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Abstract

In this paper, we discuss an innovative method of gen-
erating near-optimal trajectories for a robot with om-
nidirectional drive capabilities, taking the second-order
dynamics of the vehicle into account. The relaxation
of optimality results in immense computational sav-
ings, critical in dynamic environments. In particular, a
decoupling strategy for each of the three degrees of free-
dom of the vehicle is presented, along with a method for
coordinating the degrees of freedom. A nearly optimal
trajectory for the vehicle can typically be calculated in
less than 1000 ßoating point operations, which makes
it attractive for real-time control in dynamic and un-
certain environments.

1 Introduction

Omnidirectional vehicles provide superior maneuver-
ing capability compared to the more common nonholo-
nomic (or "car-like") vehicles. The ability to move
along any direction and to simultaneously attain a de-
sired orientation make it an attractive option for dy-
namic environments. The annual RoboCup competi-
tion is an example of where omnidirectional vehicles
have been used in computationally intensive, dynamic
environments (Asada and Kitano, 1998, Veloso et al.,
1999, D�Andrea et al., 2001, see also Frazzoli et al.,
2000).

Most papers on trajectory control of omnidirectional
vehicles have dealt with relatively static environments
(Moore and Flann, 1999, Jung et al., 1999); the tra-
jectory control is essentially performed by Þrst build-
ing a geometric path and then by using feedback con-
trol to track the path. This strategy is effective when
reaching the goal without collisions is much more im-
portant than time-optimality. In fast paced environ-
ments, however, the dynamic capabilities of the vehicles
must be taken into account. Muñoz et al. (1994) pre-
sented methods for planning mobile robot trajectories
by considering kinematic and dynamic constraints on
the motion of the vehicle. Faiz and Agrawal (2000) re-

cently proposed a trajectory planning scheme for open-
chain systems that takes the dynamics of the system
into account, as well as inequality constraints. Watan-
abe et al. (1998) demonstrated that with a resolved-
acceleration type feedback full omnidirectionality can
be achieved with decoupled rotational and translational
motion. A novel trajectory generation method based
on a time-scaled artiÞcial potential Þeld was put forth
by Tanaka et al. (1998).

The objective of this paper is to establish a real-time
control strategy (voltages to the motors) that will move
the robot to a given location, with zero Þnal velocity,
as quickly as possible. The algorithm presented is ex-
tremely efficient and robust to measurement and con-
trol errors. The organization of the paper is as follows.
In section 2, the kinematic and dynamic model of an
omnidirectional vehicle is presented. Section 3 shows
that the translational and rotational degrees of freedom
(DOF) of the vehicle can be independently controlled
by imposing constraints on the control efforts. Section
4 describes the construction of one-dimensional min-
imum time and Þxed time trajectories as well as the
solution to the relaxed trajectory generation problem.
Simulations are presented in section 5. The paper ends
with some concluding remarks in section 6.

2 Kinematic and Dynamic Modeling of the
Omnidirectional Vehicle

The omnidirectional drive consists of three sets of wheel
assemblies equally spaced at 120 degrees from one an-
other (see Figure 1). Each of the wheel assembly con-
sists of a pair of �orthogonal wheels� (Pin and Killough,
1994) with an active (the propelling direction of the
actuator) and a passive (free-wheeling) direction which
are orthogonal to each other. The point of symmetry is
assumed to be coincident with the center of mass (CM)
of the robot.

2.1 Geometry of Vehicle
The schematic arrangement of the wheel assemblies is
shown in Figure 2.
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Figure 1: Bottom view of omnidirectional drive

The positions (P0i) of these units are easily given in
the (X,Y ) frame (which is Þxed to the center of mass
0 of the robot) with the help of the rotation matrix (θ
is the angle of counterclockwise rotation)

R (θ) =

µ
cos θ − sin θ
sin θ cos θ

¶
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where L is the distance of the drive units from the CM.
The unit vectors Di that specify the drive direction the
ith motor (also relative to the CM) are given by
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2.2 The Motor Characteristics

In general, the optimal control problem for independent
actuator driven wheels are treated with either bounded
velocity (Jung et al., 1999) or bounded acceleration
(Renaud and Fourquet, 1997) but not both. With the
no-slip condition, the force generated by a DC motor
driven wheel (Ogata, 1997) is

f = αU − βv (4)

Figure 2: Geometry of the omnidirectional vehicle

where f [N] is the magnitude of the force generated
by a wheel attached to the motor, and v [m/s] is the
velocity of the wheel. The constants α [N/V] and β
[kg/s] can be determined from experiments.

2.3 Equations of Motion
The vector P0 =

¡
x y

¢T
is the position of the CM

in a Newtonian frame as shown in Figure 2. The drive
positions and velocities are given by

ri = P0 +R (θ)P0i (5)

vi = úP0 + úR (θ)P0i (6)

while the individual wheel velocities are

vi = v
T
i (R (θ)Di) (7)

Substituting equation (6) into equation (7) results in

vi = úPT0R (θ)Di +P
T
0i
úRT (θ)R (θ)Di (8)

The second term of the right hand side is just the tan-
gential velocity

PT0i úR
T (θ)R (θ)Di = L úθ (9)

The drive velocities are thus linear functions of the ve-
locity and the angular velocity of the robot v1
v2
v3

 =

 − sin θ cos θ L
− sin ¡π3 − θ¢ − cos ¡π3 − θ¢ L
sin
¡
π
3 + θ

¢ − cos ¡π3 + θ¢ L

 úx
úy
úθ


(10)
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Linear and angular momentum balance can be written
as

3X
i=1

fiR (θ)Di = mP̈0 (11)

L
3X
i=1

fi = Jθ̈ (12)

where fi is the magnitude of the force produced by
the ith motor, m is the mass of the robot and J is its
moment of inertia.

Using equation (4) together with the balance laws (11,
12) and replacing the vi�s from the kinematic relation
(8) results

3X
i=1

(αUi − βvi)R (θ)Di = mP̈0 (13)

L
3X
i=1

(αUi − βvi) = Jθ̈ (14)

This system of differential equations can be put into
the following form mẍ

mÿ

Jθ̈

 = α�P (θ)U (t)− 3β
2

 úx
úy

2L2 úθ

 (15)

with

�P (θ) =

 − sin θ − sin ¡π3 − θ¢ sin
¡
π
3 + θ

¢
cos θ − cos ¡π3 − θ¢ − cos ¡π3 + θ¢
L L L


(16)

U (t) =
¡
U1 (t) U2 (t) U3 (t)

¢T
(17)

The nondimensional equations of motion (see Kalmár-
Nagy et al., 2002) become ẍ

ÿ

θ̈

+
 úx

úy
2mL2

J
úθ

 = q (θ, t) (18)

where q (θ, t) is the control action

q (θ, t) = P (θ)U(t) (19)

where P (θ) is �P (θ) with L = 1.

The following boundary conditions are speciÞed

z(0) = z0, z(tf ) = zf , úz(0) = v0, úz(tf ) = 0 (20)

where z ∈ {x, y, θ}. Note that zero Þnal velocity is
speciÞed. For non-zero Þnal velocities the proposed
class of solutions do not depend continuously on the
boundary conditions, and continuity is essential to en-
sure robustness to position errors.

3 Control Strategy

Moving the robot from a point to another requires spec-
ifying the three voltages Ui (t). Clearly, real-time opti-
mal control of the coupled nonlinear differential equa-
tions (18) is not feasible with modest computational
resources. There have been several attempts to over-
come the complexity emerging from nonlinearity and
coupling. d�Andréa-Novel et al. (1992) showed that dy-
namic feedback linearization can lead to the simpliÞca-
tion of the control problem of 3-wheeled robots. Time
optimal trajectories were constructed by Balkcom and
Mason (2000) for differential drive robots.

The goal of this section is to Þnd a simpliÞed, com-
putationally tractable optimal control problem whose
solution yields feasible, albeit sub-optimal, trajectories.

The set of feasible voltages U is a cube given by
U (t) = {U (t)| |Ui (t)| ≤ 1} (21)

The set of allowable controls P (θ)U (t) depends on the
vehicle orientation θ. Since θ is responsible for the
coupling of equations (18), replacing this set with a set
of θ-independent controls would greatly simplify the
control problem. The maximal such set is found by
taking the intersection of all possible sets of allowable
controls

Q (t) = ∩
θ∈[0,2π)

P (θ)U (t) (22)

Obviously, any q (t)∈Q is a suitable replacement for
the θ-dependent control action. In the following we
give the explicit representation of Q.

For a given θ, the linear transformation P (θ) maps the
cube U (t) into the tilted cuboid (the set of allowable
controls) P(θ)U (t). The matrix P (θ) can be decom-
posed as a product of a rotation and a θ-independent
linear transformation

P (θ) = Rz (θ)P (0) (23)

where

Rz (θ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (24)

P (0) =
1

2

 0 −√3 √
3

2 −1 −1
2 2 2

 (25)

The linear transformation P (0) maps cube U (t) into
the tilted cuboid P(0)U (t) with a diagonal |qθ| ≤ 3
along the qθ axis. Note that since the mapping P (0) is
linear, the surface of the cube gets mapped onto that
of the cuboid. The transformation Rz (θ) then rotates
this cuboid about the qθ axis (or equivalently: about
its diagonal). The problem is to Þnd the solid of rev-
olution that is the intersection of all possible rotations
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Rz (θ)P (0)U (t) of the cuboid. This solid of revolu-
tion is characterized by (see Kalmár-Nagy et al., 2002
for details)

q2x (t) + q
2
y (t) ≤ r2 (qθ) (26)

where the radius r (qθ) is

r (qθ) =
3− |qθ|
2

(27)

With this result the equations of motion decouple

ẍ+ úx = qx (28)

ÿ + úy = qy (29)

θ̈ +
2mL2

J
úθ = qθ (30)

While these equations are linear, the control efforts are
coupled, i.e. the constraint

q2x + q
2
y ≤

µ
3− |qθ|
2

¶2
(31)

has to be satisÞed. To simplify further discussion we
focus on controlling only the translational degrees of
freedom. In other words, the amount of control effort
used for rotation control will be bounded by |qθ| = 1.
The following results can be generalized for variable qθ
(Kalmár-Nagy et al., 2002).

4 Trajectory Generation

We are concerned with Þnding the time-optimal solu-
tion to the following system of linear equations

ẍ+ úx = qx (t) (32)

ÿ + úy = qy (t) (33)

with the boundary conditions

x(0) = x0, x(tf ) = xf , úx(0) = vx0, úx(tf ) = 0 (34)

y(0) = y0, y(tf ) = yf , úy(0) = vy0, úy(tf ) = 0 (35)

and the constraint on the control inputs

q2x (t) + q
2
y (t) ≤ 1 (36)

It can be shown (see Kalmár-Nagy et al., 2002) that
the optimal control strategy is achieved when

q2x (t) + q
2
y (t) = 1 t ∈ [0, tf ] (37)

4.1 Minimum Time Trajectory
We Þrst focus on solving the optimal control problem
(32, 33, 34, 35) separately for x and y. These sepa-
rate solutions will in general result different Þnal times

and so they must be synchronized to ensure that the
boundary conditions (34, 35) of the composite problem
are satisÞed. It will be shown in section 4.3 that such
a solution always exists.

The minimum time problem consists of Þnding a solu-
tion of the boundary value problem (32, 34) or (33, 35)
with as small a tf as possible. It can be shown (for
example Pierre, 1986), that this boundary value prob-
lem always has a solution, and that the control which
minimizes the Þnal time tf consists of two piecewise
constant segments of magnitude 1. This type of control
strategy is commonly referred to as �bang-bang� con-
trol. Koh and Cho (1999) formulated a path tracking
problem for a two-wheeled robot based on bang-bang
control. In our case, the following must be solved for u
(|u| = 1), t1 and t2:

z̈ + úz = u, 0 < t ≤ t1 (38)

z̈ + úz = −u, t1 < t ≤ t1 + t2 = tf , (39)

z(0) = z0, z(tf ) = zf , úz(0) = v0, úz(tf ) = 0 (40)

where z represents either x or y. In this non-
dimensional form the maximum achievable velocity has
magnitude 1 (it also means |v0| < 1). Subject to the
boundary conditions (40), equations (38, 39) can be
solved to yield

z (t) =

½
e−t (u− v0) + u (t− 1) + v0 + z0
u (tf − t− etf−t + 1) + zf

0 ≤ t < t1
t1 ≤ t ≤ tf

(41)

v (t) =

½
(v0 − u) e−t + u
(etf−t − 1)u

0 ≤ t < t1
t1 ≤ t ≤ tf (42)

The solution to this problem is given by (Kalmár-Nagy
et al., 2002)

u = sgn
³
v0 − sgn (c)

³
e|c| − 1

´´
(43)

t2 = ln
³
1 +

√
D
´

(44)

t1 = t2 − c/u (45)

where

c = z0 + v0 − zf , D = 1 + ec/u
³v0
u
− 1
´

(46)

Once u, t1 and t2 are determined, z (t) is given by (41).
The execution time for this trajectory is

tf min = t1 + t2 = 2 ln
³
1 +

√
D
´
− c/u (47)

4.2 Fixed Time Bang-Bang Control
If the control effort u is decreased one intuitively ex-
pects the execution time tf to increase. Indeed, the
following proposition holds (Kalmár-Nagy et al., 2002)
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Proposition 1 For all tf ≥ tf min there exists a ū ∈
(0, 1] such that

u = ū sgn
³v0
ū
− sgn (c)

³
e| cū | − 1

´´
(48)

satisÞes (38, 39). Further, the execution time

t̄f (ū) = tf

³
ū sgn

³v0
ū
− sgn (c)

³
e| cū | − 1

´´´
(49)

is a strictly monotonously decreasing function of ū with
lim
ū→0

t̄f →∞ and t̄f (1) = tf min.

This result means that reaching the desired Þnal po-
sition in the prescribed amount of time (provided this
time is greater then the minimum time to reach this po-
sition with zero Þnal velocity) is always possible with
a reduced control effort bang-bang control.

4.3 Trajectory Synchronization
Generally, execution times for the minimum time prob-
lems for the different degrees of freedom will be differ-
ent. To Þnd a solution to the boundary value problem
(32, 33, 34, 35), these solutions must be synchronized,
that is tfx = tfy should hold. Note that the execution
time depends on the boundary conditions, as well as
on the control effort, i.e.

tfz (qz) = tf (z0, zf , vz0, qz) (50)

With this notation, we want to Þnd the control efforts
qx and qy for which

tfx (qx) = tfy (qy) (51)

Using the constraint (37) this is written as

tfx (qx) = tfy

³
±
p
1− q2x

´
(52)

or
t̄fx (q̄x) = t̄fy

³p
1− q̄2x

´
(53)

Since t̄fx (q̄x) is a strictly monotonously decreasing

function on q̄x ∈ (0, 1], t̄fy
³p

1− q̄2x
´
is strictly

monotonously increasing there. Hence there exists a
unique q̄x satisfying (53).

5 Simulations

To demonstrate the computational efficiency and ro-
bustness of the algorithm, simulations were performed
with the following parameters (so that the dimensional
and nondimensional values are the same)

amax = 1
m
s2
, vmax = 1

m
s

(54)

The following initial and Þnal conditions were used

x0 = y0 = 0 m, xf = yf = 1 m (55)

vx0 = 1
m
s
, vy0 = 0

m
s

(56)

The position of the vehicle is updated sixty times a sec-
ond (dt = 0.017 s). System latency is not considered.
To account for errors present in the real system (arising
from slippage, vision error, controller tracking error,
etc.) noise was added to the actual position and veloc-
ity of the robot at the beginning of every simulation
step. The disturbances were modeled as white noise,
with amplitude of 1 cm and 3 cm/s from a uniform
distribution for positions and velocities, respectively.

First, the equation

t̄fx (q̄x) = t̄fy

³p
1− q̄2x

´
(57)

is solved for 0 < q̄x < 1 by bisection (with the stop
condition |t̄fx − t̄fy| < dt). Then qx and qy are calcu-
lated. These control efforts are used for the next time
step even if the corresponding times t1x, t1y are less
than dt. The velocities and positions are updated ac-
cording to (41, 42) with t1x = t1y = dt. This is then
repeated until both coordinates are within 5 centime-
ters of the target position and the velocities are less
than 5 cm/s in absolute value. The results are shown
in Figure 3. The trajectory is tracked excellently, show-
ing the robustness of the proposed method. Note that
the most pronounced effect of the noise on the trajec-
tory is in the vicinity of the destination. The position
error coupled with the discretization effect gives rise
to jerky motion. This can be avoided by switching
to open-loop control near the target. The computa-

Figure 3: Simulation with noise

tional cost of the proposed algorithm is extremely low,
around 300 FLOPS (ßoating point operations) for one
timestep. The optimal control problem (32, 33, 34, 35)
with coupled controls (37) was numerically solved in
Matlab using the optimization routine fminunc with
computational cost around 50000 FLOPS. Note that
with our algorithm the whole trajectory does not have
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to be generated (this is due to the fact that we restrict
the form of the controls to bang-bang type), this is not
the case with the usual optimization algorithms.

6 Conclusions

The main beneÞt of the omnidirectional drive mecha-
nism is a simpliÞcation of the resulting control problem,
which greatly reduces the computation required for gen-
erating nearly optimal trajectories. Current research
addresses dynamics and control issues, such as esti-
mation, coping with system latency, robustness, and
optimal control. The proposed algorithms provide an
efficient, yet high performance, method of path plan-
ning. The algorithms are in general conservative; this
conservatism is small, however, and is justiÞed by the
extremely reduced computational costs. The extremely
low computational cost means that these nearly opti-
mal trajectories can be used extensively as low over-
head primitives by higher level decision making strate-
gies, allowing a large number of possible scenarios to
be explored in real time. In addition, these algorithms
can readily be used as a basis for obstacle avoidance.

These trajectory generation algorithms were used in
the 2000 and 2001 RoboCup competition (D�Andrea et
al., 2001), and were in large part responsible for the
success of the Cornell team.
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