

C

outV
Cin

inV
C1

2

A v1

Figure 12.48. Equivalent circuit of noninverting amplifier during amplification.

circuit amplifies the input voltage change such that:

(Vout � VX )C2s = VXCins+ (VX � Vin)C1s: (12:51)

Since Vout = �Av1VX , we have

Vout
Vin

=
�C1

C2 +
C2 + C1 + Cin

Av1

: (12:52)

For large Av1,
Vout
Vin

� �C1

C2
(1� C2 + C1 + Cin

C2
� 1
Av1

); (12:53)

implying that the amplifier suffers from a gain error of (C2 + C1 + Cin)=(C2Av1). Note that the

gain error increases with the nominal gain C1=C2.

Comparing (12.42) with (12.53), we note that withCH = C2 and for a nominal gain of unity, the

noninverting amplifier exhibits greater gain error than does the unity-gain sampler. This is because



Chapter 12. Introduction to Switched-Capacitor Circuits 427

the feedback factor equals C2=(C1 + Cin + C2) in the former and CH=(CH + Cin) in the latter.

For example, if Cin is negligible, the unity-gain buffer’s gain error is half that of the noninverting

amplifier.

Speed Considerations The smaller feedback factor in Fig. 12.48 suggests that the time response

of the amplifier may be slower than that of the unity-gain sampler. This is indeed true. Consider the

equivalent circuit shown in Fig. 12.49(a). Since the only difference between this circuit and that

VXG m R

X

C

outV

CLCin VX

2

C1

Vin

VXG m R

X

C

outV

CL

2

C

V VX

eq

inα

(a)

(b)

0

0

Figure 12.49. (a) Equivalent circuit of noninverting amplifier in amplification mode, (b) circuit
of (a) with Vin; C1, and Cin replaced by a Thevenin equivalent.

in Fig. 12.38 is the capacitor C1, which is connected from node X to an ideal voltage source, we

expect that (12.50) gives the time constant of this amplifier as well if Cin is replaced by Cin + C1.

But for a more rigorous analysis, we substitute Vin; C1, and Cin in Fig. 12.49(a) by a Thevenin

equivalent as in Fig. 12.49(b), where � = C1=(C1 + Cin), and Ceq = C1 + Cin, and note that

VX = (�Vin � Vout)
Ceq

Ceq + C2
+ Vout: (12:54)

Thus,

[(�Vin � Vout)
Ceq

Ceq + C2
+ Vout]Gm + Vout(

1
R0

+ CLs = (�Vin � Vout)
CeqC2

Ceq + C2
s; (12:55)

and hence

Vout
Vin

(s) =
�Ceq

C1

C1 + Cin

(Gm �C2s)R0

C2GmR0 + Ceq + C2 +R0[CL(Ceq + C2) + CeqC2]s
: (12:56)



Chapter 12. Introduction to Switched-Capacitor Circuits 428

Note that for s = 0, (12.56) reduces to (12.52). For a large GmR0, we can simplify (12.56) to

Vout
Vin

(s) �
�Ceq

C1

C1 + Cin

(Gm � C2s)R0

R0(CLCeq + CLC2 + CeqC2)s+GmR0C2
; (12:57)

obtaining a time constant of

�amp =
CLCeq + CLC2 + CeqC2

GmC2
; (12:58)

which is the same as the time constant of Fig. 12.37 if Cin is replaced by Cin+C1. Note the direct

dependence of �amp upon the nominal gain, C1=C2.

It is instructive to examine the amplifier’s time constant for the special case CL = 0. Equation

(12.58) yields �amp = (C1 + Cin)=Gm , a value independent of the feedback capacitor. This is

because, while a larger C2 introduces heavier loading at the output, it also provides a greater

feedback factor.

12.3.3 Precision Multiply-by-Two Circuit

The circuit of Fig. 12.41(a) can operate with a relatively high closed-loop gain, but it suffers

from speed and precision degradation due to the low feedback factor. In this section, we study a

topology that provides a nominal gain of two while achieving a higher speed and lower gain error

[5]. Shown in Fig. 12.50(a), the amplifier incorporates two equal capacitors, C1 = C2 = C . In

the sampling mode, the circuit is configured as in Fig. 12.50(b), establishing a virtual ground at X

and allowing the voltage across C1 and C2 to track Vin. In the transition to the amplification mode,

S3 turns off first, C1 is placed around the op amp, and the left plate of C2 is switched to ground

[Fig. 12.50(c)]. Since at the moment S3 turns off, the total charge on C1 and C2 equals 2Vin0C

(if the charge injected by S3 is neglected), and since the voltage across C2 approaches zero in the

amplification mode, the final voltage across C1 and hence the output voltage are approximately

equal to 2Vin0. This can also be seen from the slow motion illustration of Fig. 12.51.

The reader can show that the charge injected by S1 and S2 and absorbed by S4 and S5 is

unimportant and that injected by S3 introduces a constant offset. The offset can be suppressed by

differential operation.

The speed and precision of the multiply-by-two circuit are expressed by (12.58) and (12.53),

respectively, but the advantage of the circuit is the higher feedback factor for a given closed-loop

gain. Note, however, that the input capacitance of the multiply-by-two circuit in the sampling

mode is higher.
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Figure 12.50. (a) Multiply-by-two circuit, (a) circuit of (a) in sampling mode, (b) circuit of (a) in
amplification mode.
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Figure 12.51. Transition of multiply-by-two-circuit to amplification mode in slow motion.

12.4 Switched-Capacitor Integrator

Integrators are used in many analog systems. Examples include filters and oversampled analog-to-

digital converters. Fig. 12.52 depicts a continuous-time integrator, whose output can be expressed

outVX

C

R
inV

F

Figure 12.52. Continuous-time integrator.

as

Vout = � 1
RCF

Z
Vindt; (12:59)
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if the op amp gain is very large. For sampled-data systems, we must devise a discrete-time

counterpart of this circuit.

Before studying SC integrators, let us first point out an interesting property. Consider a resistor

connected between two nodes [Fig. 12.53(a)], carrying a current equal to (VA � VB)=R. The role

VA

R

VB

A B

I VA VB

S 1A

CS

S 2 B

(a) (b)

Figure 12.53. (a) Continuous-time and (b) discrete-time resistors.

of the resistor is to take a certain amount of charge from node A every second and move it to node

B. Can we perform the same function by a capacitor? Suppose in the circuit of Fig. 12.53(b),

capacitor CS is alternately connected to nodes A and B at a clock rate fCK . The average current

flowing from A to B is then equal to the charge moved in on clock period:

IAB =
CS(VA � VB)

f�1
CK

(12.60)

= CSfCK(VA � VB): (12.61)

We can therefore view the circuit as a “resistor” equal to (CSfCK)�1. Recognized by James Clark

Maxwell, this property formed the foundation for many modern switched-capacitor circuits.

Let us now replace resistor R in Fig. 12.52 by its discrete-time equivalent, arriving at the

integrator of Fig. 12.54(a). We note that in every clock cycle, C1 absorbs a charge equal to C1Vin

outVX
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inV
S 1

C

S 2

1

2

t

outV

C1

C2
Vin

(a) (b)

P

Figure 12.54. (a) Discrete-time integrator, (b) response of circuit to a constant input voltage.

when S1 is on and deposits the charge on C2 when S2 is on (node X is a virtual ground). For

example, if Vin is constant, the output changes by VinC1=C2 every clock cycle [Fig. 12.54(b)].

Approximating the staircase waveform by a ramp, we note that the circuit behaves as an integrator.
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The final value of Vout in Fig. 12.54(a) after every clock cycle can be written as

Vout(kTCK) = Vout[(k � 1)TCK ]� Vin[(k � 1)TCK] � C1

C2
; (12:62)

where the gain of the op amp is assumed large. Note that the small-signal settling time constant as

charge is transferred from C1 to C2 is given by (12.50).

The integrator of Fig. 12.54(a) suffers from two important drawbacks. First, the input-

dependent charge injection of S1 introduces nonlinearity in the charge stored on C1 and hence

the output voltage. Second, the nonlinear capacitance at node P resulting from the source/drain

junctions of S1 and S2 leads to a nonlinear charge-to-voltage conversion when C1 is switched to

X . This can be understood with the aid of Fig. 12.55, where the charge stored on the total junction

capacitance, Cj , is not equal to Vin0Cj , but rather equal to

outVX

C

C1

2

Cj

S 2

Vin0

P

Figure 12.55. Effect of junction capacitance nonlinearity in SC integrator.

qcj =
Z V in0

0
CjdV: (12:63)

Since Cj is a function of voltage, qcj exhibits a nonlinear dependence on Vin0, thereby creating a

nonlinear component at the output after the charge is transferred to the integration capacitor.

An integrator topology that resolves both of the foregoing issues is shown in Fig. 12.56(a). We

study the circuit’s operation in the sampling and integration modes. As shown in Fig. 12.56(b), in

the sampling mode S1 and S3 are on and S2 and S4 are off, allowing the voltage across C1 to track

Vin while the op amp and C2 hold the previous value. In the transition to the integration mode, S3

turns off first, injecting a constant charge onto C1, S1 turns off next, and subsequently S2 and S4

turn on [Fig. 12.56(c)]. The charge stored on C1 is therefore transferred to C2 through the virtual

ground node.

Since S3 turns off first, it introduces only a constant offset, which can be suppressed by

differential operation. Moreover, because the left plate of C1 is “driven” (Section 12.3.2), the

charge injection or absorption of S1 and S2 contributes no error. Also, since node X is a virtual

ground, the charge injected or absorbed by S4 is constant and independent of Vin.
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Figure 12.56. (a) Parasitic-insensitive integrator, (b) circuit of (a) in sampling mode, (c) circuit
of (a) in integration mode.

How about the nonlinear junction capacitance of S3 and S4? We observe that the voltage across

this capacitance goes from near zero in the sampling mode to virtual ground in the integration

mode. Since the voltage across the nonlinear capacitance changes by a very small amount, the

resulting nonlinearity is negligible.

12.5 Switched-Capacitor Common-Mode Feedback

Our study of common-mode feedback in Chapter 9 suggested that sensing the output CM level by

means of resistors lowers the differential voltage gain of the circuit considerably. We also observed

that sensing techniques using MOSFETs that operate as source followers or variable resistors suffer

from a limited linear range. Switched-capacitor CMFB networks provide an alternative that avoids

both of these difficulties (but the circuit must be refreshed periodically.)

In switched-capacitor common-mode feedback, the outputs are sensed by capacitors rather than

resistors. Figure 12.57 depicts a simple example, where equal capacitors C1 and C2 reproduce at

node X the average of the changes in each output voltage. Thus, if Vout1 and Vout2 experience

a, say, positive CM change, then VX and hence ID5 increase, pulling Vout1 and Vout2 down. The

output CM level is then equal to VGS2 plus the voltage across C1 and C2.

How is the voltage across C1 and C2 defined? This is typically carried out when the amplifier

is in the sampling (or reset) mode and can be accomplished as shown in Fig. 12.58. Here, during

CM level definition, the amplifier differential input is zero and switch S1 is on. Transistors M6

and M7 operate as a linear sense circuit because their gate voltages are nominally equal. Thus, the

circuit settles such that the ouput CM level is equal to VGS6;7 + VGS5. At the end of this mode, S1
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Figure 12.57. Simple SC common-mode feedback.
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Figure 12.58. Definition of the voltage across C1 and C2.

turns off, leaving a voltage equal to VGS5;6 across C1 and C2. In the amplification mode, M6 and

M7 may experience a large nonlinearity but they do not impact the performance of the main circuit

because S1 is off.

In applications where the output CM level must be defined more accurately than in the above

example, the topology shown in Fig. 12.59 may be used. Here, in the reset mode, one plate of C1
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2
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M
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Figure 12.59. Alternative topology for definition of output CM level.
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and C2 is switched to VCM while the other is connected to the gate of M6. Each capacitor therefore

sustains a volatge equal to VCM � VGS6. In the amplification mode, S2 and S3 are on and the other

switches are off, yielding an output CM level equal to VCM � VGS6 + VGS5. Proper definition of

ID3 and ID4 with respect to IREF can guarantee that VGS5 = VGS6 and hence the output CM level

is equal to VCM .

With large output swings, the speed of the CMFB loop may in fact influence the settling of the

differential output [6]. For this reason, part of the tail current of the differential pairs in Figs. 12.58

and 12.59 can be provided by a constant current source so that M5 makes only small adjustments

to the circuit.

Problems

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and

assume VDD = 3 V where necessary. Also, assume all transistors are in saturation.

12.1 The circuit of Fig. 12.2(a) is designed with C1 = 2 pF and C2 = 0:5 pF.

(a) Assuming RF = 1 but the op amp has an output resistance Rout, derive the transfer

function Vout(s)=Vin(s).

(b) If the op amp is ideal, determine the minimum value of RF that guarantees a gain error of

1% for an input frequency of 1 MHz.

12.2 Suppose in Fig. 12.5(a), the op amp is characterized by a transconductance Gm and an output

resistance Rout.

(a) Determine the transfer function Vout=Vin in this mode.

(b) Plot the waveform at node B if Vin is a 100-MHz sinusoid with a peak amplitude of 1 V,

C1 = 1 pF, Gm = 1=(100 Ω), and Rout = 20 kΩ.

12.3 In Fig. 12.5(b), node A is in fact connected to ground through a switch (Fig. 12.4). If the

switch introduces a series resistance Ron and the op amp is ideal, calculate the time constant

of the circuit in this mode. What is the total energy dissipated in the switch as the circuit

enters the amplification mode and Vout settles to its final value?

12.4 The circuit of Fig. 12.9(a) is designed with (W=L)1 = 20=0:5 and CH = 1 pF.

(a) Using Eqs. (12.7) and (12.14), calculate the rime required for Vout to drop to +1 mV.

(b) ApproximatingM1 by a linear resistor equal to [�nCox(W=L)1(VDD � VTH)]
�1, calculate

the time required for Vout to drop to +1 mV and compare the result with that obtained in part

(a).
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12.5 The circuit of Fig. 12.11 cannot be characterized by a single time constant because the

resistance charging CH (equal to 1=gm1 if  = 0) varies with the output level. Assume

(W=L)1 = 20=0:5 and CH = 1 pF.

(a) Using Eq. (12.19), calculate the time required for Vout to reach 2.1 V.

(b) Sketch the transconductance of M1 versus time.

12.6 In the circuit of Fig. 12.8(b), (W=L)1 = 20=0:5 and CH = 1 pF. Assume � =  = 0 and

Vin = V0 sin!int+ Vm, where !in = 2� � (100 MHz).

(a) Calculate Ron1 and the phase shift from the input to the output if V0 = Vm = 10 mV.

(b) Repeat part (a) if V0 = 10 mV but Vm = 1 V. The variation of the phase shift translates to

distortion.

12.7 Describe an efficient SPICE simulation that yields the plot of Ron;eq for the circuit of Fig.

12.16.

12.8 The sampling network of Fig. 12.16 is designed with (W=L)1 = 20=0:5 and (W=L)2 =

60=0:5. If Vin = 0 and the initial value of Vout is +3 V, estimate the time required for Vout to

drop to +1 mV.

12.9 In the circuit of Fig. 12.19, (W=L)1 = 20=0:5 and CH = 1 pF. Calculate the maximum

error at the output due to charge injection. Compare this error with that resulting from clock

feedthrough.

12.10 The circuit of Fig. 12.60 samples the input on C1 when CK is high and connects C1 and C2

C

CK

M 1

1 C

M

2

2
outVinV

CK

Figure 12.60.

when CK is low. Assume (W=L)1 = (W=L)2 and C1 = C2.

(a) If the initial voltages across C1 and C2 are zero and Vin = 2 V, plot Vout versus time for

many clock cycles. Neglect charge injection and clock feedthrough.

(b) What is the maximum error in Vout due to charge injection and clock feedthrough of M1

and M2? Assume the channel charge of M2 splits equally between C1 and C2.
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(c) Determine the kT=C noise at the output after M2 turns off.

12.11 For Vin = V0 sin !0t + V0, where V0 = 0:5 V and !0 = 2� � (10 MHz), plot the output

waveforms of the circuits shownin Fig. 12.29(b) and 12.30(a). Assume a clock frequency of

50 MHz.

12.12 In Fig. 12.45, S1 turns off ∆t seconds after S2 and S3 turns on ∆t seconds after S1 turns off.

Plot the output waveform, taking into account the charge injection and clock feedthough of

S1-S3.

12.13 The circuit of Fig. 12.48 is designed with C1 = 2 pF, Cin = 0:2 pF and Av = 1000. What is

the maximum nominal gain, C1=C2, that the circuit can provide with a gain error of 1%?

12.14 In Problem 12.13, what is the maximum nominal gain if Gm = 1=(100 Ω) and the circuit

must achieve a time constant of 2 ns in the amplification mode?

12.15 The integrator of Fig. 12.54 is designed with C1 = C2 = 1 pF and a clock frequency of 100

MHz. Neglecting charge injection and clock feedthrough, sketch the output if the input is a

10-MHz sinusoid with a peak amplitude of 0.5 V. ApproximatingC1; S1, and S2 by a resistor,

estimate the output amplitude.

12.16 Consider the switched-capacitor amplifier depicted in Fig. 12.61, where the common-mode

M M1 2

C C

C

C1

2 I SS

Vb

VDD

M M3 4

3 4

inV

VCM

VCM

Figure 12.61.

feedback is not shown. Assume (W=L)1�4 = 50=0:5; ISS = 1 mA, C1 = C2 = 2 pF,

C3 = C4 = 0:5 pF, and the output CM level is 1.5 V. Neglect the transistor capacitances.

(a) What is the maximum allowable output voltage swing in the amplification mode?
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(b) Determine the gain error of the amplifier.

(c) What is the small-signal time constant in the amplification mode?

12.17 Repeat Problem 12.16 if the gate-source capacitance of M1 and M2 is not neglected.

12.18 A differential circuit incorporating a well-designed common-mode feedback network exhibits

the open-loop input-output characteristic shown in Fig. 12.62(a). In some circuits, however,

the characteristic appears as in Fig. 12.62(b). Explain how this effect occurs.

Vin

Vout1

Vout2

0 Vin

Vout1

Vout2

0

(a) (b)

Figure 12.62.

12.19 In the common-mode feedback network of Fig. 12.58, assume W=L = 50=0:5 for all

transistors, ID5 = 1 mA, and ID6;7 = 50 �A. Determine the allowable range of the input

common-mode level.

12.20 Repeat Problem 12.19 if (W=L)5;6 = 10=0:5.

12.21 Suppose in the common-mode feedback network of Fig. 12.58, S1 injects a charge of ∆q onto

the gate of M5. How much do the gate voltage of M5 and the output common-mode level

change due to this error?

12.22 In the circuit of Fig. 12.63, each op amp is represented by a Norton equivalent and charac-

terized by Gm and Rout. The output currents of two op amps are summed at node Y [7]. (The

circuit is shown in the amplification mode.) Note that the main amplifier and the auxiliary

amplifier are identical and the error amplifier senses the voltage variation at nodeX and injects

a proportional current into node Y . Assume GmRout � 1.

(a) Calculate the gain error of the circuit.

(b) Repeat part (a) if the auxiliary and error amplifiers are eliminated and compare the results.
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