Communication and Computation
in DisCSP Algorithms*

Cesar Fernandez!, Ramén Béjar!, Bhaskar Krishnamachari?, and
7) 7
Carla Gomes?

! Departament d’Informatica i Enginyeria Industrial, Universitat de Lleida
Jaume II, 69, E-25001 Lleida, Spain
{ramon, cesar}@eup.udl.es
? Department of Computer Science, Cornell University
Ithaca, NY 14853, USA

{bhaskar,gomes}@cs.cornell.edu

Abstract. We introduce SensorDCSP, a naturally distributed bench-
mark based on a real-world application that arises in the context of
networked distributed systems. In order to study the performance of
DisCSP algorithms in a truly distributed setting, we use a discrete-event
network simulator, which allows us to model the impact of different net-
work traffic conditions on the performance of the algorithms. We consider
two complete DisCSP algorithms: asynchronous backtracking (ABT) and
asynchronous weak commitment search (AWC). In our study of differ-
ent network traffic distributions, we found that, random delays, in some
cases combined with a dynamic decentralized restart strategy, can im-
prove the performance of DisCSP algorithms. More interestingly, we also
found that the active introduction of message delays by agents can im-
prove performance and robustness, while reducing the overall network
load. Finally, our work confirms that AWC performs better than ABT
on satisfiable instances. However, on unsatisfiable instances, the perfor-
mance of AWC is considerably worse than ABT.

1 Introduction

In recent years we have seen an increasing interest in Distributed Constraint
Satisfaction Problem (DisCSP) formulations to model combinatorial problems
arising in distributed, multi-agent environments [2, 14,16-18, 20]. There is a rich

* Research partially supported by CICYT, grant TIC2001-1577-C03-03, AFOSR, grant
F49620-01-1-0076 (Intelligent Information Systems Institute) and F49620-01-1-0361
(MURI grant on Cooperative Control of Distributed Autonomous Vehicles in Ad-
versarial Environments) and DARPA, F30602-00-2-0530 (Controlling Computational
Cost: Structure, Phase Transitions and Randomization) and F30602-00-2-0558 (Con-
figuring Wireless Transmission and Decentralized Data Processing for Generic Sensor
Networks). The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of AFOSR, DARPA, or the U.S. Government.

set of real-world distributed applications, such as in the area of networked sys-
tems, for which the DisCSP paradigm is particularly useful. In such distributed
applications, constraints among agents, such as communication bandwidth and
privacy issues, preclude the adoption of a centralized approach.

We propose SensorDCSP, a benchmark inspired by one of such distributed
applications that arise in networked distributed systems [1,8]. SensorDCSP is
a truly distributed benchmark, a feature not present in many prior benchmark
problems used to study the performance of DisCSP algorithms, such as N-Queens
and Graph Coloring. SensorDCSP involves a network of distributed sensors si-
multaneously tracking multiple mobile nodes. The problem underlying SensorD-
CSP is NP-complete. We show that the SensorDCSP domain undergoes a phase
transition in satisfiability, with respect to two control parameters: the level of
sensor compatibility and the level of the sensor visibility. Standard DisCSP al-
gorithms on our SensorDCSP domain exhibit the easy-hard-easy profile in com-
plexity, peaking at the phase transition, similarly to the pattern observed in
centralized CSP algorithms. More interestingly, the relative strength of standard
DisCSP algorithms on SensorDCSP is highly dependent on the satisfiability of
the instances. This aspect has been overlooked in the literature due to the fact
that, so far, the performance of DisCSP algorithms has been based mainly on
satisfiable instances. We study the performance of two well known DisCSP algo-
rithms — asynchronous backtracking (ABT) [18], and asynchronous weak com-
mitment search (AWC) [17]- on SensorDCSP. Both ABT and AWC use agent
priority ordering during the search process. While these priorities are static in
ABT, AWC allows for dynamic changes in the ordering, and was originally pro-
posed as an improvement over ABT. One of our findings is that although AWC
does indeed perform better than ABT on satisfiable instances, its solution time
is not as good on unsatisfiable problem instances.

Our SensorDCSP benchmark also allows us to study other interesting as-
pects specific to DisCSPs that are dependent on the physical characteristics of
the distributed environment. For example, while the underlying infrastructure
or hardware is not critical in studying CSPs, we argue that this is not the case
for DisCSPs in communication networks. This is because the traffic patterns
and packet-level behavior of networks, which affect the order in which messages
from different agents are delivered to each other, can significantly impact the
distributed search process. To investigate these kinds of effects, we implemented
our DisCSP algorithms using a fully distributed discrete-event network simula-
tion environment with a complete set of communication oriented classes. The
network simulator allows us to realistically model the message delivery mecha-
nisms of varied distributed communication environments ranging from wide-area
computer networks to wireless sensor networks.

We study the impact of communication delays on the performance of DisCSP
algorithms. We consider different link delay distributions. Our results show that
the presence of a random element due to the delays can improve the performance
of AWC. For the basic ABT, even though link delay deteriorates the performance
of the standard algorithm, a decentralized restart strategy that we developed for

ABT improves its solution time dramatically, while also increasing the robustness
of solutions with respect to the variance of the network link delay distribution.
These results are consistent with results on successful randomization techniques
developed to improve the performance of CSP algorithms [4]. Another novel
aspect of our work is the introduction of a mechanism for actively delaying
messages. The active delay of messages decreases the communication load of the
system, and, somewhat counter-intuitively, can also decrease the overall solution
time.

The organization of the rest of the paper is as follows. In Section 2 we for-
malize our model of DisCSP. In Section 3 we describe SensorDCSP and model it
as a DisCSP. In Section 4 we describe two standard DisCSP algorithms and the
modifications we have incorporated into the algorithms. In Section 5 we present
our experimental results on the active introduction of randomization by the
agents and, in Section 6, we present results on delays caused by different traffic
conditions in the communication network. Finally, we present our conclusions in
Section 7.

2 Distributed CSPs

In a distributed CSP, variables and constraints are distributed among the differ-
ent autonomous agents that have to solve the problem. A DisCSP is defined as
follows: (1) A finite set of agents A;, As,---, Ay; (2) A set of local (private) CSPs
P, Py, -+, P,, where the CSP P; belongs to agent A;; A; is the only agent that
can modify the value assigned to the variables of P;; (3) A global CSP defined
among variables that belong to different agents.

In general in DisCSP algorithms each agent only controls one variable. We
extended the single-variable approach by making every agent consist of multiple
virtual agents, each corresponding to one local variable. In order to distinguish
between communication and computation costs in our discrete event simulator,
we use different delay distributions to distinguish between messages exchanged
between virtual agents of a single real agent (intra-agent messages) and those
between virtual agents of different real agents (inter-agent messages).

3 SensorDCSP - A Benchmark for DisCSP algorithms

The availability of a realistic benchmark of satisfiable and unsatisfiable instances,
with tunable complexity, is critical for the study and development of new search
algorithms. In the DisCSP literature one cannot find such a benchmark. Sen-
sorDCSP, the sensor-mobile problem, is inspired by a real distributed resource
allocation problem [13] and offers such desirable characteristics.

In SensorDCSP we have multiple sensors (s1,...S,) and multiple mobiles
(t1,...t,) which are to be tracked by the sensors. The goal is to allocate three
distinct sensors to track each mobile node, subject to two sets of constraints:
visibility constraints and compatibility constraints. Figure 1 shows an example
with six sensors and two mobiles.

FEach mobile has a set of sensors that can possibly detect it, as depicted
by the bipartite visibility graph in the leftmost panel of Figure 1. Also, it is
required that each mobile be assigned three sensors that satisfy a compatibility
relation with each other; this compatibility relation is depicted by the graph in
the middle panel of Figure 1. Finally, it is required that each sensor only track
at most one mobile. A possible solution is shown in the right panel, where the
set of three sensors assigned to every mobile is indicated by connecting them to
the mobile with the light edges of the figure.

S1
852

Fig. 1. A SensorDCSP problem instance

This problem is NP-complete since we can reduce it from the problem of
partitioning a graph into cliques of size three [1,6]. However, the boundary case
where every pair of sensors is compatible, is polynomially solvable, since we can
reduce that case to a feasible flow problem in a bipartite graph [7].

We define a random distribution of instances of SensorDCSP. An instance of
the problem is generated from two different random graphs, the visibility graph
and the compatibility graph. Apart from the parameters number of mobiles and
number of sensors, we also specify a parameter that controls the edge density of
the visibility graph (P,) and a second one that controls the edge density for the
compatibility graph (P,). These parameters specify the independent probability
of including a particular edge in the corresponding graph. As these two graphs
model the resources available to solve the problem, P, and P, control the number
of constraints in the generated instances.

We have developed an instance generator for these random distributions that
generates DisCSP-encoded instances. We believe that SensorDCSP is a good
benchmark problem because of the simplicity of the generator, and because,
as we shall show, one can easily generate easy/hard, unsatisfiable/satisfiable
instances by tuning the parameters P, and P, appropriately.

We encoded SensorDCSP as a DisCSP as follows: each mobile is associated
with a different agent. There are three different variables per agent, one for each
sensor that we need to allocate to the corresponding mobile. The value domain
of each variable is the set of sensors that can detect the corresponding mobile.
The intra-agent constraints between the variables of one agent are that the three
sensors assigned to the mobile must be different and must be pair-wise compat-
ible. The inter-agent constraints between the variables of different agents are

that a given sensor can be selected by at most one agent. In our implementation
of the DisCSP algorithms this encoding is translated to an equivalent formula-
tion where we have three virtual agents for every real agent, each virtual agent
handling a single variable.

4 DisCSP algorithms

In the work reported here we considered two specific DisCSP algorithms,
Asynchronous Backtracking Algorithm (ABT), and Asynchronous Weak-
Commitment Search Algorithm (AWC). We provide a brief overview of these
algorithms but refer the reader to [20] for a more comprehensive description.
We also describe the modifications that we introduced to these algorithms. As
mentioned before, we assume that each agent can only handle one variable. The
neighbors of an agent A; refer to the set of agents that share constraints with
A;.

The Asynchronous Backtracking Algorithm (ABT) is a distributed
asynchronous version of a classical backtracking algorithm. This algorithm needs
a static agent ordering that determines an ordering between the variables of the
problem. Agents use two kinds of messages for solving the problem — ok messages
and nogood messages. Agents initiate the search by assigning an initial value to
their variables. An agent changes its value when it detects that it is not consistent
with the assignments of higher priority neighbors, and so it maintains an agent
view, which consists of the variable assignments of its higher priority neighbors.

Each time an agent assigns a value to its variable, it issues the ok message
to inform its set of lower priority neighbors about this new assignment. When
an agent is not able to find an assignment consistent with its higher priority
neighbors, it sends a nogood message to the lowest priority agent among the
agents that have variables in the nogood. A nogood message consists of a subset
of the agent view that does not permit the agent to find a consistent assignment
for itself. A nogood message causes the receiver agent to record the received
nogood as a new constraint and to try to find an assignment consistent with its
higher priority neighbors and with all the recorded constraints. If the top-priority
agent is forced to backtrack, because it cannot fix the problem by asking a higher
priority neighbor to change its assignment, this means that the problem has no
solution. On the other hand, when the system reaches a state where all agents
are happy with their current assignments (no nogood messages are generated),
this means that the agents have found a solution.

The Asynchronous Weak-Commitment Search Algorithm (AWC)
can be seen as a modification of the ABT algorithm. The primary differences
are as follows. A priority value is determined for each variable, and the priority
value is communicated using the ok message. When the current assignment is
not consistent with the agent view, the agent selects a new consistent assignment,
that minimizes the number of constraint violations with lower priority neighbors.
When an agent cannot find a consistent value and generates a new nogood, it
sends the nogood message to all its neighbors, and increases its priority one unit

over the maximal priority of its neighbors. Then, it finds a value consistent with
higher priority neighbors and informs its neighbors with ok messages. If no new
nogood can be generated, the agent waits for the next message.

The most obvious way of introducing randomization in DisCSP algorithms
is by randomizing the value selection strategy used by the agents. In the ABT
algorithm this is done by performing a uniform random value selection, among
the set of values consistent with the agent view and the nogood list, every time
the agent is forced to select a new value. In the AWC algorithm, we randomize
the selection of the value among the values consistent with the agent view and
the nogood list, and that minimize the number of violated constraints. This form
of randomization is analogous to the randomization techniques used in backtrack
search algorithms.

A novel way of randomizing the search, relevant in the context of DisCSP
algorithms, is by introducing forced delays in the delivery of messages. Delays
introduce randomization because the order in which messages arrive to the tar-
get agents determines the order in which the search space is traversed. More
concretely, every time an agent has to send a message, it follows the following
procedure:

1. With probability p:

d:=r;
else (with probability (1 — p))
d = 0;

2. deliver the message with delay d

By delivering a message with delay d we mean that the agent informs its com-
munication interface that it should wait d seconds before delivering the message
through the communication network. The parameter r is the fraction of the
mean communication delay added by the agent. In our implementation of the
algorithms, this strategy is performed by using the services of the discrete event
simulator that allow specific delays to be applied selectively in the delivery mes-
sage queue of each agent.

We have also developed the following decentralized restarting strategy suit-
able for the ABT algorithm: the highest priority agent uses a timeout mechanism
to decide when a restart should be performed. It performs the restart by changing
its value at random from the set of values consistent with the nogoods learned so
far. Then, it sends ok messages to its neighbors, thus producing a restart of the
search process, but without forgetting the nogoods learned. This restart strat-
egy is different from the restart strategy used in centralized procedures, such
as rand-satz [4], because the search is not restarted from scratch, but rather
benefits from prior mistakes since all agents retain the nogoods.

5 Complexity Profiles of DisCSP algorithms on
SensorDCSP

As mentioned earlier, when studying distributed algorithms it is important to
factor in the physical characteristics of the distributed environment. For exam-

ple, the traffic patterns and packet-level behavior of networks can affect the order
in which messages from different agents are delivered to each other, significantly
impacting the distributed search process. To investigate these kinds of effects,
we have developed an implementation of the algorithms ABT and AWC using
the Communication Networks Class Library (CNCL) [5]. This library provides a
discrete-event network simulation environment with a complete set of communi-
cation oriented classes. The network simulator allows us to realistically model the
message delivery mechanisms of varied distributed communication environments
ranging from wide-area computer networks to wireless sensor networks.

The results shown in this section have been obtained according to the follow-
ing scenario. The communication links used for communication between virtual
agents of different real agents (inter-agent communication) are modeled as ran-
dom negative exponential distributed delay links, with a mean delay of 1 time
unit. The communication links used by the virtual agents of a real agent (intra-
agent communication) are modeled as fixed delay links, with a delay of 10~3 time
units. We use fixed delay links because we consider that a set of virtual agents
work inside a private computation node that allows them to communicate with
each other with dedicated communication links. This scenario could correspond
to a heavy load network situation where inter-agent delay fluctuations obey to
the queuing time process on intermediate systems. The factor of 1000 difference
between the two delays reflects that usually intra-agent computation is less ex-
pensive that inter-agent communication. In the last section of the paper we will
see how different delay distribution models over the inter-agent communication
links can impact the performance of the algorithms.

Fig. 2. Ratio of satisfiable instances depending on the density parameter for the visi-
bility graph (P,) and the density parameter for the compatibility graph (P)

For our experimental results, we considered different sets of instances with 3
mobiles and 15 sensors, with every set generated with different values for the
parameters P, and P,, ranging from 0.1 to 0.9. Every set contains 19 instances,
giving a total number of 81 data points. Each instance has been executed 9 times
with different random seeds. The results reported in this section were obtained
using a sequential value selection function for the different algorithms.

Figure 2 shows the ratio of satisfiable instances as a function of P, and P,.
When both probabilities are low, the instances generated are mostly unsatisfi-
able. On the other hand, for high probabilities most of the instances are sat-

isfiable. The transition between the satisfiable and unsatisfiable regions occurs
within a relatively narrow range of these control parameters, analogous to the
phase transition in CSP problems, e.g., in SAT [10].

Also consistent with general CSP problems, we observe that the phase transi-
tion coincides with the region where the hardest instances occur. Figure 3 shows
the mean solution time with respect to the parameters P, and P,. As can be
noted, the hardest instances lie on the diagonal that defines the phase transition
zone, with a peak for instances with a low P, value. The dark and light solid
lines overlaid on the mesh depict the location of the iso-lines for Pj,; = 0.2
and Py, = 0.8, respectively, as per the phase transition surface of Figure 2.
As mentioned before, the SensorDCSP problem is NP-complete only when not
all the sensors are compatible between them (P, < 1) [7], so the parameter P,
could separate regions of different mean computational complexity, as in other
mixed P/NP-complete problems like 24+p-SAT [10] and 2+p-COL [15]. This is
particularly visible in the mean time distribution for AWC in Figure 3.

Time units
400

300 S = 2
P A 0: ‘ I ‘
200 ;::sg!;/!,&yg' i '.‘. N ’)‘ 4 “\- S
100 ;&s:s:‘:o:"";'y DRSS \\w, S 'n‘
0 i \A.”i,,%;:“*‘ ,‘ "“0 ‘\v“
’35::4’5:'3:'.‘;}11" v" S e 0
= 0.6
P, c \ ,
0.2 0.2 Py
Time units AWC
6000
4000
2000 s '0 /I '
\2 ll I ‘\‘ 07
0 IA\ ',,;: “M\ i
0.8 \

\ 0‘
0.8
/

Fig. 3. Mean solution time with respect to P, and P, for ABT and AWC algorithms

We observe that the mean times to solve an instance appear to be larger by an
order of magnitude for AWC than for ABT. At first glance, this is a surprising
result considering that the AWC algorithm is a refinement of ABT and results
reported for satisfiable instances in the literature [19,20] conclude on a better
performance for AWC. The explanation for such a discrepancy is the fact that
our results deal with both satisfiable and unsatisfiable instances. Our further in-
vestigations showed that while AWC does indeed outperform ABT on satisfiable

instances, it is much slower on unsatisfiable instances. This result seems consis-
tent with the fact that the agent hierarchy on ABT is static, while for AWC,
such a hierarchy changes during problem solving, taking more time to inspect
all the search space when unsatisfiable instances are considered.

5.1 Randomization and restart strategies

In this section we describe experimental results that demonstrate the effect of
adding a restart strategy to ABT. The introduction of a randomized value se-
lection function was directly assumed in [19]. In extensive experiments we have
performed with our test instances, we noticed that the randomized selection
function is indeed better than a fixed selection function. However, as the ran-
domization can introduce more variability in the performance, ABT should be
equipped with a restart strategy. We have not defined a restart strategy for
AWC, because, as we will see in the last section, the dynamic priority strat-
egy of AWC can be viewed as a kind of built-in partial restart strategy. In the
results reported in the rest of the paper both ABT and AWC use randomized
value selection functions.

To study the benefits of the proposed restart strategy for ABT, we have
solved hard satisfiable instances with ABT with restarts, using different cutoff
times. Figure 4 shows the mean time needed to solve a hard satisfiable instance
with the corresponding 95% confidence intervals for different cutoff times. We
observe clearly that there is an optimal restart cutoff time that gives the best
performance. As we will discuss in the last section, when considering the delays
of real communication networks, the use of restart strategies becomes a require-
ment, given the high variance in the solution time due to randomness of link
delays in the communication network.

3 mobiles, 15 sensors
120

Time units

50 L

10 100
Cutoff time units

Fig. 4. Mean time to solve a hard satisfiable instance by ABT using restarts with
different cutoff times

5.2 Active Delaying of Messages

A novel way of randomizing a DisCSP algorithm corresponds to introducing
delays in the delivery of the agents’ outgoing messages, as we described in Sec-

tion 4. In this section we describe our experimental results using AWC, where
the amount of delay added by the agents is a fraction r (from 0 to 1) of the
fixed delay on the inter-agent communication links. In other words, we consider
that all the inter-agent communication links have fixed delays, of 1 time unit, in
contrast to what we did in the previous sections, because we want to isolate the
effect of the delay added by the agents.

Figure 5 shows the results for a hard satisfiable instance from our Sensor-
DCSP domain, for different values of p, the probability of adding a delay, and
r, the fraction of delay added with respect to the delay of the link. We have
that the difference in performance in number of messages can be as high as 3
times between the best case and the worst case. The horizontal plane cutting
the surface shows the median time needed by the algorithm when we consider
no added random delays (p = 0,7 = 0). We see that agents can indeed im-
prove the performance by actively introducing some additional random delays,
when exchanging messages. We also observe that the performance in number of

Time units Number of messages

%0 900
80 800
70 700
60 600
50 500
40 400
30 : 300
0.9 29 09

Fig. 5. Median time and number of messages to solve a hard satisfiable instance when
agents add random delays in outgoing messages. The horizontal plane represents the
median time when no delay is added (p = 0)

messages is almost always improved when agents add random delays. Perhaps
more surprisingly, in terms of the total solution time, the performance can also
improve, if the increase in delay r is not too high. The reason to this fact could
be the ability of AWC to exploit randomization during the search process due
to its inherent restarting strategy.

6 The effect of the communication network data load

As described in the previous section, when working on a communication network
with fixed delays, the performance of AWC can be improved, depending on the
amount of random delay addition that the agents introduce into the message
delivery system. However, in real networks, the conditions of data load present
in the communication links used by the agents cannot always be modeled with
fixed delay links. It is worthwhile understanding how different communication
network environments can impact the performance of the algorithms. In this

10

section we study the effect produced in the performance of DisCSP algorithms
by considering delay distributions corresponding to different traffic conditions.

For the results of Section 5.2 we considered inter-agent communication links
with random exponentially distributed delays. To study how exponentially dis-
tributed delays affect the performance with respect to fixed delays, we can con-
sider intermediate situations in which some of the inter-agent links have a fixed
delay and the rest are exponentially distributed.

Figure 6 shows the median number of messages and time needed by AWC for
solving a hard satisfiable instance with 4 mobiles and 15 sensors, when we vary
the percentage of inter-agent communication links with a fixed delay. The rest of
the inter-agent communication links are assumed to have random exponentially
distributed delays.

4 mobiles, 15 sensors 4 mobiles, 15 sensors
0.16 T T T T 4500 T T T T
015 é 4000
0.14 a
QE) 0.13 :]E: 3500
=012 2 3000
0.11 é
01 3 2500
0.09 2000
0 20 40 60 80 100 0 20 40 60 80 100
% of communication links with fixed delay % of communication links with fixed delay

Fig. 6. Median number of messages and time exchanged to solve a hard satisfiable
instance by AWC when the data load is not homogeneous among all the inter-agent
communication links

The performance of AWC is worst when 100% of the links have a fixed delay,
indicating that the conditions of the network clearly affect the performance of the
algorithm: a element of randomness in the delay distributions clearly improves
the performance of AWC. Observe that we have a clear correlation between the
number of messages and time needed, meaning that the increase or decrease
in the time needed is mainly because of the change in the number of messages
exchanged.

We now examine various link delay distributions that can be used to model
communication network traffic. Traditionally, exponential negative distributed
inter-arrival times have been used to model data traffic due to their attractive
theoretical properties, but in the past decade it has been shown that, although
these models are able to capture single user sessions properties, they are no
longer suitable for modeling aggregate data links in local or wide area network
scenarios[3,9, 11]. Facing this fact, we simulate network delays according to three
different models for the inter-arrival time distribution; the above mentioned ex-
ponential negative distribution, the log-normal distribution and the Linear Frac-
tional Stable Noise (LFSN)[12].

11

The log-normal distribution is useful to obtain distributions with any desired
variance, whereas LFSN processes are able to capture crucial characteristics of
the Internet traffic as long-range dependence and self-similarity that are not
suited by other models. We synthesize LFSN from a-stable distributions with
parameters a = 1.2, H = 0.58 and d = —0.25 [12].

All the distributions have the same mean and their variance is showed in the
tables below, but for LFSN which has infinite variance. For these experiments,
the sample variance of LFSN is about 100.

Figure 7 shows the cumulative density functions (CDF) of time required to
solve hard instances for AWC, ABT, and ABT with restarts, when all the inter-
agent communication links have delays modeled as fixed, negative exponential,
and log-normal, with identical mean and different variances.

Table 1 and 2 show the estimated mean and variance of the number of mes-
sages exchanged as well as the solution time for the different cases when the
same instance is used for three algorithms.

Delay distribution Mean Variance
ABT [ABT-rst] AWC || ABT [ABT-rst| AWC
Fixed 1.8-10°(1.2 - 10°(8.2 - 10*([3.6 - 10™°]1.3 - 10™°] 3-10°
Negative expon. (o2 = 1)|[1.7-10°| 1.5 - 10°(3.5 - 10{|2.8 - 10*°|0.9 - 10°|4.5 - 10°
Log-normal (o2 = 5) 2.2-10°| 1.3-10%(3.5- 10%||5.0 - 10'°(1.7 - 10'°|4.8 - 10°
Log-normal (¢* = 10) 2.6 - 10°| 1.6 - 10°|3.5 - 10%||7.1 - 10"°|2.4 - 10'°|4.9 - 10°
LFSN 4.3-10%|3.0-10°(4.0 - 10%(|2.9 - 10** 1.3 - 10**|5.4 - 105

Table 1. Statistics estimated from the distributions of number of messages with dif-
ferent inter-agent link delay models

Delay distribution Mean Variance
ABT|ABT-rst| AWC|| ABT |ABT-rst|AWC
Fixed 98 69| 53[| 8562] 3600] 1230
Negative expon. (¢® = 1)|| 111 71| 28|| 10945 3947| 266
Log-normal (o2 = 5) 157 103| 28|| 21601| 8438 288
Log-normal (o2 = 10) 188 131 28| 30472| 13423| 402
LFSN 324 308 80|[118831| 108044| 9507

Table 2. Statistics estimated from the distributions of time to solve in time units with
different inter-agent link delay models

The results in Figure 7 and Tables 1 and 2 show that the delay distributions
have an algorithm-specific impact on the performance of the basic ABT and on
AWC.

For the basic ABT, on hard instances, the solution time becomes worse when
channel delays are modeled by random distributions as opposed to the fixed
delay case. The greater the variance of the link delay, the worse ABT performs.
However, introducing the restart strategy has the desirable effect of improving
the performance of ABT. Furthermore, ABT with restarts is fairly robust and
insensitive to the variance in the link delays.

12

AWC behaves differently from the basic ABT. On hard instances, having
randomization in the link delays improves the solution time compared to the
fixed delay channel. Further, the mean solution time for AWC is extremely robust
to the variance in communication link delays, although the variance of solution
time is affected a little bit by this.

ABT
E___\K \%"‘A E
- _ b
os | N 1
<] F \\'- 3
a r 3]
o L 3 i
- L i
0.01 .
E Fixed . 3
[- - - - Negative Exponential (¢2 = 1) =
[Log-normal (02 = 10)]
— — — Neg. Exp. with restart (o2 = 1) .
Fo---- - Log-normal with restart (o2 = 10)]
0.001 N | \ N |
10 100
Time units
1 = ! 3
0.1 =
. E]
a C]
o L i
- L i
0.01 =
- Fixed :]
L - - — — Negative Exponential (62 = 1) N -
Lo Log-normal (¢2 = 5) N i
— — — Log-normal (02 = 10) RN
0.001 L L L a—
5 10 20 50 100 200

Time units

Fig. 7. Cumulative density functions (CDF) of time to solve hard instances for their
respective algorithms, AWC, ABT and ABT with restarts under different link delay
models

In general, we found that on satisfiable instance, AWC always performs signif-
icantly better than ABT, even ABT with restart. Thus AWC appears to be a
better candidate in situations when most instances are likely to be satisfiable.

13

7 Conclusions

We introduce SensorDCSP, a benchmark that captures some of the characteris-
tics of real-world distributed applications that arise in the context of distributed
networked systems. The two control parameters of our SensorDCSP generator,
sensor compatibility (P.) and sensor visibility (P,), result in a zero-one phase
transition in satisfiability.

We tested two complete DisCSP algorithms, synchronous backtracking
(ABT) and asynchronous weak commitment search (AWC). We show that the
phase transition region of SensorDCSP induces an easy-hard-easy profile in the
solution time, both for ABT and AWC, which is consistent with CSPs. We found
that AWC performs much better than ABT on satisfiable instances, but worse
on unsatisfiable instances. This differential in performance is most likely due to
the fact that on unsatisfiable instances, the dynamic priority ordering of AWC
slows the completion of the search process.

In order to study the impact of different network traffic conditions on the
performance of the algorithms, we used a discrete-event network simulator. We
found that random delays can improve the performance and robustness of AWC.
In contrast, on hard satisfiable instances, the performance of the basic ABT
deteriorates dramatically when subject to random link delays. However, we de-
veloped a decentralized dynamic restart strategy for ABT, which results in an
improvement and shows robustness with respect to the variance in link delays.
More interestingly, our results also show that the active introduction of message
delays by agents can improve performance and robustness, while reducing the
overall network load.

These results validate our thesis that when considering networking appli-
cations of DisCSP, one cannot afford to neglect the characteristics of the un-
derlying network conditions. The network-level behavior can have an impor-
tant, algorithm-specific, impact on solution time. Our study makes it clear that
DisCSP algorithms are best tested and validated on benchmarks based on real-
world problems, using network simulators. We hope our benchmark domain will
be of use for the further analysis and development of DisCSP methods.

References

1. R. Béjar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed constraint
satisfaction in a wireless sensor tracking system. In Workshop on Distributed Con-
straint Reasoning, International Joint Conference on Artificial Intelligence, Seat-
tle, Washington, August 2001. http://liawww.epfl.ch/ silaghi/proc_wsijcai0l.html.

2. S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer. Multistage negotiation
for distributed constraint satisfaction. IEEE Transactions on Systems, Man, and
Cybernetics (Special Section on DAI), 21(6):1462-1477, 1991.

3. M. Crovella and A. Bestavros. Self-Similarity in World Wide Web Traffic: Evidence
and Possible Causes. IEEE Transactions on Networking, 5(6):835-846, December
1997.

4. C. P. Gomes, B. Selman, and H. A. Kautz. Boosting combinatorial search through
randomization. In AAAI/IAAI pages 431-437, 1998.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Junius, M. Biiter, D. Pesch, et al. CNCL. Communication Networks Class
Library. Aachen University of Technology. 1996.

D. Kirkpatrick and P. Hell. On the complexity of general graph factor problems.
SIAM Journal of Computing, 12(3):601-608, 1983.

B. Krishnamachari. Phase Transitions, Structure, and Complexity in Wireless
Networks. PhD thesis, Electrical Engineering, Cornell University, Ithaca, NY, May
2002.

B. Krishnamachari, R. Béjar, and S. B. Wicker. Distributed problem solving and
the boundaries of self-configuration in multi-hop wireless networks. In Hawaii
International Conference on System Sciences (HICSS-35), January 2002.

W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-Similar Nature of
Ethernet Traffic (Extended Version). IEEE Transactions on Networking, 2(1):1-15,
February 1994.

R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Deter-
mining computational complexity from characteristic 'phase transitions’. Nature,
400:133-137, July 1999.

V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/
ACM Transactions on Networking, 3(3):226-244, 1995.

G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes.
Chapman & Hall, 1994.

Sanders and Air Force Research Lab. ANTs challenge problem.
http://www.sanders.com/ants/overview-05-09.pdf, 2000.

K. Sycara, S. Roth, N.Sadeh, and M. Fox. Distributed constrained heuristic search.
IEEE Transactions on Systems, Man and Cybernetics, 21(6):1446-1461, 1991.

T. Walsh. The interface between P and NP: COL, XOR, NAE, 1-in-k, and Horn
SAT. APES Report, APES-37-2002, 2002.

M. Yokoo. Weak-commitment search for solving constraint satisfaction problems.
In Proceedings of the 12th Conference on Artificial Intelligence (AAAI-94), pages
313-318, 1994.

M. Yokoo. Asynchronous weak-commiment search for solving distributed con-
straint satisfaction problems. In Proccedings of the First International Conference
on Principles and Practice of Constraint Programming (CP-95), pages 88-102,
1995.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint sat-
isfaction for formalizing distributed problem solving. In Proccedings of the Twelfth
IEEE International Conference on Distributed Computing Systems, pages 614-621,
1992.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Transactions on Knowl-
edge Data Engineering, 10(5):673-685, 1998.

M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems, 3(2):198-212, 2000.

15

