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Abstract

This paper describes a computationally inexpensive, yet high performance trajectory gener-
ation algorithm for omnidirectional vehicles. It is shown that the associated nonlinear control
problem can be made tractable by restricting the set of admissible control functions. The
resulting problem is linear with coupled control efforts and a near-optimal control strategy is
shown to be piecewise constant (bang-bang type). A very favorable trade-off between opti-
mality and computational efficiency is achieved. The proposed algorithm is based on a small
number of evaluations of simple closed-form expressions and is thus extremely efficient. The
low computational cost makes this method ideal for path planning in dynamic environments.

1 Introduction
Omnidirectional vehicles provide superior maneuvering capability compared to the more com-
mon nonholonomic (car-like) vehicles. The ability to move along any direction, irrespective of
the orientation of the vehicle, make it an attractive option in dynamic environments. The an-
nual RoboCup competition, where teams of fully autonomous robots engage in soccer matches,
is an example of where omnidirectional vehicles have been used in computationally intensive,
dynamic environments (Kitano, 1997, Asada and Kitano, 1998, Veloso et al., 1999, D’Andrea
et al., 2001).
Most papers on trajectory control of omnidirectional vehicles have dealt with relatively

static environments (Moore and Flann, 1999, Jung et al., 1999); the trajectory control is
essentially performed by first building a geometric path and then by using feedback control to
track the path. This strategy is effective when reaching the goal without collisions is much more
important than time-optimality. In fast paced environments, however, the dynamic capabilities
of the vehicles must be taken into account. Muñoz et al. (1994) presented methods for planning
mobile robot trajectories by considering kinematic and dynamic constraints on the motion of
the vehicle. Faiz and Agrawal (2000) recently proposed a trajectory planning scheme for
open-chain systems that takes the dynamics of the system into account, as well as inequality
constraints. Watanabe et al. (1998) demonstrated that with a resolved-acceleration type
feedback full omnidirectionality can be achieved with decoupled rotational and translational
motion. A novel trajectory generation method based on a time-scaled artificial potential field
was put forth by Tanaka et al. (1998).
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The objective of this paper is to establish a real-time control strategy that will move the
robot to a given location, with zero final velocity, as quickly as possible, based on measurements
of the vehicle position and orientation. The results of this paper can then be used as a basis for
real-time trajectory generation in dynamic environments. The success of the Cornell RoboCup
team is partly due to the effectiveness of the proposed algorithm (D’Andrea et al., 2001). A
subsequent paper will address how this method can be applied to a real system and will
include experimental results. The organization of the paper is as follows. Section 2 describes
the kinematic and dynamic model of the omnidirectional vehicle. Section 3 shows that the
translational and rotational degrees of freedom (DOF) of the vehicle can be independently
controlled by imposing constraints on the control efforts. Section 4 describes the construction
of one-dimensional minimum time and fixed time trajectories as well as the solution to the
relaxed trajectory generation problem. Simulations are presented in Section 5. The paper
ends with some concluding remarks in Section 6.

2 Kinematic and Dynamic Modeling of the Omni-
directional Vehicle

Figure 1: Bottom view of the omnidirectional vehicle

The omnidirectional drive consists of three sets of wheel assemblies equally spaced at 120
degrees from one another (see Figure 1). Each of the wheel assembly consists of a pair of
“orthogonal wheels” (Pin and Killough, 1994) with an active (the propelling direction of the
actuator) and a passive (free-wheeling) direction which are orthogonal to each other. The
point of symmetry is assumed to be co-incident with the center of mass (CM) of the robot.

2.1 Vehicle Kinematics
The schematic arrangement of the wheel assemblies is shown in Figure 2.
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Figure 2: Geometry of the omnidirectional vehicle

The positions (P0i) of these units are easily given (in the frame which is fixed to the center
of mass of the robot) with the help of the rotation matrix (θ is the angle of counterclockwise
rotation)

R (θ) =

µ
cos θ − sin θ
sin θ cos θ

¶
(1)
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where L is the distance of the drive units from the CM. The unit vectors Di that specify the
drive direction the ith motor (also relative to the CM) are given by

Di =
1

L
R
³π
2

´
P0i
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µ
0
1

¶
D2 = −1

2
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3
1
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1
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µ √
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2.2 The Motor Characteristics

In general, the optimal control problem for independent actuator driven wheels is treated with
either bounded velocity (Jung et al., 1999) or bounded acceleration (Renaud and Fourquet,
1997) but not both. A reasonably accurate model that captures the torque T produced by a
direct current (DC) motor is

T = ᾱU − β̄ω (4)

where U [V] is the voltage applied to the motor, and ω [rad/s] is the angular velocity of the
motor shaft. Inductance can be neglected. The motor is characterized by the constants ᾱ
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[Nm/V] and β̄ [Nm rad/s]. Figure 3 shows typical torque-speed characteristics of a DC motor.
These profiles are also assumed to capture losses in the transfer of torques to the wheels. The
salient feature of this model is that the amount of torque available for acceleration is a function
of the speed of the motor.

Figure 3: Torque-speed characteristics of a DC motor

With the no-slip condition, the force generated by a DC motor driven wheel is simply

f = αU − βv (5)

where f [N] is the magnitude of the force generated by a wheel attached to the motor, and
v [m/s] is the velocity of the wheel. The constants α [N/V] and β [kg/s] can readily be
determined from ᾱ, β̄, and the geometry of the vehicle.

2.3 Equations of Motion

The vector P0 =
¡
x y

¢T
is the position of the CM in a Newtonian frame as shown in Figure

2. The drive positions and velocities are given by

ri = P0 +R (θ)P0i (6)

vi = Ṗ0 + Ṙ (θ)P0i (7)

while the individual wheel velocities are

vi = v
T
i (R (θ)Di) (8)

Substituting equation (7) into equation (8) results in

vi = Ṗ
T
0R (θ)Di +P

T
0iṘ

T (θ)R (θ)Di (9)

4



The second term of the right hand side is just the tangential velocity

PT0iṘ
T (θ)R (θ)Di = Lθ̇ (10)

The drive velocities are thus linear functions of the velocity and the angular velocity of the
robot  v1

v2
v3

 =

 − sin θ cos θ L
− sin ¡π3 − θ

¢ − cos ¡π3 − θ
¢

L
sin
¡
π
3 + θ

¢ − cos ¡π3 + θ
¢

L

 ẋ
ẏ

θ̇

 (11)

Linear and angular momentum balance can be written as

3X
i=1

fiR (θ)Di = mP̈0 (12)

L
3X

i=1

fi = Jθ̈ (13)

where fi is the magnitude of the force produced by the ith motor, m is the mass of the robot
and J is its moment of inertia.
Using equation (5) together with the balance laws (12, 13) and replacing the vi’s from the

kinematic relation (9) results

3X
i=1

(αUi − βvi)R (θ)Di = mP̈0 (14)

L
3X

i=1

(αUi − βvi) = Jθ̈ (15)

This system of differential equations can be expressed as mẍ
mÿ

Jθ̈

 = αP̂ (θ)U (t)− 3β
2

 ẋ
ẏ

2L2θ̇

 (16)

with

P̂ (θ) =

 − sin θ − sin ¡π3 − θ
¢

sin
¡
π
3 + θ

¢
cos θ − cos ¡π3 − θ

¢ − cos ¡π3 + θ
¢

L L L

 , U (t) =

 U1 (t)
U2 (t)
U3 (t)

 (17)

We next introduce the new time and length scales

T =
2m

3β
, Ψ =

4αmUmax
9β2

, Θ =
4αm2LUmax

9Jβ2
(18)

and the new nondimensional variables

x̄ =
x

Ψ
, ȳ =

x

Ψ
, θ̄ =

θ

Θ
, t̄ =

t

T
, Ūi (t) =

Ui (t)

Umax
(19)

The nondimensional equations of motion (after dropping the bars) become ẍ
ÿ

θ̈

+
 ẋ

ẏ
2mL2

J θ̇

 = q (θ, t) (20)
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where q (θ, t) is the control action

q (θ, t) = P (θ)U(t) (21)

with

P (θ) =

 − sin θ − sin ¡π3 − θ
¢

sin
¡
π
3 + θ

¢
cos θ − cos ¡π3 − θ

¢ − cos ¡π3 + θ
¢

1 1 1

 (22)

3 Restricting Admissible Controls
Moving the robot from a point to another requires specifying the three voltages Ui (t). Clearly,
real-time optimal control of the differential equations (20) is not feasible with modest com-
putational resources. There have been several attempts to overcome the complexity emerging
from nonlinearity and coupling. d’Andréa-Novel et al. (1992) showed that dynamic feed-
back linearization can lead to the simplification of the control problem of 3-wheeled robots.
Time optimal trajectories were constructed by Balkcom and Mason (2000) for differential drive
robots.
The goal of this section is to find a simplified, computationally tractable optimal control

problem whose solution yields feasible, albeit sub-optimal, trajectories. This will be achieved
by restricting the set of admissible controls.
The set of feasible voltages U is a cube given by

U (t) = {U (t)| |Ui (t)| ≤ 1} (23)

The set of admissible controls P (θ)U (t) depends on the vehicle orientation θ. Since θ is
responsible for the coupling of equations (20), replacing this set with a set of θ-independent
controls would greatly simplify the problem. The maximal such set is found by taking the
intersection of all possible sets of allowable controls

Q (t) = ∩
θ∈[0,2π)

P (θ)U (t) (24)

Obviously, any q (t)∈Q is a suitable replacement for the θ-dependent control action. In the
following we give the explicit representation of Q.
For a given θ, the linear transformation P (θ) maps the cube U (t) into the tilted cuboid

(the set of allowable controls) P(θ)U (t). The matrix P (θ) can be decomposed as a product
of a rotation and a θ-independent linear transformation

P (θ) = Rz (θ)P (0) (25)

where

Rz (θ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 , P (0) =
1

2

 0 −√3 √3
2 −1 −1
2 2 2

 (26)

The linear transformation P (0) maps cube U (t) into the tilted cuboid P(0)U (t) with a diag-
onal |qθ| ≤ 3 along the qθ axis (Figure 4). Note that since the mapping P (0) is linear, the
surface of the cube gets mapped onto that of the cuboid. The transformation Rz (θ) then
rotates this cuboid about the qθ axis (or equivalently: about its diagonal). The problem is to
find the solid of revolution that is the intersection of all possible rotations Rz (θ)P (0)U (t) of
the cuboid. This solid of revolution is characterized by (see Appendix A for details)

q2x (t) + q2y (t) ≤ r2 (qθ (t)) (27)
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Figure 4: The mapping P (0)

Figure 5: Restricted set for admissible controls

where the radius is

r (qθ (t)) =
3− |qθ (t)|

2
(28)

The solid of revolution is illustrated in Figure 5, while its cross-section is shown in Figure 6.
With this result the equations of motion decouple

ẍ+ ẋ = qx (t) (29)

ÿ + ẏ = qy (t) (30)

θ̈ +
2mL2

J
θ̇ = qθ (t) (31)

While these equations are linear, the control efforts are coupled, i.e. the constraints

q2x (t) + q2y (t) ≤
µ
3− |qθ (t)|

2

¶2
(32)

|qθ (t)| ≤ 3 (33)
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Figure 6: Cross-section of the admissible set

have to be satisfied.
In the remainder of the paper we focus our attention on controlling the translational DOFs.

In particular, we will assume that the translational DOFs are controlled independently from the
rotational DOF. The reasons for this are two-fold: 1) it substantially simplifies the exposition
and development of the results, and the results can readily be extended to encompass all three
DOFs simultaneously; 2) we envision that the main use of the results in this paper will be in
applications where rotation control is independent of translation control.
To decouple the θ-equation from those of the translational ones, we set

|qθ (t)| ≤ 1 (34)

Then the constraint for x and y becomes

q2x (t) + q2y (t) ≤ 1. (35)

Clearly other bounds on qθ could be chosen.

4 Trajectory Generation
In this section we are concerned with finding a solution to the following system of linear
equations

ẍ+ ẋ = qx (t) (36)

ÿ + ẏ = qy (t) (37)

with the boundary conditions

x(0) = 0, x(tf ) = xf , ẋ(0) = vx0, ẋ(tf ) = 0 (38)

y(0) = 0, y(tf ) = yf , ẏ(0) = vy0, ẏ(tf ) = 0 (39)

and the constraint on the control inputs

q2x (t) + q2y (t) ≤ 1. (40)
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The final time tf is the free variable that needs to be minimized. Note that the initial
positions are assumed to be 0, since this can always be achieved with a translation. The final
velocities are specified to be zero.1

This system can also be written as

ż (t) = Az (t) +Bq (t) (41)

where

A =


0 1 0 0
0 −1 0 0
0 0 0 1
0 0 0 −1

, B =


0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

 , z(t) =


x (t)
vx (t)
y (t)
vy (t)

 , q (t) =


qx (t)
qy (t)
0
0


(42)

with the boundary conditions

z (0) =


0
vx0
0
vy0

 , z (tf ) =


xf
0
yf
0

 (43)

subject to
q2x (t) + q2y (t) ≤ 1 (44)

4.1 Minimum Time Trajectory
It is shown in Athans and Falb (1966) that the optimal control strategy is achieved when

q2x (t) + q2y (t) = 1 t ∈ [0, tf ] (45)

Further, the time-optimal control is given by (k.k denotes the Euclidean norm)

q (t) = − BTp (t)

kBTp (t)k (46)

where p (t) is the solution to the adjoint problem

ṗ (t) = −ATp (t) (47)

The two components of the time-optimal control are thus

qx (t) =
λ1 + et−tf (λ2 − λ1)p

(λ1 + et−tf (λ2 − λ1))2 + (λ3 + et−tf (λ4 − λ3))2
(48)

qy (t) =
λ3 + et−tf (λ4 − λ3)p

(λ1 + et−tf (λ2 − λ1))2 + (λ3 + et−tf (λ4 − λ3))2
(49)

where the parameters λi, tf can be determined from the boundary conditions (38, 39). The
solution to system (42, 43) is

z (t) = eAtz (0) +

tZ
0

eA(t−τ)Bq (τ) dτ (50)

1Note that specifying a non-zero final velocity together with a final position often leads to solutions that do not
continuously depend on the boundary conditions, which is not a desirable property in most applications.

9



with this, the boundary conditions are written as (note that the initial conditions are auto-
matically satisfied)

xf = vx0
¡
1− e−tf

¢
+

tfZ
0

¡
1− eτ−tf

¢
qx (τ) dτ (51)

0 = e−tf vx0 +

tfZ
0

eτ−tf qx (τ) dτ (52)

yf = vy0
¡
1− e−tf

¢
+

tfZ
0

¡
1− eτ−tf

¢
qy (τ) dτ (53)

0 = e−tf vy0 +

tfZ
0

eτ−tf qy (τ) dτ (54)

An additional equation can be obtained from the fact that the Hamiltonian of the system (see
Athans and Falb, 1962) is zero on [0, tf ].

H = 1 + (Az (t) +Bq (t) ,p (t)) = 1− λ2qx (tf )− λ4qy (tf ) = 0 (55)

where (., .) denotes scalar product. This is equivalent to

λ22 + λ24 = 1 (56)

The integrals in (51-54) can be obtained in closed form. Unfortunately, the resulting nonlinear
equations (together with (56)) have to be solved numerically for the five unknowns. The
authors could not find a computationally efficient method of solving this problem, both in the
literature and using standard optimization packages. We will have more to say on this matter
at the end of Section ??.
In order to gain numerical tractability, the problem is further relaxed by restricting the

space of possible solutions to

|qx (t)| = constant, |qy (t)| = constant (57)

that is

qz (t) =

½
qz
−qz

0 < t ≤ t1
t1 < t ≤ tf

(58)

where z represents either x or y, and qz ∈ [−1, 1] is a constant. It will be shown that these
assumptions result in extremely computationally “cheap” solutions, and that the difference
between the resulting tf and the optimal one is small.
The rest of the section is organized as follows: in Section 4.2 we construct optimal solutions

separately for the translational degrees-of-freedom x and y without the coupling constraint
(45). These separate solutions will in general yield different final times and so they must be
synchronized. It will be shown in Section 4.3 that this can always be achieved and that the
solution will also satisfy the required constraint (45).
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4.2 Bang-bang Trajectory
We first focus on solving the optimal control problem (36, 38) with the constraint

|qz (t)| = constant (59)

where z represents either x or y. This constant can always be taken as 1 by rescaling the
equations. The minimum time problem consists of finding a solution with as small a tf as
possible. It can be shown (for example Pierre, 1986), that this boundary value problem always
has a solution, and that the control which minimizes the final time tf consists of two piecewise
constant segments of magnitude 1. This type of control strategy is commonly referred to as
“bang-bang” control. Koh and Cho (1999) formulated a path tracking problem for a two-
wheeled robot based on bang-bang control. In our case, the following must be solved for q, t1
and t2:

z̈ + ż = qz, 0 < t ≤ t1 (60)

z̈ + ż = −qz, t1 < t ≤ t1 + t2 = tf , (61)

z(0) = 0, z(tf ) = zf , ż(0) = v0, ż(tf ) = 0 (62)

Subject to the boundary conditions (62), equations (60, 61) can be solved to yield

z (t) =

½
e−t (qz − v0) + qz (t− 1) + v0
qz
¡
tf − t− etf−t + 1

¢
+ zf

0 ≤ t < t1
t1 ≤ t ≤ tf

(63)

v (t) =

½
(v0 − qz) e

−t + qz¡
etf−t − 1¢ qz 0 ≤ t < t1

t1 ≤ t ≤ tf
(64)

Position and velocity should be continuous at t = t1, that is

(qz − v0) e
−t1 + qz (t1 − 1) + v0 = −et2qz + qz (1 + t2) + zf (65)

(v0 − qz) e
−t1 + q = qz

¡
et2 − 1¢ (66)

These conditions are equivalent to

t1 = t2 − c/qz (67)

qz
¡
et2
¢2 − 2qzet2 + (v0 − qz) e

c/qz = 0 (68)

where c = v0 − zf . The second equation can be solved as

et21,2 = 1± sgn (qz)
√
D (69)

where

D = 1 + ec/qz
µ
v0
qz
− 1
¶

(70)

We also require t1 ≥ 0, t2 ≥ 0 which will then provide

t2 = ln
³
1 +
√
D
´

(71)

The following inequalities should hold

D ≥ 0 (72)
√
D ≥ e

c
qz − 1 (73)

11



If c/qz ≤ 0 then (72) has to be true, that is

e−
c
qz − 1 ≥ −v0

qz
(74)

If c/qz ≥ 0 then
D ≥

³
e

c
qz − 1

´2
(75)

should be satisfied, which is equivalent to

e
c
qz − 1 ≤ v0

qz
(76)

Multiplying (74) and (76) by c/qz (and taking its sign into account) yields

c

qz

µ
e

¯̄̄
c
qz

¯̄̄
− 1
¶
≤
¯̄̄̄
c

qz

¯̄̄̄
v0
qz

(77)

which can be further simplified to

sgn
c

qz

µ
e

¯̄̄
c
qz

¯̄̄
− 1
¶
≤ v0

qz
(78)

The sign of the first segment (±1) is thus given by

qz = sgn
³
v0 − sgn (c)

³
e|c| − 1

´´
(79)

Once qz, t1 and t2 are determined, z (t) is given by (63). The execution time for this trajectory
(using (67, 71)) is

tfmin := t1 + t2 = 2 ln
³
1 +
√
D
´
− c/qz (80)

4.3 Trajectory Synchronization
Generally, execution times for the minimum time problems for the different degrees of freedom
will be different. To find a solution to the boundary value problem (36, 37, 38, 39), these
solutions must be synchronized, that is tfx = tfy should hold. If we could vary the execution
time for the different degrees of freedom, this synchronization might be possible. The question
naturally arises: does a bang-bang trajectory exist for a fixed time tf > tfmin? Since the
boundary conditions are given, we only have control over the control effort. If the control
effort q̄ = |qz| is decreased one intuitively expects the execution time tf to increase. The
following proposition is proved in Appendix B:

Proposition 1 For all tf ≥ tfmin there exists a q̄ ∈ (0, 1] such that

qz = q̄ sgn

µ
v0
q̄
− sgn (c)

µ
e

¯̄̄
c
q̄

¯̄̄
− 1
¶¶

(81)

satisfies (60, 61). Furthermore, the execution time is a continuous, strictly monotonously
decreasing function of q̄ with lim

q̄→0tf →∞ and tf (q̄ = 1) = tfmin.

This result means that reaching the desired final position in the prescribed amount of time
(provided that this time is greater then the minimum time to reach this position with zero
final velocity) is always possible with a reduced effort bang-bang control strategy. Note that
the execution time depends on the boundary conditions, as well as on the control effort, i.e.

tfz (|qz|) = tf (zf , vz0, qz) (82)
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With this notation, we want to find the control efforts qx and qy for which

tfx (|qx|) = tfy (|qy|) (83)

Using the constraint (45) this is written as

tfx (|qx|) = tfy

³¯̄̄p
1− q2x

¯̄̄´
(84)

Since tfx (|qx|) is a strictly monotonously decreasing function on |qx| ∈ (0, 1], tfy
³¯̄̄p

1− q2x

¯̄̄´
is strictly monotonously increasing there (and thus tfx (|qx|) − tfy

³¯̄̄p
1− q2x

¯̄̄´
is strictly

monotonously decreasing). Hence there exists a unique |qx| satisfying (84). Furthermore,
these control efforts satisfy the constraint (45) and thus yield the solution of the boundary-
value problem (36, 37, 38, 39, 45). This solution will also depend continuously on the boundary
conditions (see Appendix B) which ensures robustness to disturbances.

5 Numerical Solutions and Simulations
To demonstrate the computational efficiency and robustness of the algorithm, simulations were
performed2 (with α = 1 N/V and β = 1 kg/s). Position and velocity of the vehicle are assumed
to be measured sixty times a second (dt = 0.017 s). The inputs to the algorithm are initial
and desired positions and velocities (x0, y0, vx0, vy0, xf , yf ) and the outputs are the velocities
(vx, vy) that should be reached in the next timestep. The inputs are first translated (so that
znew0 = 0, znewf = zf − z0) then nondimensionalized (by (19)). The control efforts are found by

performing bisections on the qx axis to find the zero of tfx (|qx|)−tfy
³¯̄̄p

1− q2x

¯̄̄´
(this strictly

monotonic quantity goes to positive infinity for qx → 0 and negative infinity as qx → 1, so care
must be taken with the bounds). The bisection algorithm is stopped when the function value
is less than dt. With qx, qy the positions and velocities after a timestep can be calculated as
(see (63) and (64))

z = e−dt (qz − vz0) + qz (dt− 1) + vz0 (85)

vz = (vz0 − qz) e
−dt + qz (86)

These nondimensional quantities should then be scaled back to dimensional ones.
A representative simulation is now discussed, where the following initial and final conditions

were used

x0 = y0 = 0 m, xf = yf = 1 m (87)

vx0 = 0.2
m
s
, vy0 = −0.5 ms (88)

The position and velocity of the vehicle is calculated by (85) and (86). To account for errors
present in a real system (arising from slippage, measurement errors, etc.) noise was added
to the actual position and velocity of the robot at the end of every simulation step. The
disturbances were modeled as white noise, with amplitude of 1 cm and 3 cm/s from a uniform
distribution for positions and velocities, respectively. This was repeated until both coordinates
were within 5 centimeters of the target position and the velocities were less than 5 cm/s in
absolute value. The results are shown in Figure 7. This closed-loop trajectory is close to
the trajectory generated at t = 0 (the open-loop trajectory), showing the robustness of the
proposed method. Note that the most pronounced effect of the noise on the trajectory is in
the vicinity of the destination. The position error coupled with the discretization effect gives
rise to jerky motion. This can be avoided for example by switching to open-loop control near
the target, or by simply stopping.

2The code used to generate these results are available at www.tam.cornell.edu/~nagy/omni.html
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Figure 7: Simulation with noise

For this particular example, the difference between the approximate bang-bang solution
and the optimal trajectory is very small. Figure 8 shows the piecewise constant bang-bang
solution compared to the optimal one.

Figure 8: Comparison of optimal and approximate solution

To demonstrate how well the optimal solutions are approximated by our solutions, 1000
simulations were performed with randomly generated initial velocities (≤ 1 m/s in magnitude)
and final positions (≤ 3 m in magnitude) from uniform distributions. The difference between
the optimal solution and the reduced effort bang-bang solutions is shown in Table 1.
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tfopt/tf is less than percentage of problems
99.9% 16.4%
99.5% 2.7%
99% 1.3%
97.4% 0%

Table 1. Comparison of optimal and near-optimal solutions.

For example, the optimal solution was 1 percent or more better than than the bang-bang
solution in only 1.3 percent of the random examples; in none of the 1000 random examples
did the optimal solution yield an improvement of more than 2.6 percent. The computational
cost of the proposed algorithm is extremely low, approximately 300 FLOPS (floating point
operations) for one timestep. The coefficients of the optimal solution (that is equations (51-
54, 56)) were numerically solved for in Matlab with a computational cost of approximately
50,000 FLOPS.

6 Conclusions
The main benefit of the omnidirectional drive mechanism is a simplification of the resulting
control problem, which greatly reduces the computation required for generating nearly optimal
trajectories. The proposed algorithms provide an efficient, yet high performance, method
of path planning. The algorithms are in general conservative; this conservatism is small,
however, and is justified by the extremely reduced computational costs. The extremely low
computational cost means that these nearly optimal trajectories can be used extensively as
low overhead primitives by higher level decision making strategies, allowing a large number of
possible scenarios to be explored in real time. For example, these trajectory primitives can
readily be used as a basis for obstacle avoidance in randomized path-planning algorithms (see
for example Frazzoli et al., 2002).
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7 Appendix A
Figure 9 shows the cuboid. The radius of the largest contained solid of revolution at a fixed qθ
is simply the radius of the biggest circle that can be inscribed into the polygonal intersection
of the cuboid and the plane qθ (t) =constant. (Figure 9 also shows this circle at qθ (t) = 1).
Because of the symmetry of the cuboid it is enough to study the plane containing the line

Figure 9: Geometry of the cuboid

segment ab. It is easy to see that the radius sought is just the distance of this line from the qθ
axis at a given height. The segment ab connects point (0, 0,−3) and (0,−2, 1) so its equation
is

qy (t) =
3 + qθ (t)

2
, qx (t) = 0 − 3 ≤ qθ (t) ≤ 1 (89)

The solid of revolution is thus characterized by

q2x (t) + q2y (t) ≤
µ
3− |qθ (t)|

2

¶2
= r2 (qθ (t)) (90)
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8 Appendix B
To prove Proposition 1 we first define

w =
1

2q
(91)

Then t2 can be expressed as

t2 =
tf
2
+ cw (92)

With (67, 92), equation (66) can be recast as

e−cw = cosh
µ
tf
2

¶
− v0e

− tf
2 w (93)

Figure 10 shows the left and right hand side of equation (94) as a function of w for the case
of c > 0.

Figure 10: Solution to the fixed-time problem

Proposition 2 For all tf > tfmin there exists a w that satisfies

e−cw = cosh
µ
tf
2

¶
− v0e

− tf
2 w (94)

and |w| > 1
2 . Further, the execution time tf is a strictly monotonous function of q with

lim tf →∞ as q → 0.

Proof: First we show that
tf ≥ |c| (95)

or equivalently

cosh

µ
tf
2

¶
≥ cosh

³ c
2

´
(96)

To see this, consider the inequalities

tf = t1 + t2 ≥ t2 (97)

t1 = t2 − c

q
≥ 0⇒ t2 ≥ c

q
(98)

if sgn
³
c
q

´
= 1

c

q
= |c|⇒ t2 ≥ |c|⇒ tf ≥ |c| (99)
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if sgn
³
c
q

´
= −1

tf = ln
³
1 +
√
D
´2 − c

q
= ln

³
1 +
√
D
´2
+ |c| ≥ |c| (100)

since D ≥ 0.
Using this we are able to show the existence of roots with |w| > 1

2 .
If v0 < 0 then the slope of the line

cosh

µ
tf
2

¶
− v0e

− tf
2 w tf > tfmin (101)

will decrease, so the w coordinate of its intersection with the exponential function will
always be less than −12 .
If v0 > 0 then the line (101) will have one intersections with the exponential function
e−cw, for which

w > w∗ =
1

2
or w < w∗ = −1

2
(102)

If e
c
2 ≤ cosh

³
tf
2

´
then the line (101) and e−cw will have one intersection (since the

positive slope of the line is decreasing with increasing tf ) with

w < −1
2

(103)

These arguments also shows that increasing |w| corresponds to increasing tf (that is |w|
(|q|) is a monotously increasing (decreasing) function of tf ). The converse is also true:
tf is a strictly monotonously increasing function of q with lim tf → ∞ as q → 0. The
c < 0 case can similarly be proved. This concludes the proof.
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