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Global Energy Usage

Earth at Night Astronomy Picture of the Day
More information available at: 2000 November 27
‘http://antwrp.gsfc.nasa, gov/apod/ap001127 html http:/antwrp.gsfc.nasa.gov/apod/astropix.html
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US Energy Consumption by Source, 1935-2000 (Quadrillion Btu)

Figure 3. Energy consumption by fuel, 1980-2030
(quadrillion Biu)

60 — History Projections Petroleum

N / e

40 - Hydroalectric
\'// Coal Powar

30 - ﬁ

Natural gas
. },.ﬁ”'

Nuclear
10 -
— Nonhvdro
w renewables
0 Hydropower
1980 1990 2005 2020 2030 Wood

L | '| 1 T T F ' L i T T 'I L L I LI T 1 I rr L I L

1650 1675 1700 1725 1730 1775 1800 1825 1850 1875 1300 1925 1950 18975

Energy Information Association Annual Energy Outlook, DOE/EIA Report # 0383, 2007.
C. Song, Catal. Today 115:2-32. 2006.
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‘Energy Conversion Etticiency
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‘Energy Conversion Technologies

= For Fossil Fuels:

o SOA: Heat Engines
= Steam Cycles
= Gas Turbines
= Internal Combustion

QFuel Cells?
\ High Electrical Efficiency

Fuel Flexibility
Scalable
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‘Types of Fuel Cells

=)

Operating "
Fuel Cells Electrolyte o Fuel Suppl Applications
y Temperature °C PRly PP
: circulating liquid Hydrogen or small units, up
Albeline (L0 or matrix Slezel) NH,-Cracker to automobiles
Proton Exchange immobilized, 60-100 Hydrogen or small units, up
Membrane(PEM) acidic Converter to automobiles
Phosphoric Acid | concentrated acid 175-200 Hydrogen or Power Plants
(PAFC) gel Converter 50 to 200 kW
Molten Carbonate | Li/Na-carbonate 600-1000 Selected fuel Power Plants
(MCFC) melt or Converter up to 1 MW
Solid Oxide ceramic Zr/Y - 650-1000 All Fuels, Small to large
(SOFC) oxides direct feed Power Plants

Chiu Research Laboratory

Department of Mechanical Engineering

University of
Connecticut



Solid Oxide Fuel Cell

Hydrogen (& CO) Fueled

External
Load
Fuel Air
side _ side
H, + 0”—»H,0 + 2¢° @
o
andior o

CO+0>—CO, + 2¢

Dense, Solid
Electrolyte

from http://www.thirdorbitpower.com/SOFC mech.html

Internal Reforming

Emissions Valuable High
H:0, CO; Temperature Heat

Methane & H,0
at 800°C

Air 9
at 800°C

geam CH, + H,0 & 3H, +CO
Reforming s TP <o, +
Shift. CO+H,0 < H, +CO,
Reaction
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How, specifically, can we design fuel cell microstructure
to optimize performance and durability?

Dlﬁisjll?tn — ElECtrOChemiStry == Materials == DeSign ==)| Fabricate = Test

Previous Generation SOFC Current Generation SOFC Next Generation

i ¥ Y b ey VEWT "R T
[ 4,1 . NN VB

Atkinson et al., Nature Mat. 3:17-27, 2004.

T ! Lay St ,TiO, current collector

Porous YSZ-active region
YSZ electrolyte Gorte et al., 2006

Modeling Tool needed to Determine Optimal Microstructure.
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SOFC Pore Structure Imaging
X-Ray Microtomography (XMT)
Non-destructive tomography capable of reconstructing 3-D pore structure.

X-rays penetrate sample, which is mounted on a rotation stage, and pass through a
scintillation screen. The 2-D slice is captured by a camera.

The sample is rotated through 180 degrees where each slice is captured at specified
angle intervals and reconstructed into a 3-D volume of the pore structure.

X-ray
source condenser
lens zone plate
~ sample  objective

scintillated

energif
filter rotation

stage

Chiu Research Laboratory University of
Department of Mechanical Engineering Connecticut




SOFC Pore Structure Imaging — cont’d

Tubular SOFC - Cross Section

Porous NI YSZ Layer

XMT Experiment details
o Xradia (Concord, CA)
o 8 keV copper source
o 181 projections at 300

sec per projection
0 22.6 um field of view
2 50 nm resolution
o 3-D tomographic
reconstruction
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Geometry Input
file for Model
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‘Modehng Challenges

Gas diffusion occurs at high
temperature and through micron
size pores. Continuum theory is
no longer valid.

» Gas particles can get adsorbed
on the solid material.

» Complex structure.

Chemical reactions among gas components need to be
— 5 [um] e— included for the case of internal reforming and at the TPB.
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‘A Comparison of Modeling Approaches

4 Molecular Dynamics

Monte Carlo

Dusty Gas Model

Lattice Boltzmann Method

I continuum ip A free molecular
I l | | | !
2 101 100 101 1

SIMULATION COST

>

sl
|
104 103 10- 02

KNUDSEN NUMBER

Chiu Research Laboratory w University of

Department of Mechanical Engineering Connecticut



Tattice Boltzmann Method (LBM)

» Historically derived from the lattice gas cellular automata

 LBM is a numerical approximation to the Boltzmann equation

* Multiple species

« Complex geometry

« Parallel algorithm

 Wall interactions

* Non-continuum regime

M.E. McCracken M. E. and J. Abraham, Phys. Rev. E, 71:046704. 2005.
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‘Basic LLBM Algorithm: Stream and Collide

new time level

species old time-level

discrete
velocity

direction
velocity distribution function BGK collision term
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Multi-Component Gas Transport in a SOFC Anode
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[.LBM Validation
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LLBM Validation — cont’d.

Knudsen number ( Kn )
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A.S. Joshi, W.K.S. Chiu, et al., ASME IMECE2006-13620, 2006.
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‘ 3D LLBM Analysis of a SOFC Anode

Electrolyte
(YS2z)

Pore Structure

(W,<r>,<r2>)
Anode ! ! . !
(Ni +YSZ) PropertleS,

Pore space

nconc’ Tlohmic

Surface representing the

Pore phase
interface between the
solid region and pores.
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Electrochemical Reaction Kinetics in 2 SOFC Anode

K,,_# Reaction rate

Global Reaction: H, + Oelectrolyte — H,0% +2e, S:  Surface vacancy
X eS: Surface species
The Gauckler Reaction Mechanism: Vs Oxygen vacancies
X, :
H,(g)+2S <« s0H oS Gor Oxygenion
2 (1) Dissociation/Adsorption/
K2 k_2 Desorption .
H O(g) + S y, “~ yH O ° S H,0(g) Mg (2) Surface Diffusion
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A. Bieberle and L.J. Gauckler, Solid State lonics. 146: 23-41, 2002.
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FElectrochemical Model Rate Equations

Traditional analysis requires selection of single rate limiting step and
equilibration

o Langmuir-Hinshelwood type rate equation

Approach breaks down when reaction mechanisms contain steps that
occur at similar rates

For proposed mechanism requires solution to set of (4) coupled non-
linear, stiff differential-equations

Oy @ : Species Surface Coverage
3 - (2k1‘9\2, - 2k 10, - k36460 + K 360n 6 + KsOrupob - k—seoHeH) !
O,0 _ o ( 2F )
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Validation of Reaction Kinetics Function
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‘ Electrochemistry & (Gas Transport in a SOFC Anode

b Solid Wal Traditional TPB
(a) _ ( ) I New method allows electrochemically i Flux Interface
active boundaries to be placed on (See Fig. 1d):
H obstacles in an ad hock manner as H, Flux

TPB dictates in SEM (See Fig. 1c)
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Electrode Microstructure

Structure can be described by three parameters:

« ¥ — Structural Parameter (&/7)
anode €lectrolyte

channel cathode * Porosity: 0 < g <1
* Tortuosity: T > 1
¥ <r>, <r?> « ~10X as important upon performance
as other parameters in conditions
TPB studied.
N el » <r> — Average pore radius
Fx | "

| e <r2> — Pore radius distribution
model domain

Pore-Level Analysis = Properties, 7.,

770hmic’ 77conc

Chiu Research Laboratory University of
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Ettect of Grading Electrode Microstructure

Performance evaluated with alternative anode designs
o Two fuel streams 0.25

Diluted hydrogen - Conditions near cell outlet {1}
o 10% H, — 3% H20 — balance inert gas
Partially reformed methane
with internal reforming- Approx. cell inlet (3}
o 10% H, —49% CH, -

30% H,0 - 6% CO - 5% CO,

Cathode

12}

0.05

o Four microstructure cases

{1} - ¥ is a constant high value of 0.25

{2} - ¥ is a constant low value of 0.05

{3} - ¥ is high at the TPB and low at the gas supply channel 0.25 -> 0.05
{4} - ¥ is low at the TPB and high at the gas supply channel 0.05 -> 0.25

Chiu Research Laboratory University of
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Model Validation by Experiments
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Voltage (V)

Effect of |
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‘SOF C Performance Correlations

2
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E.S. Greene, M.G. Medeiros and W.K.S. Chiu, J. Fuel Cell Sci. Tech. 2:136-140, 2005.
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Conclusions

SOFC is promising energy conversion device.

Performance strongly dependent on electrode
microstructure.

Presented modeling/experimental approach to
analyze and design SOFC electrodes.

Optimized fuel cell electrodes can provide a
durable high efficiency energy conversion
technology for our society.
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