## **RF** Microelectronics, Second Edition

## Errata Behzad Razavi

- Fig. 2.4: the spectrum of the square wave should contain an impulse at dc; the spectrum on the bottom right should include a copy of the spectrum of V<sub>in2</sub> around zero frequency.
- Example 2.11, change Eq. (2.53) to 3.16 V<sub>p</sub> and Eq. (2.54) to +20 dBm.
- On page 40, last paragraph, the noise current of a resistor should read  $\overline{I_n^2} = \overline{V_n^2}/R_1^2$ .
- Fig. 2.51(b): output noise should read  $\overline{V_{n2}^2}$ .
- Eq. (2.213): multiply  $C_X$  in the denominator by  $R_S$ .
- P. 80, Example 2.34, fourth line below Eq. (2.237): should read  $\exp(j\omega_3 t)$ .
- Prob. 2.3, second line should read: consider the cascade of identical ...
- Prob. 2.5 should read  $\omega_3 \omega_2 = \omega_2 \omega_1$ .
- Fig. 3.9 should be changed as shown below:



- In Fig. 3.11, change  $\omega_0$  to  $\omega_c$ .
- In the first paragraph of Section 3.3.3, change the last sentence to ... decrease this bandwidth to about  $1/T_b$ .
- On page 115, in the paragraph starting with "The concept of QAM ..." change eight to six.
- Eq. (3.50), last term should read  $a_n(t) \cos(\omega_c t + \theta_n)$ .
- P. 127, fifth line in paragraph starting with "How is the received ...": should read  $y(t) = x_{BB1}(t) \cdot W_1^2(t)$ .

- P. 137, first line: change CMDA to CDMA.
- Eq. (3.53): divide all terms containing m by 2.
- Fig. 3.80: remove 0 from the center of the horizontal axis.
- Fig. 3.85: caption should read 11b.
- Fig. 4.29(b): image band is 48 MHz wide.
- Fig. 4.52(b) swap sine and cosine and change  $\omega_0$  to  $\omega_c$ .
- P. 205: second line:  $\omega_c < \omega_{LO}$ ; third line:  $\omega_c > \omega_{LO}$ .
- In Fig. 4.15(b), change  $2\omega_{in} \omega_{LO}$  to  $2\omega_{LO} \omega_{in}$ .
- In Example 4.27, page 202, change  $\exp(-j\omega_c t)$  to  $\exp(+j\omega_c t)$ .
- P. 211: left side of (4.84) should read  $x_D(t)$  and left side of (4.85) should read  $x_C(t)$ . Also, the right side of (4.86) should be multiplied by -1.
- Fig. 4.69: top left: the spectrum should be negative; top right: change  $\omega_c$  to  $\omega_{im}$ ; bottom left: the spectrum should be positive.
- P. 217: Remove last paragraph and Fig. 4.74.
- Fig. 4.81(a) should be changed as shown below:



- Example 4.36, the first sentence in solution should read: We have  $V_{out1} = (1/2)(1-j)V_1$  and ... observing that  $V_{out1}$  and  $V_{out4}$  ...
- Fig. 4.84: change Casade to Cascade
- Line after Eq. (4.124) should read  $\cos(\omega_c + \omega_{in})t$ .
- P. 230, above Example 4.38: change cancellation to constellation. P. 231, first line should read We observe that if  $\epsilon$  is ...; also, in Eq. (4.132), multiply the right side by  $V_0^2$ .
- Fig. 4.122: the bottom signal going to the adder should be subtracted from the top signal.
- P. 261 before the paragraph entitled Bandwidth: change UBW to UWB.
- P. 263: paragraph starting with Let us ...: multiply  $C_F$  by  $1 + g_m R_D$
- Eq. (5.34), in the numerator: multiply the first square bracket by C<sub>F</sub>ω and multiply the last ω<sub>2</sub> by C<sub>F</sub>.
- Example 5.5, third line in solution: Since it is desired

that  $R_{in} = R_S$ ,

- The denominator of (5.43) should read  $2R_S$ .
- (5.69): change  $r_{O1}$  in the first numerator to  $r_{O2}$ .
- Sec. 5.3.4, second line, change many to may.
- The  $R_S$  in the denominators of (5.96) and (5.100) must be multiplied by j.
- (5.100): multiply  $R_S$  in the denominator by j.
- Example 5.16: last paragraph: Change Fig. 5.39(b) to Fig. 5.39(c).
- (5.135): add  $\omega^2$  in the numerator.
- P. 315: above paragraph entitled Differential CG LNA, change Figs. 5.66(a) and (b) to Figs. 5.65(a) and (b).
- Above (5.149): change  $[R_1/(2R_1/2)]$  to  $[R_1/(2R_{S1}/2)]^2$ .
- Three lines above (5.159): change reduced to increased.
- Right side of (5.197) should read  $4\sqrt{(2I_{SS})/(3\mu_n C_{ox}W/L)}$ . Change the coefficient of (5.198) from  $\sqrt{6}$  to  $4\sqrt{2/3}$ .
- Sec. 5.7.4: change numerator of (5.201) from 1 to 2 and right side of (5.203) from  $6\alpha_3$  to  $3\alpha_3$ . Also, the right side of (5.204) should read  $2I_0\sqrt{(2/3)g_m(R_S+2/g_m)^3}$ .
- On page 349, first paragraph, change Fig. 6.16(b) to Fig. 6.16.
- In Fig. 6.14(b), the spectral density on the right should change from  $2kTR_S$  to  $kTR_S$ .
- Three lines above Fig. 6.24: change single-ended to single-balanced.
- P. 360: Above (6.31): and hence only the noise around  $\pm f_{LO}$  is significant: Change the right side of (6.31) to  $(2/\pi^2)(2kTR_1)$ . Change the coefficient on the right side of (6.32) from 0.226 to 0.2. Next paragraph: change Fig. 6.21 to Fig. 6.23, and  $t/(2T_{LO})$  to  $2t/T_{LO}$ .
- P. 361: right side of (6.33): change (2f<sup>2</sup><sub>LO</sub>) to (2f<sub>LO</sub>)<sup>2</sup>.
  Above (6.36) remove π.
- P. 368, second sentence should read: In fact, currentdriven mixers ...
- Fig. 6.43(a): swap  $M_5$  and  $M_6$ .
- Fig. 6.44(a): add V<sub>DD</sub>.
- Eq. (6.76): remove the factor of 2 from the fraction within the square brackets.
- P. 385: line above (6.89) should read: voltages of  $M_2$  and  $M_3$  are equal ...
- (6.116): the denominator of second fraction:  $|V_{GS} V_{TH}|_4$ . Also, in Example 6.25.
- (6.129): change  $V_{IM2}$  to  $I_{IM2}$ .
- (6.133) should read ... $(-V_m \cos \omega_1 t V_m \cos \omega_2 t + ...$
- (6.143): change the + sign before  $X(f + f_{LO})$  to sign.
- P. 413, third line: remove  $V_{GS1}$ .
- P. 414: line before last paragraph: change -34 to -14. Also, change litter in footnote to little.
- Example 7.6, Eq. (7.33) should read:

$$C_{eq} = \frac{C_1 + \dots + C_{4(N-1)}}{[4(N-1)]^2} \tag{1}$$

Eq. (7.125) in Problem 7.3 must also be corrected as above.

- Example 7.13: change 30 to 35.
- The line above Eq. (7.48) should read: equal to  $K|I_{u,n}|^2 R_{sub}$ .
- (7.96): multiply the right side by  $Z_0$ .
- p. 488, the sentence below Eq. (7.114) should read  $Z_1d = R_{tot}/2$  and  $Y_1d = C_{tot}s/2$ .
- Fig. 7.75(b), label the rightmost transistor as  $M_{22}$ .
- Prob. 7.10, Assume the inductance is about 9 times that of one spiral.
- Eq. (8.5): the sign before the second fraction should change from positive to negative.
- In Eq. (8.19), change  $\phi_0$  to  $\phi_1$ .
- P. 517: second line: change  $R_p$  to  $1/R_p$ .
- In the sentence above Eq. (8.43), change rad/Hz/V to rad/s/V.
- P. 536: paragraph starting with Some recent ...: change stops to steps.
- P550: line below (8.113) should read ... is simply ...
- P 554, last line of first paragraph: change  $R_p$  to  $1/R_p$ .
- Example 8.32, last line: the zero crossings are unaffected, and in the latter, the peaks.
- P. 564: last paragraph: change t to  $\tau$  and  $\phi_j$  to  $\phi_m$ .
- Fig. 8.84(b): change  $2L_1$  to  $L_1/2$ . Also, in line above, change doubled to halved.
- Line above Sec. 8.11.2: multiply  $\omega_0$  by j.
- Example 9.1: remove "having a frequency equal to the difference ..."
- Line above (9.1): change  $\phi$  to  $\Delta \phi$ .
- P. 607: sixth line should read Example 9.8 ...
- Fig. 9.28: change  $C_p$  to  $C_1$ .
- Four lines above (9.17) should read: [Fig. 9.31(b)].
- P. 621: remove "The inverse Laplace transform of"
- On page 622, below Eq. (9.30) should read: Note that  $\omega_{p1}/\omega_{p2} \approx 1/(4\zeta^2) \ll 1$ . Does this mean  $\omega_{p1}$  becomes a dominant pole? No, interestingly, the *zero* is also located at  $-\omega_n/(2\zeta)$ , cancelling the effect of  $\omega_{p1}$ . Thus, ...  $1/|\omega_{p2}|$  ...
- Three lines above (9.43) should read:  $2(\Delta T I_p / C_2) T_{res} / T_{in}$ .
- The inverting and non-inverting inputs of A<sub>0</sub> in Figs. 9.51 and 9.53 should be swapped.
- P. 644, lines above last paragraph: change N to M.
- (9.79): change the power of ζ in the denominators to 4.
  Also, in the line below this eq.
- P. 675: first line should read Fig. 10.24; remove (point B) from fourth line.
- Fig. 10.26: change the AND gates to XNOR gates.
- Fig. 10.34: change the circuit in gray box to the divider in Fig. 10.31.
- (10.45): multiply  $0.5T_{CK}$  by a negative sign.
- Fig. 10.65: change  $\omega_{in}t$  to  $(\omega_{in}/2)t$ .
- Eq. (10.75): change  $R_p$  to  $R_1$ ; denominator should read Ns rather than NS.
- Fig. 11.12 caption: change high to low and low to high.
- Fig. 11.21: change 0.5 to 1.
- Change Fig. 11.45 as shown below:
- Fig. 12.53(b): divide  $S_{\phi}(\omega)$  by N.



- Problem 12.3 should read: Prove that in Fig. 12.17, the voltage swings above and below  $V_{DD}$  are equal to  $V_p/\pi$  and  $V_p(\pi 1)/\pi$ , respectively, where  $V_p$  denotes the peak voltage at each node. (Hint: the average value of  $V_X$  and  $V_Y$  must be equal to  $V_{DD}$ .)
- In the solution of Example 13.1, the second line should read: However, a 64QAM OFDM signal exhibits ... . And the last sentence should read: The -82-dBm PSK OFDM signal has roughly the same behavior. Note that this correction affects the gain calculations after this example.
- In Figs. 13.17, 13.19, and 13.22, change the length of the baseband PMOS devices from 1.2 to 0.12.