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Outline
I. Review of previous work in trajectory generation and tracking
II. Cooperative trajectory generation via optimization-based control
III. Research plan and integration
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Trajectory Generation and Tracking Using Differential 
Flatness

Approach: Two Degree of Freedom Design
! Use online trajectory generation to 

construct feasible trajectories
! Use (scheduled) linear control for 

performance and robustness
! For many flight vehicles, system is 

differentially flat ⇒ reduce dynamic 
system to algebraic equivalent and generate 
feasible trajectories in real time

Results (PRET + SEC)
! Framework for exploiting differential 

flatness in real-time trajectory generation
! Necessary and sufficient conditions for 

flatness classes of (mechanical) systems
! NTG software package for finite time 

optimal control in presence of constraints
! Implementation and testing on Caltech 

ducted fan
! Transitions in progress to SEC, Raytheon

Caltech Ducted Fan
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Ducted Fan Terrain Avoidance

Real-Time Trajectory Generation / Optimization
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Optimization-Based Control: MPC + CLF

Online control customization
! System: f(x,u)
! Constraints/environment: g(x,u)
! Misssion: L(x,u)
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Theory: MPC + CLF Approach

Basic Idea
! Use online models to compute receding horizon optimal control
! CLF-based terminal cost gives stability + short time horizons

Properties
! Can prove stability (in absence of constraints)
! Incremental improvement property ⇒ finite iterations OK
! Increased horizon ⇒ larger region of attraction
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Experimental Results: Caltech Ducted Fan
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Multi-Vehicle Optimization-Based Control

Assume we have real-time, finite horizon optimal control as a primitive

Cooperation depends on how we model �rest of the world�

Reconfigurable based on condition, mission, environment
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Choose f, g, L to represent the 
coupling between the various
subsystems
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Simulation Example: Formation Flight

Task:
! Maintain equal 

spacing of vehicles 
around circle

! Follow desired 
trajectory for 
center of mass

Parameters:
! Horizon: 2 sec
! Update: 0.5 sec

Local MPC + CLF
� Assume neighbors follow 

straight lines

Global MPC + CLF

! High damping
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Multi-Vehicle Optimization-Based Control

Open Questions: �Low Level� Cooperation
! How do we coordinate motion between multiple vehicles?
! How do we aggregate cost functions into hierarchies?
! How do we provide redundancy and failure tolerance?
! How do we communicate between vehicles and how often?
! How do we insure scalability to large numbers of agents?
! How do we incorporate adversarial actions?
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Higher Level Cooperation: Rejoin Exapmle

Open Questions: Higher Level Issues
! How do we collectively agree to rejoin in a robust manner?
! How do we integrate �protocol stack� with �trajectory generation/tracking�
! How do we describe the �specification� of the task?
! How do we prove that solution (code) satisfies the specification?
! How do we prove �stability� of the solution?
! How do we verify and validate the solution?
! How do we insure all of this works in the presence of adversaries?
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Multi-Vehicle Wireless Testbed for Integrated Control, 
Communications and Computation (DURIP)

Testbed features
! Distributed computation on individual vehicles + command 

and control console
! Point to point, ad-hoc networking (bluetooth) + local area 

networking (802.11)
! Cooperative control in dynamic, uncertain, and adversarial 

environments
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Research Plan and Integration: Cooperative Control 
in Dynamic, Uncertain and Adversarial Environments

Optimization-Based Control
� Real-time model predictive 

control for online control 
customization: theory and 
software

� Online implementation on 
Caltech Ducted Fan

Software Environments
� Logical programming 

environments for embedded 
control systems design

Multi-Vehicle Testbed
� Implementation on multi-vehicle, 

wireless testbed using Open 
Control Platform

� Bluetooth-based point to point 
communications with ad-hoc 
networking

Cooperative Control
� Linked cost functions

➼
(DURIP)


