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We examine the scalability of multi-robot algorithms.
In particular, we wish to capture the idea that the less
coordination a multi-robot system requires, the better it
should scale to large numbers of robots. To that end,
we introduce a notion of communication complexity of
multi-robot (or more generally, distributed control) sys-
tems as a surrogate for coordination. We describe a
formalism, called DRL, for specifying multi-robot sys-
tems and algorithms for which the definition of commu-
nication complexity arises naturally. We then analyze
the communication complexity of several, in some cases
novel, multi-robot communication schemes each repre-
sentative of one of several natural complexity classes.

1 Introduction

Research in multi-robot systems has matured to the
point where systems with tens, hundreds or even thou-
sands of robots are being proposed. Usually, to achieve
a given task, the robots must share information —
about what they are sensing, for example. Because
more sharing requires more resources (time, sensory
effort and communication bandwidth), the amount of
information that must be shared determines how coor-
dinated a task is.

The adverse effects of coordination were perhaps first
noticed by researchers designing algorithms for parallel
processing computers: Often, increasing the number of
processors results in a corresponding decrease in the
amount of time needed to perform a given computa-
tion only up to a point, after which the time spent co-
ordinating inter-process communication outweighs the
benefits of having more processors.

In contrast, multiple robots are not usually used to
increase the speed of a computation. Rather, such sys-
tems are designed to cover a large area with sensors; or
achieve fault tolerance by using large numbers of cheap,
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expendable units; or manipulate an object in parallel
with vast numbers of tiny, relatively independent actu-
ators. Nevertheless roboticists are faced with problems
similar to those of the parallel algorithm designer: If
the task charged to a multi-robot system by necessity
requires a great deal of coordination, then the perfor-
mance of the system will necessarily degrade as more
robots are employed.

Thus a measure of coordination complexity is needed
to evaluate proposed algorithms. Ideally such a mea-
sure should be a function of the minimal information
flow required to perform a given task and be indepen-
dent of how that flow is mediated (by sensors, com-
munication networks, etc.). It should, furthermore,
account for how that information changes (becomes
obsolete) as a result of the dynamics of the environ-
ment. We do not yet have a way to characterize ar-
bitrary information flow, however, so we use the more
basic notion of communication complexity (Definition
2.2) to capture coordination complexity. The model
we assume is that each robot knows its own state and
can communicate directly with another other robot via
some (unspecified) communication system. The cost of
a communication event, in terms of bandwidth used, la-
tency or time spent waiting, is summarized into a sin-
gle, abstract cost (denoted by v in Definition 2.2). At
every step of a multi-robot algorithm, we sum the costs
of the communication events that occurred in that step
and then take the average over all the (infinitely many)
steps in the control algorithm.

With this definition, it turns out that the worst case
complexity is O(n?): all robots must communicate con-
stantly with all other robots. With O(n?) complexity,
the bandwidth of the communication system must in-
crease with the square of the number of robots. For this
reason, an O(n?) complexity algorithm or task is not
considered scalable. In an O(n) complexity algorithm,
on the other hand, bandwidth need only scale linearly
with the number of robots. In this case we imagine
that, for example, for every 100 robots, we add one



new communication node, and do not suffer a decrease
in performance.

Ultimately, the question we would like to answer is:
Given a task what is the minimum amount of commu-
nication required to achieve the task — for any num-
ber of robots? Such results are usually difficult to ob-
tain in complexity theory. Thus, for now we examine
algorithms we believe to be representative of various
natural complexity classes, leaving the above question
to future work. In particular, we explore communica-
tion schemes that depend on some minimal information
about the motion of the robots — for example, how the
distances between robots change. These schemes are
intended to be used as components of higher level con-
trol algorithms, which we do not address here.

The communication schemes we investigate range
from full communication to no communication. Two
of the schemes are new. The first, Distance Mod-
ulated Communication (DMC), uses the idea that a
robot might need a very accurate estimate of the po-
sition of nearby robots (to avoid colliding with them,
for example) while needing only a coarse estimate of
more distant robots. Thus, the scheme has any two
robots communicating at a frequency proportional to
the distance between them. It is shown that DMC
has communication complexity O(nlogn) or O(n!®)
depending on assumptions about the dynamics of the
robots. The second, the Wandering Communication
Scheme (WCS), defines a protocol by which only a
(small) constant number of “wandering” robots are al-
lowed to move and communicate, while others must
remain immobile. A wanderer may transfer its right to
move, and its information about the world, to an im-
mobile robot in a short burst of communication. It is
shown that WCS has communication complexity O(n)
or O(1) depending on assumptions about how certain
higher level decisions are made by the robots.

In this paper, systems are specified in a variant
of the UNITY language [1] which we call DRL (for
Distributed Robot Language) [6]. UNITY is an in-
creasingly popular language for describing parallel al-
gorithms in a way amenable to analysis. DRL is quite
similar to UNITY, except that it is slightly more gen-
eral and it is modified for real time systems. In DRL, it
is easy to both model the environment (e.g. the physics
of the robotic systems involved) and represent the algo-
rithms that operate on the environment. The definition
of communication complexity (Definition 2.2), which is
similar to that used in parallel algorithms, arises quite
naturally in DRL. Had we not been investigating DRL
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for its use in verifying multi-robot systems [6], we may
not have arrived at Definition 2.2. However, the def-
inition can certainly be adapted to other formalisms.
The reader is advised, in this paper, to consider DRL as
merely a convenient and formal specification language.

Specific Contributions The specific contributions
of this paper are as follows. In Section 2, the spec-
ification language DRL [6] is augmented with a no-
tion of communication cost and the formal notion of
communication complexity is defined. We also supply
a natural way to represent the dynamics of a multi-
robot system. We then describe, in Lemmas 5, 6 and
7, several convenient tools for determining the commu-
nication complexity of a specification from an under-
standing of the frequency with which certain rules in
the specification are applied. These lemmas are used
in Section 3 to determine the communication complex-
ity of various multi-robot communication schemes that
we have borrowed or devised so that a member of each
natural complexity class (O(n?), O(n'®), O(nlogn),
O(n) and O(1)) is represented. Several of the schemes
in Section 3 are quite straightforward, while two —
the Distance Modulated Communication scheme and
the Wandering Communication Scheme — are, to the
best of our knowledge, new and presented in this paper
for the first time.

Related Work We are primarily interested in scal-
able algorithms for formation forming [3] and other co-
operative tasks for multi-vehicle systems [2] as well as
distributed and self assembly [5]. The specification lan-
guage DRL that we describe in Section 2.1 is very sim-
ilar to the UNITY language [1]. Our main goal with
DRL (not addressed here) is to develop a modeling,
synthesis and verification tool for multi-robot and de-
centralized control systems, as described in [6]. Our
notion of communication complexity borrows heavily
from notions of communication complexity defined in
the analysis of parallel algorithms as in, for example, [8]
— the difference being that in the control systems we
design we are concerned with maintaining some invari-
ant indefinitely, as opposed to performing some finite
computation. The idea of examining communication
complexity was inspired by, but only superficially re-
lated to, the sort of communication complexity devel-
oped in [7]. Bandwidth-aware control and communi-
cation schemes are receiving increased attention in the
controls literature [9], but scalabilty as addressed in
this paper has not been addressed elsewhere.



2 Definitions

2.1 DRL: A Specification Language

We describe DRL briefly here. We suppose we have a
set V' of variable symbols and define a state s to
be a function from V into some universe U of values:
s:V — U. We let S denote the set of all states. A
specification is a means of describing what sequences
of states we would like to allow. We do this with state
transformers called clauses.

Definition 1 A clause is a pair g : r where g : S —
Bool is called the guard and r : Sx S — Bool is called
the rule. If ¢ is a clause, then the guard of ¢ is denoted
c.g and the rule is denoted c.r.

Guards are expressed syntactically as logical expres-
sions over V and rules are expressed syntactically as
logical expressions over VUV’ where V' = {v' : v € V'}
is the set of primed variable symbols from V. A primed
variable symbol refers to the next value of a variable
while an unprimed variable symbol refers to the present
value. For example, if ¢ is the clause

x>0:9 =2zA2" <0
then c(s1, s2) essentially means
(s1(z) > 0 — s2(y) = s1(2) A s2(x) > 0)

A (s1(x) <0 — 3 =3s1).

A variable v € V is said to occur in a clause g : r if v
appears in the expression for either g or r. It is said to
occur primed in g : r if v’ occurs in r. If c.g(s) = true
we say that c is applicable in state s.

A specification is essentially a collection of clauses,
along with an initial condition, a special clause that
describes the dynamics of the environment, and a com-
munication cost function.

Definition 2 A specification is a quadruple 1I =
(Z,C,A,v) where

1. 7:S — Bool is the initial condition
2. C is a set of clauses
3. A is a clause called the dynamics clause

4. v :C — RTU{0} gives the communication cost
of each clause.

This leads to the notion of an execution of a specifica-
tion.

Definition 3 Let IT = (Z,C, A,~) be a specification.
An execution of II is a sequence {s} for k¥ € N such
that

1. I(So)
2. Forall k>0

(a) for all ¢ € C, if c.g(sg) then c.r(sg, Sk+1)

(b) A.r(sk, Sk+1)

(¢) if v € V does not occur primed in any clause
applicable in state si, then sgi1(v) = si(v).

We denote the set of all executions of IT by £(II).

2.2 Communication Complexity of Specifica-
tions

We have already defined the cost of a clause. We next
define the communication complexity of a step in an
execution, of an execution, and finally of a specifica-
tion. For each of these notions of complexity we use
the polymorphic symbol cc(-), the exact meaning of
which will always be clear from context.

Definition 4 Assume a fixed specification II =
(Z,C,A,~) is given. The communication complex-
ity of a state s € S is

w2 Y ).

ceCAe.g(s)

The communication complexity of an execution
{sk} € (M) is

T

.1
cc({sx}) = TIEI;O T Z ce(s).
k=1
The communication complexity of the specification
IT is
cc(IT)y = max  cc({sk})-
()= mx cel{si)

Thus, cc(s) is sum of the costs of all clauses applica-
ble s; ce({sk}) is the infinite average of the complexity
of each step in the execution {si}; and cc(II) is equal
to the worst case communication complexity of any ex-
ecution of II.



2.3 Basic Properties and Proof Methods

We next supply some basic results that often aid in
determining the communication complexity of a par-
ticular specification. Generally, to prove that a given
specification has a certain communication complexity,
we determine the frequency with which each clause is
applicable in any execution. This may be done deter-
ministically (Lemma 5) or probabilistically (Lemmas
6 and 7). The proofs of these properties are given in
the Appendix to this paper. The first lemma allows us
to easily compute the cost of a specification that has
periodic executions.

Lemma 5 Let II = (Z,C, A, v) be a specification and
suppose that each clause c¢; € C is applicable every r;
steps in any execution of II. Then

Next suppose that the cost of each step k of any ex-
ecution is modeled by a non-negative real valued ran-
dom variable Cj with expectation E[Cy]. In the proofs
of Theorems 10 and 14, C} is essentially a function
of a probabilistic model of the frequencies with which
clauses in the corresponding specifications are applica-
ble. The probabilistic models arise from either assump-
tions about the relative locations of the robots (e.g.
their locations may be uniformly distributed in their
workspace) or assumptions on the frequency which
which certain guards are true (e.g. a guard may be
true at some step if a flip of a biased coin comes up
heads at that step).

Given C}, we would like to compute the expected
cost of the specification which, in general, is

Elce(10)] :Tli_I};O%ZE[Ck].
k=1

We begin with the case where each Cf is independent
and identically distributed.

Lemma 6 Let II = (Z,C, A, v) be a specification and
suppose the cost of executing each step k is modeled by
the random variable C'. Then

E[cc(I1)] = E[C].

The next lemma allows us to compute the commu-
nication complexity of a specification if we know what
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the limit of the step cost is. It will be useful when
we consider specifications modeled by Markov chains
whose k-step transition probabilities are known (as in
Theorem 14). Of course, Lemma 6 is a special case of
Lemma 7.

Lemma 7 Let Il = (Z,C,A,v) be a specification and
suppose the cost of each step k in any execution is Cj.
If

lim C, =&

k—oo
then cc(Il) = k. Furthermore, if each Cy is a random
variable and

k]im E[Ck] = &,

then Elcc(Il)] = k.

Remark: Observe that the definition of communica-
tion complexity is an infinite average. A finite, initial
period of O(n?) communication will not affect an ulti-
mately less complex algorithm. Thus, in the specifica-
tions in this paper, we may assume that the global state
is known initially since this could have been obtained
by a brief period of total communication.

2.4 Specifications of Multi-Robot Systems

In the sequel we consider systems with n robots with
locations (z;,y;) € R? for each i € {1,...,n}. We sup-
pose (implicitly) that certain variables in V' and certain
clauses in C are owned by particular robots. Variables
owned by robot ¢ are denoted as such via an initial sub-
script 4, as in z; or e; ;. The cost v(c) of a clause ¢ is
generally the result of an explicit reference to a variable
v; in a clause owned by robot ¢ where ¢ # j. That is, a
reference to a variable owned by another robot incurs
some cost to communicate the value of the variable.
Variables not sub-scripted are not owned (i.e. they are
global) and the dynamics clause has no cost, being exe-
cuted, as it is, by the environment (which by definition
includes all of the robots).

In the dynamics clause we will generally be non-
committal about the details of the system specified.

For example, we will make use of the clause A(n) de-
fined by

true : t' =t + § AVi. (|| — zi|| < Vmaz) (1)

that simply states time goes forward by some constant
0 < § < 1 and the velocity of any robot is bounded by
some constant v,,,; > 0.! Note that we have defined
a family of dynamics clauses, one for each n € N and



have used the parameter n implicitly in the rule for
A(n) by assuming that 4 is quantified over {1,...,n}.
Robot

3 Multiple Communication

Schemes

In this section we present multi-robot communication
schemes for several natural complexity classes: O(n?),
O(n'%), O(nlogn), O(n) and O(1). We usually assume
the dynamics of the robots are given by (1) or some
variant of it. A discussion of how these schemes may
be used, augmented and extended appears in Section
4. The scheme we omit is the empty communication
scheme where no communication occurs at all. This
scheme clearly has communication complexity O(0).

3.1 The Worst Case: O(n?) Complexity

Many simple multi-robot algorithms really treat a
group of robots as a single (albeit disconnected) robot.
Assuming there is no leader (a fragility one might wish
to avoid), such algorithms usually require that a good
estimate of the global state of the system be known by
each robot. Thus, each robot 7 must maintain, for each
J, an estimate of x; which we denote e; ;. Furthermore
we require that the property

llei; — ;]| <e (2)

hold at any time, for some constant € > dv,,4,; which
may be, for example, required for the stability of what-
ever control algorithm the system is using. If we as-
sume the dynamics are given by (1), the best that can
be achieved is for each robot ¢ to include the clause ¢; ;
defined by

(t4+0 —lij)Vmaz >€ : €;j=a; Nl ;=1 (3)

fori,j € {1,...,n} and i # j. We set v(c; ;) = 1. In
(3), li,; represents the time at which the last update to
e;,; took place. The inequality in the guard assumes
the worst case movement (a velocity of exactly vimaz)
by robot j that is, (t + 6 — li j)Umas represents the
worst case value for ||e; ; — ;|| in the next step (at
time ¢+ 0). If this exceeds ¢, then the estimate e, ; and
the time of last update [; ; are updated.

Supposing that the guard in ¢; ; is an equality and
solving for ¢t —I; ; gives that the clause will be applied

1This constraint on the velocity can be considered as a
crude discretization of the actual continuous dynamics. We
assume that 1/§ is greater than the frequency of the actual
dynamics so that aliasing problems do not occur.
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every r;; = Ej;w steps. Using Lemma 5 we obtain
the simple result

Theorem 8 Let
I(n) =Vi,j.eij = Ni; =0

and
C={cij|1<i#j<n}

and put
Hglobal(n) = (I(n)a C(”)v A(n)v 7)

where ¢;j is as in (3) and A is as in (1). Then
cc(Hgiopar(n)) = O(n?).

We use the fact that |C| = n(n — 1). Note that the
result is independent of the constants 0, v.,,.; and e
which essentially determine (the constant) r; ;. Thus,
even techniques which increase the period r; ; of com-
munication significantly, by having each robot use a
sophisticated estimator of all other robot’s positions,
for example [9], ultimately do not scale in the sense
that we have introduced in this paper.

3.2 Sub-O(n?) Complexity

In this section we investigate a specification for dis-
tance modulated communication (DMC). The specifi-
cation, shown in Figure 1, is based on the idea that
closer robots should communicate their positions more
frequently than distant ones. The goal is to maintain
the invariant

llei; — x| < Kllz; — 24|

for each ¢ # j. Here e;; is the ith robot’s estimate
of the jth robot’s position and k£ > 0 is a constant.
In Figure 1, the behavior of each robot i is speci-
fied by the clause ¢, ;, for j € {1,...,n} — {i}. The
variable [; ; is used by robot i to keep track of the
last time robot i updated its estimate e; ;, thereby ac-
cruing 1 unit of communication cost. The quantity
(t — li,j)Vmaz in the guard represents the maximum
possible difference between e; ; and z;. The quantity
l|€s,j — 24|| — (t —li,j)Umaa represents the minimum pos-
sible distance between the two robots. That is

llei; — 25| < (t = lij)Vmaa
and

llei; — zill = (t = lij)Vmaa < |l2s — 24|



Define c;,; by

(t = lij)vmae >k (|les; — @il = (¢ = lij)Vmaa) :

v(eig) =1
I(n)=eij=xjANli;=0At=0
C(n) =A{ci; | 4,5 €{1,....,n} ANi #j}
Then Ipyc(n) = (Z(n),C(n), A(n),~)

Fig. 1: The specification of the distance modulated com-
munication scheme IIpyc. A(n) refers to a dynamics clause
such as that in equation (1).

distance
UL P

[1&,j=Xill =(t=1; j)Vimax

(tfli,j)Vmax o

|
|
T -
s |
P ll&,j=xll

! t
i update time

Fig. 2: Estimates used in the DMC specification.

as illustrated in Figure 2. Each of these bounds can
be computed by agent ¢ without reference to z; and so
require no communication cost. When the bound on
the estimate error exceeds k£ times the bound on the
distance, the guard becomes true and e; ; and /; ; are
updated.

The communication complexity of IIpysc, of course,
depends on the relative locations of the robots while the
specification is enforced. We will show that under two
different reasonable assumptions about the robot loca-
tions, that cc(Ilpac(n)) is better than O(n?). First
we suppose that the robots are arranged in a line. We
specify this in the initial condition and by using a triv-
ial dynamics clause. Of course, the theorem holds for
any spacing and any dynamics clause that (even ap-
proximately) preserves it, and the extremely simple dy-

namics clause in the statement of the theorem below is
used merely for simplicity in presentation.

Theorem 9 Let
T(n) = Vi € {1,..,n}(w: = (i,0))

and
A=true:t' =t+4

and put
Mpyco(n) = (Z(n) A T(n),C(n), A7)

where I(n), C(n) and 7 are as in Figure 1. Then

cc(Tippye(n)) = O(nlogn).
Proof: Let d; ; £ ||x; — x4]| = |i — j|. Solving
tUmaz = k<di,j - tvmaz)

for ¢ shows that clause ¢; ; will be applicable every

S~ BN
(14 k) 0maz
steps where o £ (HU% By Lemma 5, the com-

munication complexity is thus

1 2N & 1

—1
=1 j=ir1”

cc(Mppre(n)) = Z

1<i#j<n

It is straightforward to show that this sum evaluates

to
2

«

(nH(n) —n) = O(nlogn)
where H(n) is the nth harmonic number. O

We next explore the somewhat more natural assump-
tion that the robots are randomly distributed in a
square on the plane with an average density of p robots
per square meter and determine the expected value of
the communication complexity of IIparo(n). We there-
fore suppose that the position of robot i is given by
a pair of independent identically distributed random
variables, (X;,Y;), with the common density function

A if z € [-m, m]
fm(z) £

0 otherwise.

For some m € R yet to be determined. We then have



Theorem 10 Let
J(n)=Vie{1,..,n}(z; € [-m,m)])
where m = /4% and let A be as in Theorem 9. Let

ppe(n) = (Z(n) AT (n),C(n), Aln),)
where Z(n), C(n) and vy are as in Figure 1.
Elcc(Uppc(n))] = O(nt5).

This result suggests that a uniform distribution of
robots in a square of density p is less sparse than an
equal spacing of the robots in a line. In fact, one ex-
pects that the complexity of IIpyc approaches O(n?)
as the dimension of the workspace grows.

Then

Proof: For each i # j, define the random variable
D; ; = ||X; — Xj||. Then clause ¢; ; will be applicable
every R; ; = aD; ; steps, where « is the same as in the
proof of Theorem 9. The cost of a single step is then

Y -

1<istj<n = 7

units. Using Lemma 6 we have that
E[cc(prme(n))] = E[C).

Next we make use of the following lemma (proved in
the Appendix).

Lemma 11 The expected cost at each step is

where = §(4 —4v/2 — 9In(v2 — 1) + 3In(v/2 + 1)).

The area of the square in which the robots are placed

is 4m?2. Taking m = 4% gives an area of n/p so that

there are p robots per square meter. We then have
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Elcc(Ipyc(n))] = E[C] = 2%&(% 1) = O(n*?)
as desired. O

The conditions under which the DMC protocol can
be used are much broader than the two situations we
have analyzed in Theorems 9 and 10. However, we
believe these two cases to be typical. The first repre-
sents a common formation and other formations likely
produce similar complexity results. The second rep-
resents the reasonable assumption that many multi-
robot algorithms would tend to keep the robots more
or less evenly distributed in the workspace: i.e. that
the workspace would grow if the number of robots were
increased.

3.3 O(n) Complexity

In [8] it is shown (in a slightly somewhat different
model than that presently considered) that the com-
munication complexity of systems with n processors
arranged in a graph with constant degree is O(n). We
can easily obtain a similar result here with respect to
multi-robot systems. In particular, suppose we have a
graph G = ({1,...,n}, E) where E CV x V and that
we wish to maintain the property

(i,7) € E = |leij; —zjl| <e

in place of (2).
shown:

Then the obvious corollary can be

Corollary 12 Let
I(n) =Vi,j.e; = Nli; =0

and
C={ci; |(i,j) € E}
and put

- (n) = (Z(n),C(n), A(n),~)

where A(n) is as in (1) and c;j is as in (3). Then
cc(Ippr(n)) = O(n).

Another commonly used scheme for controlling a
group of robots is to have each robot transmit its lo-
cation to a leader robot (or control computer) with
some frequency. The leader then sends to each robot
a command based on the collected global state. The
communication complexity of this scheme is also O(n),
assuming the size of the commands does not depend
on n. This scheme (in its simplest form) is not robust
to failures in the leader, however.

3.4 Better Than O(n) Complexity

The obvious way to get better than O(n) complexity is
to have no communication at all. The subject of how to
do anything useful in this realm of operation (say by
simple local sensing) has been investigated by others
and is beyond the scope of this paper. Instead, in this
section, we examine a task similar to that explored in
Section 3.1: to maintain the invariant

lles; — x5l < e

for some constant ¢ for any currently moving robot.
This is possible with lower than O(n?) communication



For i € {1, ...,n} define clauses ¢; 1, ¢;,2 and ¢; 3 by

@i =1:Vj(q; #3 — €i; = x;)
¢ = 1A coin(p,t) : qj =2
G =2:¢=3A7,=1A
Jjla; =3Nq; =1A7; =i AVE(e), = ein)]

respectively. Then set

Y(cin) =r—1
v(ei2) =
v(ciz) =n

In)=Vi[i<k—=q=1)A{IE>kKk—q =23)
Ari =L AVj(ei; = ;)]

C(n) =Ur {ci1, ci2,ci3}

A(n) = true : t' =t + A
Vi[(gi =1 — ||of — 24]| < 0Vmaz
Mg # 1 — xj = ;)]

Mwes(n) = (Z(n),C(n), A(n),v)

Fig. 3: The specification of the Wandering Communica-
tion Scheme (WCS). coin(p,t) is a random number gener-
ator that is true at time ¢ with probability p. We assume
qualification over {1,...,n} in the notation.

complexity if we restrict the motions of the robots, al-
lowing only certain robots to move at any given time
(the dynamics clause in Figure 3, for example, enforces
this constraint). In particular, we present a commu-
nication and movement scheme that has either O(n)
or O(1) communication complexity for any number of
robots, depending on our assumptions. The scheme
takes advantage of the presumption that any robot that
is not moving does not need to know any other robot’s
states. In particular, we choose a constant x and only
allow, for any number of robots n, that x of them can
move at any time. A robot can give up its right to
move by stopping and uploading its estimates of the
other robot locations to a newly chosen and formerly
idle robot.

The specification of the scheme, called the Wander-
ing Communication Scheme (WCS), is shown in Figure
3. The meanings of the variables are as follows. The
variable ¢; denotes the state of the robots as either
wandering (1), uploading (2) or idle (3). The vari-
able ¢; ; is the ith robot’s estimate of x;. Setting the
“reservation” variable 7; to j specifies that robot j is
uploading to robot 4 and its appearance in ¢; 3 prevents

two robots from uploading to a same new robot.

Clause ;1 is used to keep a wandering robot’s esti-
mate of the other moving robots accurate. Clause c; 2
is used to decide whether to switch from wandering to
idle. Tt uses the random number generator coin(p,t),
which is true at time ¢ with probability p. Clause ¢; 3
is used by robot ¢ to choose a new robot j, to whom it
will hand over its “right” to move: uploading its state
estimates to j and switching j’s state to wandering and
its own state to idle.

For a given n and k¥ we model an execution of
Mwes(n) as a Markov Chain whose states X, corre-
spond to the possible number of robots in each specifi-
cation state ¢; € {1,2,3} at step m. Now, the number
of robots that are in state 3 is always n — k. Thus X,,
is just the number of robots in state 1. The number of
robots in state 2 is just x minus the number of robots
in state 1. The transition probabilities are, for each i
and j,

PXmi1=k—J| Xm=r—1

(’””fi )pf(l—p)“‘i—jiflsjsfi—i
J (4)

0 otherwise.

We define the x+ 1 dimensional transition matrix P to
be the matrix whose jth row and ith column is given
by (4).

Next, we define the cost of each step X,,,. The com-
munication cost of a robot in state 1 is k — 1 and the
the communication cost of a robot in state 2 is n. In
state 3, a robot does not communicate. Thus, the cost
at step m is

Com 2 (8 — 1) X +n(k — Xpn).
And the expected total cost at step m is

E[Ca] = (1 0. 0)P™r (5)

Kk times
where r is the cost vector

(k—1)k+0n
(k=1)(k=1)+1n

A
r =

(k—1)0+nk

We show, by straightforward analysis (as described in
many texts [4] on the subject) in the Appendix that



Lemma 13 Let x be the k + 1 dimensional wvector
whose ith element is

(1)

fori € {0,....k}. Then as m goes to infinity, P™ goes
to the matriz whose rows are all given by

T & (_p ) zT.
p+1

Using this result we can show that

Theorem 14 If the value of p in Myeg(n) is con-
stant, then

Elcc(llwes(n))] = O(n)
and if p = 1/n then
Elcc(Ilwes(n))] = O(1)

Proof: The limit of the expected value of the cost (5)
as m — o0 is

i = (1%,)2[( 1)j + (k — )] ( . )W

Jj=0

= k—14+np).
1+p( p)

We now use Lemma 7 to conclude that if p is constant,
that Elcc(Ilwes(n))] = O(n). If, on the other hand,

p £ 1/n, then
lim E[Cp(n)] = 1f k< K> =0(1)

Once again using Lemma 7 yields the desired result. O

4 Discussion

Control: Pairing a communication scheme with a high
level controller depends on the requirements of the con-
troller and the guarantees of the the scheme. Using
DMC, for example, a reactive planner for each robot
may be constructed as follows. Consider two robots
with indices ¢ and j and suppose that ¢ has last com-
municated with j at time [; ;. It can easily be deter-
mined, from the guard in clause ¢; ; in Figure 1, at

what time /; ; + At it will communicate with j again.
Thus, vehicle i can simply avoid the region

Ry ={x : |lei; — || < Atvmas }
while planning its route through the workspace. Fur-
thermore, to make the path planning problem easier,
other distance metrics can be used in DMC such as the

distance between robot j and the line segment connect-
ing robot ¢ with its goal position.

Assumptions: The analyses in Section 3 make as-
sumptions that are certainly not as general as they
could be. For example, Theorem 9 should hold for any
formation that increases in size linearly with the num-
ber of robots used. Theorem 9 could be extended to
allow motions that are guaranteed to preserve a certain
expected distance between robots. The WCS has many
variants, each of which affect the expected communi-
cation complexity. For example, constant communica-
tion complexity can be obtained by requiring that all
idle robots be positioned in one of some large number
of (sparsely placed) “island regions”. The wandering
robots wouldn’t necessarily know where an idle robot
was, but they would know at least that it was located
in some island region. The transfers of position esti-
mates in clause ¢; 3 in Figure 3 would then have cost
resulting in O(1) complexity overall.

Sensing: Although sensing is not really mentioned in
Section 3, it is modeled. For example, the assumption
that robots know their own locations implies a certain
amount of sensing. Also, clause c; 3 where it states
“Jjlg; = 3...” assumes that robot ¢ can find another
robot whose state is 3 (idle). This information can not
be obtained from the scheme itself and adding the com-
munication required to make the discrete states of the
robots global would most likely increase the communi-
cation complexity of the algorithm. The original intent,
however, was to have wanderers find idle robots us-
ing their local sensors and then upload their estimates
to them. More generally, however, incorporating sens-
ing assumptions into DRL specifications remains an art
and no clear path toward investigating, say, sensing vs.
communication trade-offs has yet emerged.

Variants: There are many possible variants of Defini-
tion 2.2. For example, suppose that the cost of com-
munication v were scaled by the distance between the
communicating robots, as is the case with low power
sensor nets, or “smart dust”. With this definition, com-
municating indirectly via hops in a network instead of
directly may give a lower overall complexity. A power



aware communication scheme could be devised that de-
termines the lowest energy route from one robot to an-
other based on current estimates (possibly obtained by
a variant of DMC or WCS) of the vehicle locations.

5 Conclusion

In this paper we introduce a notion of communication
complexity as a means of investigating the scalability
of multi-robot algorithms in terms of how much coor-
dination they require. We present several communica-
tion schemes, two of which are new (to the best of our
knowledge) that maintain estimates of the global state
of varying accuracies in the face of simply-modeled pos-
sible changes in the environment. By analyzing their
complexities, we show that these schemes cover several
natural communication complexity classes from O(n?)
communication to O(1) communication. It is our hope
that techniques similar to these will be used to check
the scalability of newly proposed multi-robot or dis-
tributed control algorithms.

We have not included a model of possible sensing
modalities and costs. Nor have we described the ac-
tual control algorithms and higher level planners that
could be used in conjunction with the schemes we have
presented. More importantly, we have only analyzed
instances of algorithms that achieve a given task but
have not answered the question: For a given task, what
is the minimum communication complexity of any al-
gorithm that achieves the task? Although this ques-
tion appears to be quite difficult, we plan to attempt
address it in a future paper, at least for very simple
tasks.

A Appendix

A.1 Proof of Lemma 5

In T steps, clause i is executed TZ times. Thus,
k2

Multiplying by 1/T and taking the limit yields the de-
sired result. 0.

A.2 Proof of Lemma 6

Suppose the cost of each step in any execution of II can
be modeled as a random variable C' and that the costs

10

at each step are independent. Then

1
E = lim — E[C] = lim =TFE
[ee()] = Jim = Z Jim —TE[C] = E[C]
as was to be shown. O
A.3 Proof of Lemma 7
Suppose
lim Ck = R.

k—o0

Then for any € > 0, a positive integer Ty can be found
so that Kk —e < Cf < k + ¢ for all k > Ty. Thus,

%]éck (ZCH— > Ck>

= k=To+1

<%[a+(T—To—l)(fi+s)]

where a = Zfozl C. Similarly,

T
%ZCk>[a+(TfTofl)(nfs)].
k=1

Taking limits, we arrive at

K—e< 1520?ZC,€<;-@+5

This argument holds for any ¢ and thus we may con-
clude, by the squeeze theorem, that

1 T
Jn, 72 Ce=r

The rest of the lemma follows easily. O

A.4 Proof of Lemma 11
Let

_1
g(z1,y1.22,92) = (22 — 21)* + (2 —1)?) %

Then straightforward integration shows that

/ / / / 9(r1,91, 72, y2) dridyidradys

_ gm?’ (1-4v2-9m(V2 - 1) +3I(v2+ 1)) £ fm®.



The expected value E[C] is given by

) L2

n(n 1) times

2n

1 1

R [ i
1<175J<n

n(n 1) times

1 1 2n m m 3
= - (%) n(n —1) / / Bm? dxy...dy, o

zia Yis Tj, yj) dzldyn
m 1<z;£y<n

————
n(n—1)—4 times
_ l i o ( 1)5 3(2 )2n74
=\ n(n m°(2m
1/ 1\* B 1
= — -1 3L - —-1) O
Q (2m> n(n —1)fm «a 16mn(n )

A.5 Proof of Lemma 13

It is known that the matrix PT has 1 as an eigenvalue
and that the steady state of the system y P™ (for any
given y # 0) is given by (any nonzero multiple of) the
eigenvector corresponding to 1 [4]. Thus, we first show
that

o
is one such eigenvector,where z is as in the statement of

the lemma. By the definition of matrix multiplication,
the ith element of 27 P is

Define s £ k — 7. Then the sum becomes

CE() (o

It is straightforward to show that sum part of this ex-

pression is ( I; > Thus, the ith element of 27 P is

()2 ) ()

as desired.We now have that for any y # 0 that
yT P™ — ax for some o # 0. In particular,

(10...0) lim P™ = ax

m—0o0

11

so that the first row of the limit of P™ is given by az.
Since each row of P™ must sum to 1, we obtain that

e (B0 )

using the binomial theorem. The other rows of P™ are
" obtained similarly. O.
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