In Proceedings of the 2002 International Conference on Robotics and Automation

Automatic Synthesis of Controllers for
Distributed Assembly and Formation Forming

Eric Klavins

Computer Science Department
California Institute of Technology

Pasadena, CA

91125

klavins@ecs.caltech.edu

Abstract!

We consider the task of assembling a large number of
self controlled parts (or robots) into copies of a pre-
scribed assembly (or formation). In particular, we in-
troduce a way to synthesize, from a specification of the
desired assembly, local controllers to be used by each
part which, when taken together, have the global effect
of assembling the parts. We pay careful attention to
the time and space complexity of the synthesis proce-
dure, showing that the size of the representation of the
synthesized controller is polynomial in the size of the
specification and that the computational power needed
by the controller is low.

1 Introduction

We consider the problem of controlling hundreds of
robots to perform a task in concert. This problem
presents many fundamental issues to robotics, control
theory and computer science. With a great number
of robots, decentralization is critical due to the cost of
communication and the need for fault tolerance. In de-
centralized control, each robot should act based only
on information local to it. It then becomes difficult,
however, to guarantee or even derive the behavior of
the entire system given the behaviors of the individual
components. In this paper we address this difficulty
in a novel way: We begin with a specification of an
assembly and develop methods that allow us to auto-
matically synthesize individual behaviors so that they
are guaranteed to produce the desired global behavior.

Specifically, we consider the task of assembling
many disk-shaped parts in the plane into copies of

1This research was supported in part by Darpa SEC grant
number F33615-98-C-3613 and AFOSR, grant number F49620-
01-1-0361.

O O O @)
o @)
@)
o © O
O
o o °
O O O
O O
a) Initial positions
Q, O by
8 Q O""Q".‘O
oo 9 ©
O
O

b) Final positions

Figure 1: The goal of the assembly problem. Each
disk shaped part must move from its initial position
(a) to some position in a copy of an assembly (b).
Dashed lines show the resulting adjacency relationship
E. There may be leftover parts.

a prescribed assembly (formation), which is specified
by a graph. As shown in Figure 1 we suppose that
each part can move itself and can play any role in
an assembly, which makes the task particularly rich.
The contribution of the paper is a means of synthesiz-
ing from the specified assembly, a set of identical con-
trollers for the parts to run which have the net effect of
moving the parts to form copies of the specified assem-
bly without colliding. The idea is that parts should

join together to into subassemblies which should in
turn join together to make larger assemblies and so
on. In §3, a theory is developed along with algorithms
which compile a specified assembly into a list of allow-
able subassemblies. In §3.3, we show how to produce
a lookup table from the list which can be used as a
discrete event controller (Figure 2) that guides parts
through a “soup” of other parts and subassemblies. In
84, we add a continuous motion controller based on the
assembly rules represented by the lookup table from
§3.3. Various deadlock situations occur with the initial
class of controllers we synthesize. In §4.2 we describe a
means of avoiding this situation. Finally, we summa-
rize a proof (given in [9]) that the discrete dynamics
given by the lookup table and the deadlock avoidance
mechanism are correct. The proof assumes a certain
logical model of the dynamics which accounts for the
discrete interactions between parts (forming neighbor
relationships) but neglects the continuous dynamics.

1.1 Related Research

We are most strongly inspired by the work of
Whitesides and his group [2, 3] in meso-scale self-
assembly. In this work, small, regular plastic tiles with
hydrophobic or hydrophylic edges are placed on the
surface of some liquid and gently shaken. Tiles with
hydrophobic edges are attracted along those edges
while hydrophylic edges repel. Striking “crystals”
emerge as larger and larger structures self assemble.
By using different shapes and edge types, different
gross structures can be created. A similar idea is used
on a much smaller scale in [13] where strands of DNA
are attached to tiny gold balls in solution. Comple-
mentary strands attract and a gross structure is re-
vealed. By choosing which strands go where, the “pro-
grammer” has some control over the resulting emer-
gent structure. At least two next steps are apparent.
First, these and similar [1] methods generally produce
arrays or lattices of parts, meaning that there is no
way to terminate a regular pattern at, say, a 5 X 5
array of parts (There has been work on changing the
function of parts as they combine [16]). Second, there
is no know formal method of starting with a specifi-
cation of the desired emergent structure and devising
the structure of the individual parts. In this paper we
address both of these issues by supposing that each
part can run a program that tells it when to join with
another part, and when to repel it, based on some
state information.

The motivation for considering disk shaped parts
in the plane and for the potential field construction
in §4 comes from the work of Koditschek and others

[11, 6] in assembly. There, a global artificial potential
function over the configuration space of n disk shaped
parts is used to guide the parts to their assembled
state, corresponding to the unique minimum of the
potential function. The approach is not distributed,
however, because it requires that each part know the
full state of the system to act. Other work has applied
similar ideas, in a distributed fashion [14], although
without a means of assuring or even defining the re-
sulting behavior. Still other approaches to the control
of a group of robots [4] assume a leader. In contrast,
the present paper commits to a strong degree of decen-
tralization and uses potential fields merely as a prim-
itive in a more sophisticated hybrid control scheme.

The ideas in this paper also grow from our own
work in controller synthesis in manufacturing systems
[10, 7]. Our approach to manufacturing has been to
synthesize a decentralized automated factory descrip-
tion from a description of a product. The descrip-
tion includes the layout of the factory and the control
programs the robots should run to produce the prod-
uct. In that sense, the present work is an extension of
the idea, although it assumes fewer constraints on the
topology of the workspace.

2 The Problem

We consider a simple form of assembly process by
assuming that parts are programmable and able to
sense the position and state of other nearby parts. We
start with m disk-shaped parts (of radius r) confined
to move in R%2. Denote the position of part i by the
vector x;. We desire that each part move smoothly,
without colliding with other parts, so that all n parts
eventually take some role in an assembly or formation.
This is shown graphically in Figure 1. For simplicity,
we assume that the dynamics of each disk are given
by & = u,.

Let G = (V, E) be a finite undirected, acyclic graph.
Thus, V is a finite set of nodes (in this paper, V =
{1,...,n}) and F is a collection of edges of the form
{a,b} with a,b € V and a # b. In this paper, we
will call such a graph an assembly and only consider
the case where GG is a tree (i.e., contains no cycles).
There are technical details, which are solvable but not
addressed in this paper except briefly, that prevent
the direct application of the methods in this paper to
general graphs.

Given an assembly G = (V, E) with |V| = n, con-
sider the case where m = n. The problem is to pro-
duce a control algorithm to be used by each part that
will control the m parts to move, without colliding,

from arbitrary initial conditions to positions such that
there exists a permutation h of {1,...,m} such that

1. If {h(i),h(j)} € E then kppr — € < ||z; — 24| <
knbr + €

2. 1 {h(i), h(j)} & E then |la; — ;]| > knor-

Here k,p- > 0 and € > 0 are parameters. The im-
age h(i) of i is called the role of i in the assembly.
We furthermore require that these assemblies be sta-
ble to disturbances in the sense that the set of points
1, ..., Ty satisfying the above conditions is an attrac-
tor of the closed loop dynamics we will construct. If
m = kn for some k € Z then we still require the above
except now with respect to a disjoint union of k copies
of G. And of course, if m is not a multiple of n, then
we require that as many parts as possible form assem-
blies in the obvious way.

We note that not all trees can be embedded in the
plane in such a way that neighbors are distance d,,p,;
apart and non-neighbors are distance greater than
dnbr apart. For simplicity in what follows, we restrict
the assemblies we specify to those that can be so em-
bedded.

2.1 Controller Structure

In general we assume that parts have limited sens-
ing and communication capabilities and we allow them
to store a discrete state, s;, along with their control
programs. In particular, we assume that part ¢+ can
sense its own position and the positions and discrete
states of other parts within some range d,q > 0 of
Zj.

The methods we develop below will, given a de-
scription of the desired assembly structure, synthesize
a hybrid controller H; of the form shown in Figure 2.
The goal is that when each part runs a copy of H;
(from different initial conditions), the parts will self
assemble.

The controller H; is described by a continuous con-
trol law F;, a predicate A called the attraction pred-
icate and a discrete update rule g. F; describes the
force that the part should apply to itself. A(s;,s;) €
{true, false} determines whether parts ¢ and j with
states s; and s; should try to become neighbors,
thereby forming a larger assembly. The update rule
9(si, 55, 51) determines the new discrete state of part
k based on the joining of parts i and j. Loosely, the
operation of H; is as follows. Part ¢ starts with some
initial position x;(0), the initial state s;(0) = (1,1)
and no neighbors. It then applies the control force

FAGHA X —x; ll€ B, (k)
L, < g(s;55,55,)

2. Nbrs(i) < Nbrs(i) U {j}

3. Transmit update to neighbors

True

L s =(LD)
2. Nbrs(i)=9

X, = F(X,X,8)

Receivedstateupdate (s,,s,)
s; < g(8,558,55,)

Figure 2: The structure of the hybrid controller that is
constructed by the compilation scheme in this paper.
Arcs denote transitions and are labeled by a predi-
cate/action pair. When an arc’s predicate becomes
true, the action is taken and control transfers from
the source of the arc to the target of the arc.

Fi(x,%,s) to itself until either a new neighbor is de-
tected or it receives a state update from a neighbor.
Here x, x and s are m dimensional vectors describing
the complete state of the system. However, F; may
only use the states of the parts within distance d,nqx
of part i. The force F; is computed based on the po-
sition, velocity and discrete state of part ¢ and on the
discrete states of the sensed parts.

The task of an automatic synthesis procedure, per-
formed by what we are calling a compiler, is to take a
description of a desired assembly and produce H; —
in this case, F;, A and g. The construction of A and ¢
are described in §3 and the construction of Fj, which
requires A4, is discussed in §4 and §4.1.

3 Compilation of Assembly Rules from
Specifications

The goal of this section is to produce the attraction
predicate A and the update rule g from a specified as-
sembly Gopee = (Vspee, Espec), Which we assume is a
tree. This requires first generating a set of subassem-
blies of Gspec (83.2) and then compiling A and ¢ from
the set (§3.3).

3.1 Discrete State of a Part

We intend that the parts control themselves to
first form subassemblies of Gpec, and from those sub-
assemblies form larger subassemblies and so on until
Gspec is finally formed. The discrete state of a part
must, therefore, include a reference to the subassem-
bly in which it currently plays a role. To this end,
we build a list (in §3.2) of the particular (connected)
subassemblies we will allow: G = {Gy,...,G,}. We
require that each G; € G is of the form (V;, E;) where
Vi = {1, [Vi]} and E; € V; x V.

Now, the discrete state of a part consists of a pair
s; = (j, k) € Z* where j is the index of a subassembly
in G and k € V; is a role in that subassembly.

3.2 Generating Assembly Sequences

Define an operation on assemblies G; and G5 as
follows

Definition 3.1 The join of G; and G5 via vertices
u € Vy and v € Vs, denoted G1.u® Ga.v, is defined as
G1.u® Gov = (V, E) where

V=A{1,..,|Vi] +|V2|} and

E = ExU{{a+ V1], 0+[V1]} | {a, b} € Ea}U{u, v+[V1]}-

We also use the notations i.j @ k.l and (i,5) @ (k, 1) to

mean the join of the assemblies with indices ¢ and k

in a given G via the vertices with indices j and [.
The set of subassemblies G must have the following

property:

Property 3.1 For all G € G there exist G1,Gs € G,
u € V1 and v € Vy such that G1.u @ Go.v >~ G unless
G = {{1},0} and there does not exist a G' € G — {G}
with G ~ G'.

“

Here “~” means isomorphic in the usual sense:
(Vi, Eq) ~ (Va, E») if there exists a function h : V; —
Vs such that (u,v) € Ey if and only if (h(u), h(v)) €
FEs>. Such an h is called a witness of the isomorphism.
Witnesses are used in this paper to “translate” the
representation of the join of two graphs to the rep-
resentation of that graph in G. Property 3.1 assures
that any assembly can be constructed from exactly two
other assemblies, so that only pairwise interactions be-
tween parts need be considered by the ultimate con-
troller, and that there is only one representation of
each subassembly in the list.

The simplest means of automatically constructing
G from Gpec is to simply set G to be all possible con-
nected subgraphs of G up to isomorphism, producing

”

a set of size O(2™). This set can be computed using
a simple exhaustive search. Since A and g will be ob-
tained from a table constructed from G (see §3.3), this
may be an impracticably large set for large Gpec, al-
though for small assemblies the set of all subassemblies
is quite reasonable and produces good controllers. A
G thus constructed trivially satisfies Property 3.1.

Another means of constructing G is to build sub-
trees of Gspec One node at a time, starting at some
base node and adding nodes to the leaves of subtrees.
This algorithm, which we call A;, requires an assem-
bly Gpec and a base node ¢. It produces a set G4, ; of
size exactly n, there being one subassembly for each
size 1 to n. The set G4, ; constructed using A, satis-
fies Property 3.1 easily since each subassembly (except
the singleton assembly) can be obtained by joining
the next smallest subassembly with {{1},0}.1. Richer
subassembly sets can be made by calling A; again,
starting with a different base node, and combining it
with the first set. In this manner a set of size O(cn)
can be constructed from a set of ¢ nodes U C Vpec.
Call this set Ga, . It satisfies Property 3.1 because
each of the sets G4, ; for ¢ € U do. The process of com-
bining the sets requires some computation, however,
because we must maintain the second part of Prop-
erty 3.1. To combine the list G4, ; with list G4, ; we
must compare each element of the first list with each
element of the second list to make sure they are not
isomorphic. If they are, we keep only one of them for
the combined list. Although there is no known poly-
nomial time algorithm for checking the isomorphism
of two graphs, checking the isomorphism of two trees
of size n takes O(n®%) steps ([15]). Thus, combining
two size n lists takes time O(n®®). The reader can
check that the combination of sets satisfying Property
3.1 also satisfies Property 3.1.

3.3 Generating Update Rules

From an assembly set G satisfying Property 3.1, we
can state the definition of A4 simply:

Definition 3.2 Given G satisfying Property 3.1, the
attraction predicate A is defined as

A(s;, sj) =true & 3G € G such that s; © s; ~ G.
We can also define the update rule g.
Definition 3.3 Given G satisfying Property 3.1 and
states s; and s; with A(s;,s;) = true, the update

rule g is defined as follows. Suppose G ~ s; @ s; has
index k in G, suppose h : s; © s; — G witnesses this

isomorphism and suppose s; = (a,b). Then
g(sia S5 sl) = (ka h(b/))

where b € V(s; @ s;) is the name of vertex b after
taking disjoint unions in Definition 3.1 of the join op-
eration. If A(s;, s;) = false then the update rule is not
defined: g(s;,sj,s;) = L.

The procedure for determining the values of A and
g require determining tree isomorphisms which is
likely too time consuming to be done online. We can,
however, perform all the necessary computations of-
fline by compiling G into a table. The result is that
H; can make all discrete transitions essentially instan-
taneously because all that is required is a table look-
up. Furthermore, the size of the table is O(|G|?>n3).
As was shown, |G| can taken to be cn, so that even
complicated assemblies require only O(n®) storage.

The construction proceeds in two steps. First, we
determine a representation of the update function g
resulting from a join of ;.5 with Gj.[. Second we
build a table of all possible joins between all possible
pairs of distinct graphs taken from G — Ggpec. The
result is a four dimensional table T" where each entry
T j.k, is the representation of Gy.j @ G.l.

Given G;.j and Gi.l, let G = (V, E) = G;.j ® Gy.l.
We must first determine whether there exists a G’ € G
such that G ~ G’ then, we require a witness h of this
isomorphism because we must have a means of trans-
lating the new roles of each part in the new assembly
into their representations in G. Suppose such an h
exists. Then we represent the table entry T; ;1 as a
pair

(index(G'), (h(1), ..., h(IVi] + [V;]))).

Otherwise, set T; j x; = L. The procedure takes time
O(|G]?n55) because of the added complexity of finding
a witness for each join.

To summarize, given Ggpec, constructing A and g,
the discrete part of the controller H;, proceeds in two
steps. First, a list of subassemblies G is build from
G spec using one of the methods discussed in §3.2. Sec-
ond a table 7" is built from the G. A(s;,s;) can be
computed simply by checking whether 7§, ;. # L and
g(si, s, (a,b)) can be determined by looking up T
and reading off h(b).

i85

4 Implementation of Assembly Rules

Completing the controller H; shown in Figure 2 re-
quires a definition of F; as well as some method by
which parts can communicate. In the example in §4.1,

we define an F; and assume a simple communications
scheme that works in simulation and about which we
have a preliminary analytical understanding.

We suppose that parts can only communicate with
their neighbors. The difficulty is then that two parts
playing roles in the same subassembly might try to
update the state of that subassembly simultaneously.
Thus, such an update requires a means of obtaining
consensus among all parts in the subassembly. Con-
sensus can be difficult or even impossible if the pro-
cessing is asynchronous and there are process or link
failures [12], although approximate algorithms exist
for these situations [5]. In what follows, we assume a
good consensus algorithm no process of communica-
tion failures.

4.1 An Example Implementation

For each part i, we can decide, using .4, whether
part ¢ should move toward j or not. To this end define

S@) = Az — 2]l < dmaa}
Attract(i) = ({7 | A(si,s5)} UNbrs(i)) NS(q)
Repel(i) = ({j| ~A(si,s;)} — Nbrs(i)) N S(i).

S(#) is the set of parts that i can sense. Note that these
sets are easily computed from a table compiled from
a given Gpec. One way of forming the control law F;
is to sum, for each j € Attract(i) a vector field Fiy
which has an equilibrium set at distance kyp, from z;
and for each j € Repel(i) a vector field F., which has
x; as a repellor. We can construct these fields from
the potential functions defined by

<||xz — 7] knbr)2
|lzi — 25| —r

1 2
<|Ifm — | 7") '

Recall that r is the radius of the (disk shaped) parts.
Then we set

Vatt(l“i,%‘) =

Viep (i, Ij)

1 a‘/;ltt
F, iy Ly = - iy Lg
tt(z .’,E]) ||£UZ—ZL'J|| (91'1 (.’,E z])

1 OVre
Frep, (i, 7;) E (i, ;)

_||:L'z —zj|| Ox;
j

Freps (zi,15) = { Frep, (i, zj) otherwise

where ¢ > 0 is some small constant. We have scaled
the gradients of the potential functions by ||z; —z;|| ™!
so that the “influences” of parts nearest ¢ are felt most
strongly. We have also defined two versions of the

repelling field. We use F}.p, because it is only active
when parts violate condition (2) from §2.
For the complete control law we use

Fi(X:).(a S) = Z

jEAttract(z)

+ Z Frepg(xiawj) - bxz
JjERepel(i)

Fatt(xiaxj)

where b > 0 is a damping parameter. In prac-
tice we assume a maximum actuator force, setting
u; = max{Umaz, Fi(x,%,8)}. It can easily shown
that the configurations representing assembled prod-
ucts are stable equilibria, using the obvious composi-
tion of V4 as a Lyapunov function.

Simulations of the above system, from a vari-
ety of initial conditions, with varying numbers of
agents (from tens to hundreds), and various specifi-
cations of the desired assembly Ggpe. can be viewed
at http://www.cs.caltech.edu/~klavins/rda/.

4.2 Deadlock Avoidance

Two deadlock situations arose in our initial simula-
tions. First, F' may have spurious stable equilibriums
which prevent attracting pairs from moving toward
each other. Second, it is possible that the set of cur-
rently formed subassemblies admit no joins in G. That
is, it may be that at some time there do not exist parts
i and j such that A(s;, s;) is true.

To avoid these situations, we employ a simple dead-
lock avoidance method. For each subassembly Gy, € G
we define a stale time stale(k) € R. Any subassem-
bly that has not changed state within stale(i) seconds
of its formation time should (1) break apart, setting
the state of each part in it to (1,1) and (2) have each
part “ignore” other parts from that same assembly for
stale(k) seconds. If kgpee is the index of Ggpee in G,
we set stale(kspec) = 00. The result is a new con-
troller Hy; that checks for staleness and implements
(1) and (2) above, but is otherwise similar to H; in
Figure 2. We also change the definitions of Attract(i)
and Repel(i). Suppose that Ignore(i) is the set of all
part indices that part ¢ is presently ignoring due to a
staleness break-up. Then

Attractq(i) = Attract(i) — Ignore(i)
Repely(i) = Repel(i) — Ignore(i).
F; is then changed accordingly. Using this deadlock

avoidance measure, we have not yet seen a set of ini-
tial conditions for any Ggpe. we tried for which our

simulation did not converge upon a maximum num-
ber of parts playing roles in a final assembly. In the
next section, we suggest more formally why this is so.

5 Correctness

In this section, we summarize a the proof given in
[8] that the assembly rules and the deadlock avoid-
ance mechanism we defined are correct, with respect
to the following simplified discrete model of the dy-
namics. We ignore the continuous state completely
and concentrate on the discrete state. Initially, all
parts have state (1,1). At each step, two parts ¢ and j
for which A(s;, sj) is true are picked, their states and
the states of their current assemblies are updated ac-
cording to g and their neighbor relations are updated
as well. If no such pair exists and there are at least two
non-final subassemblies, then the smallest subassem-
bly is broken up according to the deadlock avoidance
mechanism. At every step k, we define T'(k) to be
the graph induced by the neighbor information kept
by each part. In general I'(k) will be a forest whose
components correspond to subassemblies. This model
is defined formally as an automaton in [8].

Two properties hold about the system defined
above. The first is a safety property, asserting that
only subassemblies in G form during executions of the
system. The second is a progress property, asserting
essentially that the number of components of I'(k) de-
creases as k increases. From this property we can con-
clude that every run of the system ends with a maxi-
mum number of final subassemblies being formed.

Theorem 5.1 For all k € N, every component of
T'(k) is isomorphic to some graph G' € G.

We define a new property on G that is that we re-
quire of assembly sequences in addition to Property
3.1:

Property 5.1 {{1},0} € G and for all G € G there
is au € V(QG) such that Gau® {{1},0}.1 is isomorphic
to some graph in G, unless G is the final assembly.

Theorem 5.2 Suppose Property 5.1 holds for G.
Then every sequence of states in the discrete model of
the assembly dynamics ends with a mazimum number
of final assembles being formed.

6 Conclusion

The ideas in this paper represent only the first steps
toward understanding and realizing specifiable, pro-
grammable self assembly. Many relatively unexplored

and fruitful issues remain. First, although simulations
and the results in §5 suggest that the implementation
(particular choice of F;) combined with the deadlock
avoidance procedure produces controllers that assem-
ble a maximum number of parts safely (without colli-
sions), this must be verified analytically using the tools
in §5 and tools from non-linear dynamical systems.

Arbitrary graphs (as opposed to trees) require cer-
tain embeddings of their subassemblies in order to as-
semble themselves. For example, suppose we assem-
ble a graph by first assembling a spanning tree of the
graph and then “closing” it. If we require the closing
procedure to respect the dyp,. distance requirements
we have used, then the tree can not cross over itself
while closing. This means the tree must assemble to
an appropriate embedding class — a constraint we do
not yet deal with, but plan to address soon.

Many variations on the theme presented here
should also be explored: hierarchical assembly with in-
termediate goal assemblies, three dimensional assem-
bly (which has fewer “closing” problems than in two
dimensions), assembly of non-homogeneous parts, as-
sembly of parts with complex dynamics (e.g. nonholo-
nomic), and so on. Finally, we are exploring hard-
ware implementations of these algorithms so that the
issues of asynchronous processing, inaccurate sensors
and faulty communications may be realistically ad-
dressed.

References

[1] E. Bonabeau, S. Guerin, D. Snyers, P. Kuntz, and
G. Theraulaz. Three-dimensional architectures grown
by simple ’stigmergic’ agents. BioSystems, 56:13-32,
2000.

[2] N. Bowden, L. S. Choi, B. A. Grzybowski, and G. M.
Whitesides. Mesoscale self-assembly of hexagonal
plates using lateral capillary forces: Synthesis using
the ”capilary” bond. Journal of the American Chem-
ical Society, 121:5373-5391, 1999.

[3] T. L. Breen, J. Tien, S. R. J. Oliver, T. Hadzic, and
G. M. Whitesides. Design and self-assembly of open,
regular, 3D mesostructures. Science, 284:948-951,
1999.

[4] J. P. Desai, V. Kumar, and J. P. Ostrowski. Control
of changes in formation for a team of mobile robots.
In IEEE International Conference on Robotics and
Automation, Detroit, May 1999.

[5] M. Franceschetti and J. Bruck. A group membership
algorithm with a practical specification. To appear in
IEEE Transactions on Parallel and Distributed Sys-
tems, 2001.

[6] S.Karagoz, H. I. Bozma, and D. E. Koditschek. Event
driven parts moving in 2d endogenous environments.
In Proceedings of the IEEE Conference on Robotics
and Automation, pages 1076-1081, San Francisco,
CA, 2000.

[7] E. Klavins. Automatic compilation of concurrent hy-
brid factories from product assembly specifications.
In Hybrid Systems: Computation and Control Work-
shop, Third International Workshop, Pittsburgh, PA,
2000.

[8] E. Klavins. Automatically synthesized controllers for
distributed assembly. In Proceedings of the Con-
ference on Cooperative Control and Optimization.
Gainsville, FL, Nov 2001.

[9] E. Klavins. Automatically synthesized controllers for
distributed assembly: Partial correctness. In Cooper-
ative Control and Optimization, 2001. Presented at
Conference. Submitted to Edited Volume.

[10] E. Klavins and D.E. Koditschek. A formalism for
the composition of concurrent robot behaviors. In
Proceedings of the IEEE Conference on Robotics and
Automation, 2000.

[11] D. E. Koditschek and H. I. Bozma. Robot assembly as
a noncooperative game of its pieces. Robotica, 2000.
to appear.

[12] N. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1996.

[13] C. A. Mirkin. Programming the assembly of two-
and three-dimensional architectures with dna and
nanoscale inorganic building blocks”. Inorganic
Chemistry, 39(11):2258-2272, 2000.

[14] H. Reif and H. Wang. Social potential fields: A dis-
tributed behavioral control for autonomous robots.
In Proceedings of the 1994 Workshop on the Algo-
rithmic Foundations of Robotics. A.K.Peters, Boston,
MA, 1995.

[15] S. W. Reyner. An analysis of a good algorithm for
the subtree problem. SIAM Journal on Computing,
6:730-732, Dec 1977.

[16] K. Saitou. Conformational switching in self-
assembling mechanical systems. IEEE Transactions
on Robotics and Automation, 15(3):510-520, 1999.

