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Abstract

In this paper, we provide a graph theoretical framework that allows us to formally define formations
of multiple vehicles and the issues arising in graph realizations and unicity and their connections to
stability of formations. The notion of graph rigidity is crucial in identifying the shape variables of a
formation. This eventually leads to tools for formation stabilization, tacking, and formal representation
of split, rejoin, and reconfiguration maneuvers for multi-vehicle formations. We introduce an algebra
that consists of performing some basic operations on graphs which allow creation of larger rigid-by-
construction graphs by combining smaller rigid subgraphs. This is particularly useful in performing and
representing rejoin/split maneuvers of multiple formations in a distributed fashion.

1 Introduction

Coordinated control of multi-agent/multi-vehicle systems in a distributed fashion has attracted several re-
searchers with rather backgrounds in control theory, computer science, biology, and physics. Multi-agent
systems arise in broad areas including formation flight of unmanned aerial vehicles (UAVs), coordination of
satellite clusters, automated highways, understanding the coordination and movement of flocks of birds or
schools of fish [1], and molecular conformation problems [2].

The applications that are of primary interest in our work include performing maneuvers by UAVs which
(possibly) require doing split/rejoin maneuvers in case a group of vehicles come across an obstacle, or
changing the communication configuration of the network of vehicles due to the loss of line of sight and/or
failure of a communication link (Fig. 1 (b)). In addition, we are interested in reconfiguration of the formation
of a group of vehicles (Fig. 1 (a)) due to a change of the team-strategy in team-on-team competitive games
like playing capture the flag using mobile robots known as the RoboFlag [3]. Competitive games of this sort
can be also performed in the presence of obstacles to provide more realistic situations that might occur in
uncertain environments and/or combat.

As a result, our theoretical objective is to provide analytical and computational tools for representation
and manipulation of formations of multiple vehicles such as performing split, rejoin, and reconfiguration
maneuvers in a distributed manner. As we realized from one of our earlier works [4], a notion from graph
theory called graph rigidity turns out to be instrumental in both representation and distributed coordinated
control of formations of multiple vehicles. Minimally rigid graphs (i.e. rigid graphs with n nodes and 2n− 3
directed edges, see section 3.3) are an important class of rigid graphs that their edges are closely related to
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shape variables of formations of n vehicles. This in turn leads to automatic generation of potential functions
from the interconnection graph of the group of vehicles that guarantee local structural formation stabilization
[4].

One of the contributions of this paper is introducing new properties of minimally rigid graphs that allow
composition of smaller rigid subgraphs that construct a larger rigid graph. This is used to represent and
perform rejoin/split maneuvers for groups of vehicles. We introduce an algebra over graphs that allows
performing some basic operations on graphs including rejoining two graphs, node augmentation to a graph,
and attaching graphs via their edges. We presented a hybrid system framework for consecutive execution of a
set of maneuvers for a group of agents/vehicles that allows high-level planning of operations in multi-vehicle
systems (Fig. 2).

In the past, several methodologies have been exploited by different researchers in distributed control and
coordination of multi-vehicle systems. In [5], graph theoretic tools were exploited to address navigational
stability of formations of multiple vehicles with linear dynamics. The linearity of the dynamics of each vehicle
plays an important role is applicability of the methods developed in [5]. Distributed structural stabilization of
formations of multiple vehicles using bounded control inputs is addressed in [4]. This is done by construction
of a structural potential function from a minimally rigid graph that has a unique global minimum (up to
rotation, translation, and folding [4]). In [1], different types of potential functions are used. In the context
of that work, a unique global minimum of the overall potential function is not desirable. Furthermore,
according to [1] construction of a global potential function with a unique minimum requires adding several
virtual vehicles. This complicates implementation of such a strategy in practice, since eventually the real
vehicles and the virtual vehicles need to communicate and such a communication is costly in the presence
of several extra virtual vehicles.

Though, the majority of the researchers have focused on formation stabilization problems, there have
been almost no results available on performing rejoin, split, and reconfiguration maneuvers for groups of
multiple vehicles. Formal representation of these maneuvers is one of the main contribution of this work.
We also formally define what we mean by a formation in dimension m ≥ 2 (dimension 1 is trivial).

The field of graph rigidity is very broad and several scientists and engineers from rather diverse back-
grounds in mathematics, physics, chemistry, biology, computer science, and mechanical and civil engineering
have been actively working on this subject over the past three decades (see [6] for a complete survey and
the history of the subject that goes back to Euler in 1766 and Cauchy in 1813). Here, we are interested
in combinatorial rigidity [7], [8] as supposed to infinitesimal rigidity [9], [10]. For a complete treatment of
combinatorial rigidity we refer the reader to [6]. One of the first results in combinatorial characterization
of rigidity of graphs in R2 was obtained by Laman in 1970 [7]. A combinatorial characterization of graph
rigidity for dimension 3 (and higher) has been an outstanding open problem for more than three decades.
This necessitates the development of tools that allow generation of rigid-by-construction graphs in dimension
3. Here, we take a preliminary step towards this goal by developing techniques that allow creation of graphs
that are rigid-by-construction and represent formations, and rejoin of multi-formations or split of a single
formation to multi-formations.

A combinatorial characterization of rigidity in R3 is vital in problems involving conformation of molecules
and solving relaxations of certain NP -hard combinatorial optimization problems [2]. Construction of
molecules has broad applications in chemistry, physics, and biology.

Here is an outline of the paper: We begin with an introduction. Then, in section 2, the main motivation
behind our work in the form of a hybrid system framework for consecutive operations on formations of multi-
agent/multi-vehicle systems is presented. The split/rejoin maneuvers are (informally) described in section 2.
The mathematical preliminaries required to discuss multi-agent formations, graph rigidity, and minimally
rigid graphs are presented in section 3. Our main results on split/rejoin of groups of agents are presented in
section 4. Finally, concluding remarks are made.
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2 Motivation

In many applications, it is sometimes necessary to change the formation of a group of vehicles due to either
a change in the coordinated task specification for the group, or the presence of uncertainty or adversarial
vehicles. Reconfiguration of the formation is an example of switching from one desired formation to another.
This is schematically shown in Fig. 1 (a). Another situation arises when temporarily due to the presence of an
obstacle, some of the vehicles in a group cannot maintain their communication with other vehicles. Though,
still all the vehicles might be interested to maintain their formation. In this situation, a communication
reconfiguration is necessary among the vehicles. This is demonstrated in Fig. 1 (b). Later, we will see that
both graphs in Fig. 1 (b) are rigid (see section 3.2).
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Figure 1: (a) Formation reconfiguration maneuver for a group of 6 vehicles moving in R2 and (b) communi-
cation reconfiguration for a group of 6 vehicles that leaves the formation unchanged.

In general, performing several types of operations on formations might be necessary. For example,
performing split/rejoin maneuvers, shown in Fig. 3 (a) (see section 4 for a detailed discussion). A Hybrid
System can be used to provide a high-level representation of a sequence of admissible operations on formations
through performing certain maneuver as discussed earlier. In Fig. 2, a diagram of such a hybrid system is
presented. Each discrete-state of this hybrid systems is a graph that represents the information flow (or
communication configuration) among a group of vehicles. The continuous-time dynamics of the system in
each discrete-state si is induced by the interconnections of the graph [4]. The hybrid system itself is a graph
in which each edge of the graph is an admissible maneuver performed on a single (multiple) Formation(s).

One of our main goals in this paper is to provide a formal representation of each of these maneuvers
and provide the required connections in the resulting graph(s) after performing an operation/maneuver. In
section 4 an appropriate algebra of graphs is developed that allows to achieve our objective and facilitates
performing and representing important maneuvers for formations of multiple agents.
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Figure 2: A Hybrid System representing the switching between multiple formations via performing a set of
maneuvers.
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Fig. 3 (a) demonstrates a split/rejoin maneuver for a group of vehicles that come across an obstacle. The
vehicles need to split to avoid collision to the obstacle. After all the vehicles pass the obstacle, they need to
rejoin and create a new desired formation. The desired path of the center of mass of the vehicles is shown
in Fig. 3 (b). Here, we assume the desired attitude during the split/rejoin maneuver over the time interval
[0, T ] is fixed.
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Figure 3: (a) Split/Rejoin maneuver for a group of 12 vehicles moving in R2 and (b) the pathes of centers
of mass of two subgroups of vehicles in split/rejoin maneuver for a group of 12 vehicles moving in R2.

According to Fig. 3 (a), the vehicles divide into two subgroups of vehicles called class 1 and class 2,
respectively. Notice that the dynamics of the virtual navigation vehicle for each class is substantially different
than the dynamics of an individual vehicle. To obtain the trajectory of the navigation vehicle associated
with each class of vehicles, one can use either of the following three methods:

i) solving an optimization problem in the form of nonlinear trajectory generation for the dynamics of the
virtual navigation vehicle [11].

ii) using the method of exact navigation by potential functions in the presence of the obstacles [12].

iii) solving a formation tracking problem for two vehicles that their center of mass has to stay on a straight
line connecting the start and destination points of the maneuver, their attitude is fixed and equal to
r, and their distance d is greater than the length of the cross-section profile of the obstacle along r.

Among all of the above, only method iii) would reduce the overall navigation problem for classes 1, 2 of the
vehicles to a formation tracking problem for only two vehicles. This is a great reduction in computational
complexity of path planning for all the vehicles. The main drawback of method ii) is designing the appropriate
potential function that—roughly speaking—generates an acceptable path for each virtual navigation agent.

3 Preliminaries: Formations and Graph Rigidity

In this section, we provide the mathematical preliminaries that allow us to define formations of multiple
agents/vehicles and its connection to graph rigidity.

3.1 Formations of Multi-Vehicles

In this section, we define a formation of n-agents, the position, and the attitude of a formation. Consider a
group of n agents (n ≥ 2) each with the following dynamics{

q̇i = pi

ṗi = ui
(1)
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where qi, pi, ui ∈ Rm for all i ∈ I = {1, . . . , n}. Therefore, each agent has a linear dynamics.

Remark 1. This assumption is made for the sake of presenting the main geometric and graph-theoretic
ideas rather than getting involved in the technical details of dealing with nonlinear control of underactu-
ated/nonholonomic mechanical systems. Control of formations of mobile robots that are underactuated or
posses nonholonomic velocity constraints is the topic of a sequel of this paper.
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Figure 4: (a) A formation of n ≥ 2 agents with a base (1, 2) in R2, and (b) Position and attitude (qc, r) of
the formation of three vehicles.

We refer to a set of n points in Rm as an n-grid. The column vector q = (q1, . . . , qn)c ∈ Rmn is called
the configuration of the n-grid. Identifying an agent i ∈ I by its position qi, an agent can be viewed as
a point in Rm. Assume ‖q2 − q1‖ > 0 and connect the agents 1 and 2 by a directed partial-line e12 that
is called the base-edge of the n-grid. An n-grid in which the distance between each two agents is greater
than zero is called collision-free, i.e. ‖qj − qi‖ > γ,∀i, j ∈ I, i 6= j. Define γ = min1≤i<j≤n ‖qj − qi‖. We
call γ the safety margin of the n-grid. Notice that in any collision-free n-grid, the safety margin is positive
(γ > 0). In Fig. 4 (a), an n-grid of agents and its base-edge e12 is shown. For any n-grid in R2, a body-axes
can be defined by taking e12 as the x-axis and e⊥12 = Te12 (read “orthogonal e12”) as the y-axis where T is
a rotation by π/2 as the following

T =
[

0 −1
1 0

]
Notice that for a vector x = (x1, x2)T , x⊥ = Tx = (−x2, x1). Let n(x) = x/‖x‖ and for qi 6= qj define

nij = n(qj − qi) =
qj − qi
‖qj − qi‖

Then, (φ1, φ2) = (n12,n⊥12) defines the bases of the body-axes. In general, in a collision-free n-grid, any
two arbitrary agents can be used to define an orthonormal bases (nij ,n⊥ij). For the special choice of e12
as the base-edge, the coordinates of points 1 and 2 in the body-axes are given by (0, 0)T and (0, l)T (with
l = ‖q2−q1‖), respectively. l is a single degree of freedom (DOF) that determines the distance between agents
1, 2. The position of the remaining (n − 2) is each specified in the body-axes by their (x, y)-coordinates.
Therefore, each remaining agent introduces 2 more degrees of freedom. Thus, the total number of degrees of
freedom of an n-grid is f = 1 + 2(n− 2) = 2n− 3 given that n ≥ 2. In the body-axes, an n-grid is uniquely
specified by a (2n− 3)-dimensional vector

ϕ = (l, x3, y3, x4, y4, . . . , xn, yn) ∈ Q := R≥0 × R2n−4 (2)

We refer to µ as the vector of internal degrees of freedom of an n-grid. Apparently, µ remains invariant
under rotation and translation of all the points in an n-grid. Let b ∈ R2 denote the coordinates of agent 1
in the reference-frame and R be the rotation matrix by θ such that n12 = Re1 where e1 = (1, 0)T denotes
the 1st base of the reference-frame. Then (b, R) ∈ SE(2) (which is a 3-dimensional manifold) represents
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the 3 external degrees of freedom of an n-grid. We call (b, θ) the navigational variables of the n-grid. In
general, any point qc =

∑n
i=1 λiqi with a fixed set of λi’s satisfying

∑n
i=1 λi = 1 and an arbitrary unit vector

r satisfying
< r,n12 >= c0 = const.

can be chosen to represent the position and attitude of the formation of an n-grid as (qc, r). The (qc, r) can
be interpreted as the position and attitude of a virtual agent called the navigation (virtual) agent associated
with the formation of n agents.

Remark 2. A special choice of λi’s and c0 is λi = 1/n that gives the position of the center of mass of all agents
and c0 = 0 corresponding to r = n⊥12. Another interesting choice of the attitude r is r = (qj − qc)/‖qj − qc‖
where qc is the center of mass and agent j is an attitude leader.

Note. For the special case where all agents in an n-grid coincide, define n12 = e1. This case is excluded
throughout the paper, unless otherwise is stated.

Definition 1. (formation) A formation ϕ of n-agents is a point on the manifold Q (defined in (2)) associated
with the set of n-grids in R2. The position and attitude of a formation is defined as ψ = (qc, r).

Example 1. In Fig. 4 (b), an equilateral formation of three vehicles (i.e. a 3-grid) with its associated position
and attitude (qc, r) is shown. Here, vehicle 3 is the attitude leader.

The method that is introduced here for representation of formations of planar n-grids can be directly
generalized to any other dimension m ≥ 3.

Question 1. Is it possible to specify f(n) = 2n− 3 algebraic constraints in the form of the distance between
the points in an n-grid in R2 that uniquely determines the formation associated with the n-grid?

The correct answer depends on what we mean by uniqueness. Later on, we rephrase and answer Question 1
in the context of graph theory (section 3.2).

3.2 Graph Rigidity

Let G = (V, E ,W) be a weighted graph with the set of vertices V = {v1, . . . , vn} (i.e. |V| = n), the set of
edges E , and the set of weights W. In addition, define I = {1, 2, . . . , n} as the set of indices of the element of
V. Each agent in a multi-agent system can be viewed as a node of the graph G which represents the overall
system.

Remark 3. Throughout this paper, we assume that controller of the multi-agent system is distributed. This
means that each agent performs sensing and communication with all of its neighbors Ji := {j ∈ I : eij ∈ E}
in a graph G = (V, E). As a special case, this definition of a neighbor includes the case of spatial neighbors
of an agent that are located within a distance d > 0 of each agent (see [1]).

Let qi ∈ Rm denote the coordinates vector assigned to node vi of the graph. Then q = (q1, · · · , qn)c ∈ Rmn

is called a realization of G iff
‖qj − qi‖ = wij , ∀eij ∈ E , qi, qj ∈ Rm

where W = {wij}, E = {eij}. The pair (G, q) is called a framework. An infinitesimal motion is an assignment
of a velocity vector pi to the vertex vi of the graph G such that

〈pj − pi, qj − qi〉 = 0, ∀eij ∈ E (3)

where 〈·, ·〉 denotes the inner product. A flexing of a framework (G, q) is a family of realizations of G
parameterized by t, q(t) : [0, 1] → Rmn such that q(0) = q and q(t) is a differentiable function of t. Let
p(t) = q̇ be the vector of velocities assigned to each node. Then, a flexing q(t) satisfies the following relation

〈pj(t)− pi(t), qj(t)− qi(t)〉 = 0, ∀eij ∈ E ,∀t ∈ [0, 1] (4)
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Clearly, the rigid motions of Rm are length preserving and pi = pi(t) defines an infinitesimal motion of the
family of graphs G(t) with realization q(t) where t ∈ [0, 1]. These rigid motions are called trivial flexings
of a framework. A framework (G, q) is called infinitesimally rigid, iff the only infinitesimal motions of the
framework are trivial motions. In other words, rigidity of a graph G concerns answering to the following
question:

Question 2. Consider a weighted graph G that can be embedded in Rm. Is the realization of G unique up to
a congruence (i.e. rotation and translation)?

Apparently, Question 1 is a special case of question Question 2 in which the graph has |E| = f(m,n)
edges. It turns out that rigidity of graphs is a generic property in the sense that almost all realizations of a
particular graph are either infinitesimally rigid, or flexible [9]. Thus, rigidity is a generic property of graphs.
This eliminates the necessity to check the rigidity property for all possible realizations of a graph.

Note. In the context of rigidity of graphs, it is assumed that all the edges are directed and the graph has
neither undirected edges, nor edges from one node to itself.

Throughout this paper, we assume each agent performs sensing and communication with all of its neigh-
bors that are defined as the following:

Definition 2. (neighbors) The indices of the neighbors of the node vi in the graph G = (V, E) is denoted by
Ji and defined as Ji := {j ∈ I : eij ∈ E}.

A combinatorial characterization of rigidity of graphs in R2 was first obtained by Laman [7]. First, we
need to define the Laman subgraph of a graph.

Definition 3. (Laman subgraph) A Laman subgraph of a graph G = (V, E) is a graph H = (VH, EH) such
that VH ⊂ V, |VH| ≥ 2, and EH = E|VH := {eij ∈ E : vi, vj ∈ VH} (We read EH is the restriction of E to VH)

Theorem 1. (Laman, 1970 [7]) A planar graph G = (V, E) with n ≥ 2 nodes is rigid iff there exists a
subset EH ⊂ E of 2n− 3 edges of G such that for the graph H = (V, EH) with n nodes, each Laman subgraph
Y = (VY , EY ) of H satisfies the property |EY | ≤ 2|VY | − 3.

Definition 4. (essential subgraph) We refer to H in Theorem 1 as the essential subgraph of the rigid graph
G.

Definition 5. (independent/redundant edges) An edge e of a rigid graph G = (V, E) is called redundant, iff
after removing e from E , the graph remains rigid. Otherwise, e is called an independent edge.

According to Laman’s Theorem, any planar rigid graph G (n ≥ 2) has at least 2n − 3 edges. Laman’s
Theorem was later generalized by Lovász and Yemini in [8]. Based on their work, in [13] an O(n2) algorithm
is give that determines whether a graph is rigid or not. Another (O(n1.15) algorithm (worst case O(n2)) is
presented in [14] as a test for graph rigidity.

3.3 Minimally Rigid Graphs

Any rigid graph G with n ≥ 2 nodes and 2n− 3 edges is called a minimally rigid graph (MRG). Apparently,
any MRG is the essential subgraph of itself. In addition, every edge of an MRG is independent.

Due to computational and communications costs in a network of n-vehicles, we are interested in the
least possible number of edges between the agents that creates a rigid graph and thus a locally stabilizing
distributed control law for each vehicle [4]. This makes minimally rigid graphs the ideal choice for us.
Moreover, it will become clear later that MRGs benefit from nice analytic properties that allow one to
construct bigger graphs through connecting minimally rigid subgraphs. This is explained in complete details
in section 4.

The edges of a minimally rigid graph G = (V, E ,W) define the following set of shape variables for the
graph:

ηij := ‖qj − qi‖ − wij , ∀eij ∈ E (5)
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We call the column vector η and manifold Q(G) defined by

η = {ηij} ∈ Q(G) := Πeij∈E [−wij ,∞) ⊂ R2n−3 (6)

as the shape configuration and shape manifold of G. Any point at the boundary of Q(G) corresponds to a
collision between two agents. The structural potential function of the graph G is defined as a smooth, proper,
and positive definite function V (η) that satisfies V (0) = 0. Two examples of V (η) (or V (q)) are given in [4]
as the following:

V1(η) =
∑

eij∈E η
2
ij

V2(η) =
∑

eij∈E [(1 + η2
ij)

1
2 − 1]

(7)

Clearly, V2(q) := V2(η) has a bounded gradient w.r.t. q and this is the key in designing a bounded control
input for structural formation stabilization [4].

4 Main Results: Rejoin/Split of Formations of Multi-Agents

To study and manipulate rejoin and split of formations of multiple agents, we need to formally define some
basic operations on graphs that preserve the rigidity properties of the obtained graphs associated with
rejoin/split maneuvers in multi-agent formations. For doing so, we discuss the problem of joining two rigid
graphs to construct a new composite rigid graph. This operation is called rejoining graphs. Later, we discuss
how a rigid graph can be decomposes to two sets of disjoint graphs that are both rigid. The second operation
is called splitting a graph. These basic operations (together with some other operations) constitute a novel
graph algebra. This graph algebra greatly facilitates representation of the rejoin operation of graph that is
more complicated than the split operation.

4.1 Node Augmentation to Graphs

A key ingredient in formal definition of rejoin/split of rigid graphs is the node augmentation operation.
Before, we describe this operation, we need to define proper Laman subgraphs and present an axiom.

Definition 6. (proper Laman subgraphs) A Laman subgraph Y = (VY , EY ) of a graph G = (V, E) satisfying
the property |EY | ≤ 2|VY | − 3 is called a proper Laman subgraph.

Axiom 1. (single node rigidity) Any graph with a single node is rigid in Rm for dimension m ≥ 1 is
minimally rigid.

Definition 7. (node augmentation for single node graphs) Consider two single node graphs G1 = ({v1}, ∅, ∅)
G2 = ({v2}, ∅, ∅), the node augmentation is an operation that creates a graph G = ({v1, v2}, {e21}, {d21}) and
is denoted by

G := G1 ⊕ G2 (8)

where d21 = ‖e21‖ and ‖e‖ denotes the length of an edge e. By a slight abuse of notation, we write
G1 = {v1},G2 = {v2} and then G can be rewritten as

G := {v1} ⊕ {v2}

Notice that a graph with two nodes and one edge is minimally rigid (due to Laman’s theorem). Before
we define the node augmentation for graphs with multiple nodes, we need to define the union of two graphs.

Definition 8. (union) Let G1 = (V1, E1,W1) and G2 = (V2, E2,W2) be two weighted graphs. The union of G1

and G2 is a graph
G = G1 ∪ G2 := (V1 ∪ V2, E1 ∪ E2,W1 ∪W2)

8
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Figure 5: Augmentation of the node k at the edge (i, j) of a multi-node graph.

Definition 9. (node augmentation for multi-node graphs) Consider a graph G = (V, E ,W) with n ≥ 2 nodes
and let vk 6∈ V be the vertex of a single node graph G0 = ({vk}, ∅, ∅) with no edges. By a slight abuse of
notation we denote G0 = {vk}. Let q1, . . . , qn be a realization of G and assume qk does not coincide with
any vertices of G, i.e. ‖qk − qi‖ > 0, for i = 1, . . . , n. The node augmentation at (vi, vj) (i.e. an unordered
pair of distinct vertices) is an operation on two graphs with n nodes and one node that creates a new graph
Ga = (Va, Ea,Wa) with n+ 1 nodes and |Ea| = |E|+ 2 edges defined as the following

Va = V ∪ {vk}, Ea = E ∪ {eki, ekj}, Wa = W ∪ {‖eki‖, ‖ekj‖}, (9)

where ‖e‖ denotes the length of the edge e. The node augmentation operation is denoted by

Ga := G|(vi,vj) ⊕ {vk} (10)

whenever an edge eij ∈ E , this operation is equivalently expressed as

Ga := G|eij ⊕ {vk} (11)

The operation of node-augmentation is shown in Fig. 5. In this figure, the augmented node and edges
are all drawn by dashed lines.

Definition 10. (a triangular graph) A triangular graph T is a graph with three nodes, i. e. V = {v1, v2, v3},
and a set of three directed edges ET ⊂ E = {e12, e21, e13, e31, e23, e32}.

A (special) triangular graph can be created using two consecutive node-augmentations as the following:

T = ({v1} ⊕ {v2})⊕ {v3}

Since the graph {v1} ⊕ {v2} only has a single edge, the edge location in the last equation is dropped.

Remark 4. The operation of augmentation of a node vk at the pair (vi, vj) can be equivalently represented
by union of two graphs as follows. Let

T = T (vk, vi, vj) := ({vk, vi, vj}, {eki, ekj}, {‖eki‖, ‖ekj‖} (12)

denote a partial triangular graph with two edges and three nodes. Then Ga, defined in (10), can be expressed
as Ga = G ∪ T .

Here is our first result on construction of rigid graphs via node augmentation.

Theorem 2. Any rigid graph G in R2 remains rigid after node augmentation, i.e. node augmentation
preserves rigidity in R2.
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Proof. See section A.1 in the Appendix.

Corollary 1. Any minimally rigid graph G in R2 remains minimally rigid after node augmentation.

Proof. According to Theorem 2, the augmented graph Ga is rigid and has |EGa | = (2n−3)+2 = 2(n+1)−3
edges. Thus, Ga satisfies the relation |EGa

| = 2|VGa
| − 3. The fact that Ga is an essential subgraph of itself

follows from the proof of Theorem 2 and that establishes every Laman subgraph Ya of Ga is proper.

Corollary 2. The augmented edges in node augmentation of a minimally rigid graph are independent edges
of the obtained graph.

Proof. This follows from the fact that the obtained graph after node augmentation is minimally rigid and
all of its edges are independent.

The following corollary provides a simple proof of rigidity for minimally rigid graphs.

Corollary 3. Any graph that can be constructed by an ordered sequence of node augmentations starting from
a single node is minimally rigid.

Example 2. Here is a sequence of nodes and edges that create a (minimally) rigid graph shown in Fig. 6 (a),
(b).

Ga : 1; 2, (2, 1); 3, (3, 1), (3, 2); 4, (4, 2), (4, 3); 5, (5, 2), (5, 4);
6, (6, 4), (6, 3).

Gb : 1; 2, (2, 1); 3, (3, 1), (3, 2); 4, (4, 2), (4, 3); 5, (5, 3), (5, 4);
6, (6, 4), (6, 5); 7, (7, 5), (7, 6).

Gc : 1; 2, (2, 1); 3, (3, 1), (3, 2); 4, (4, 2), (4, 3).
Gd : 1; 2, (2, 1); 3, (3, 1), (3, 2); 4, (4, 2), (4, 3); 5, (5, 3), (5, 4).

(13)

2 3

45 6

1
.

1

2 3

4 5

6 7

.

(a) (b)

2 4

31
.

51 3

  
2 4

(c) (d)

Figure 6: (a) A rigid graph Ga with n = 6 nodes and ne = 9 edges, (b) A rigid graph Gb representing a
V -formation of n = 7 vehicles with ne = 11 edges, (c) a square graph Gc with a diagonal edge representing
a diamond formation of four vehicles, and (d) A rigid graph Gd with n = 5 nodes on a line representing a
platoon of five vehicles.

4.2 Rejoining Two Graphs

As described earlier in section 2, the rejoin operation of two subgroups of vehicles is very important after they
pass an obstacle (see Figures 3 (a), (b)). In this section, we present the graph theoretical tools/operations that
create a rigid composite graph by combining the graphs associated with each subgroup of agents/vehicles.
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Let G1 = (V1, E1,W1) and G2 = (V2, E2,W2) be two graphs with disjoint set of vertices V1 ∩ V2 = ∅ and
n1 ≥ 2 and n2 ≥ 2 nodes, respectively. We say G1 and G2 are edge-attachable at eij = (vi, vj) ∈ E1 and
ekl = (vk, vl) ∈ E2 iff eij and ekl have the equal lengths, i.e. ‖eij‖ = ‖ekl‖. Before describing the operation
of edge-attachment of two graphs, we need to introduce three basic operations on graphs. Namely, the
operations of renaming of vertices, edge-addition, and edge-subtraction in a graph.

Definition 11. (single-node renaming) Let G = (V, E) be a graph and vk 6∈ V be an extra node. The operation
of renaming vi ∈ V in G by vk means creating a new graph G′ = (V ′, E ′) such that V ′ = (V \ {vi}) ∪ {vk}
and E ′ = (E \ Ei) ∪ Ek where

Ei = {e ∈ E : e = (vi, vj) ∨ e = (vj , vi)},
Ek = {(vi, vk) : (vi, vj) ∈ E} ∪ {(vk, vi) : (vj , vi) ∈ E}

(14)

Definition 12. (multi-node renaming) Similarly, more than one node in a graph can be renamed. The
operation of renaming an ordered list of nodes v1, v2, . . . , vm in G by v′1, v

′
2, . . . , v

′
m is called multi-node

renaming and is denoted by
G′ = Ren(G; v1, v2, . . . , vm|v′1, v′2, . . . , v′m)

This operation means creating a new graph G̃ iteratively as the following

G0 := G
Gk := Ren(Gk−1; vk|v′k), k = 1, . . . ,m
G′ := Gm

(15)

With a minor abuse of notation, the renaming operation can be applied to the set of edges of a graph instead
of the whole graph.

Definition 13. (edge-addition/subtraction) Let G = (V, E) be a graph and let G+ := (V, E ∪ {e}). Then the
operation [·]+e on a graph defined as G+ = [G]+e is called edge-addition. Similarly, let G− := (V, E \ {e}).
Then, the operation [·]−e on a graph defined by G− = [G]−e is referred to as edge-subtraction. Notice that
for weighted graphs, edge addition (or subtraction) operation adds (or subtracts) the element w = ‖e‖ to
(from) the set of weights W.

.

1

2

3

45

2’

3’

5’
5’

3’
5

4

1

2

3

.

4’ 4’

1’

Figure 7: Edge-attachment between two graphs at the edges (1, 2) and (1,′ , 2′) with equal length.

Definition 14. (edge-attachment) Let G1 = (V1, E1,W1) and G2 = (V2, E2,W2) be two graphs that are
edge-attachable at eij ∈ E1 and ekl ∈ E2. Define

G−2 = [G2]−ekl
:= (V2, E2 \ {ekl},W2 \ {wkl}),

and let G′2 = Ren(G−2 ; vk, vl|vi, vj). Then, the edge-attachment operation of G2 = (V2, E2) to G1 = (V1, E1) at
eij ∈ E1 is defined as

G := G1 ∪ G′2 (16)
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and denoted by
G = G1|eij

⊕ G2|ekl
(17)

We call G the attachment (graph) of G1 and G2. The overall edge-attachment operation can be equivalently
expressed as follows

G1|eij
⊕ G2|ekl

:= G1 ∪ Ren([G2]−ekl
; vk, vl|vi, vj) (18)

Notice that the edge-attachment operation that is shown schematically in Fig. 7 creates a new graph
G = (V, E ,W) with V = V1∪(V2\{vk, vl}), E = E1∪Ren(E2\{ekl}; vk, vl|vi, vj), and W = ‖E‖. Furthermore,
the obtained graph G has n = (n1 + n2)− 2 nodes (n ≥ 2) and |E| = |E1|+ |E2| − 1 edges.

Example 3. Consider two triangular graphs T1 = ({v1, v2, v3}, {e12, e23, e31}) and T2 = ({v4, v5, v6}, {e45, e56, e64})
and let ‖e23‖ = ‖e56‖ then the graph G = T1|e23⊕T2|e56 is a graph with the set of vertices V = {v1, v2, v3, v4}
and the set of edges E = {e12, e23, e31, e42, e34}.

Our main motivation to define the operation of edge-attachment of two weighted graphs is the following
result.

Theorem 3. (edge-attachment) Let G1 and G2 be two rigid graphs with disjoint set of vertices. Assume
that the corresponding essential subgraphs H1 and H2 of these graphs possess attachable edges eij ∈ EH1 and
ekl ∈ EH2 . Then the attachment G = G1|eij

⊕ G2|ekl
is a rigid graph.

Proof. See section A.2 in the Appendix.

Figure 8: A Z-link in four possible configuration of edges.

Definition 15. (Z-link) We refer to a bipartite graph K2,2 with three edges, shown in Fig. 8, as a Z-link.

Remark 5. The name “Z-link” comes from the shape of the graph in the upper left corner of Fig. 8.

Definition 16. (rejoining two graphs) The operation of rejoining two graphs G1 = (V1, E1) and G2 = (V2, E2)
via a Z-link, Z = (VZ , EZ), means creating a new graph

G = G1|e1 ⊕Z G2|e2 (19)

where G = G1 ∪ Z ∪ G2 and VZ = V(e1) ∪ V(e2), i.e. the vertices of the Z-link are the end-points of two
edges e1 and e2. The joining operation is schematically shown in Fig. 9. The edges that are removed after
edge-attachment are shown with dashed lines.

Here is an important result that states how two graphs need to be connected such that the obtained
graph after connection is rigid. This is particularly useful in rejoin maneuvers of two formations of multiple
vehicles.

Theorem 4. Let G1,G2 be two rigid graph each with more than two nodes. Assume e1, e2 are edges of essential
subgraphs of G1,G2, respectively. Then, the connection of G1 and G2 via a Z-link given by G = G1|e1 ⊕Z G2|e2

is a rigid graph.

Proof. See section A.3 in the Appendix.
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Z−link

Figure 9: Joining two graphs using a Z-link (here the direction of the edges can be chosen arbitrarily).

Corollary 4. Two minimally rigid graphs that are connected using a Z-link construct a minimally rigid
graph.

Example 4. In Fig. 2, two triangular formations of vehicles are rejoined using a Z-link to create a formation
of six vehicles with a minimally rigid interconnection graph.

4.3 Splitting of A Graph

In section 2, the split operation of a group of vehicles into two subgroups is discussed. This situation occurs
when a group of vehicles come across an obstacle (see Figures 3 (a), (b)). In the splitting maneuver, we
first classify the vehicles into two subgroups. Then, create a minimally rigid graph for n1-grid and n2-grid
(n1 + n2 = n) associated with each subgroup (or class). The latter procedure is performed using successive
node-augmentations or rejoining two subgraphs using Z-links.

The classification of the vehicles into two subgroups can be performed as follows. Let point A be the tip
of the obstacle, meaning that if we move a line orthogonal to the attitude r along the direction of r, it would
first intersect the obstacle at point A. Let A = (x1, x2)T . Define the location of the point B = (y1, y2)T as
B = A + r. Then the directed partial-line AB is parallel to the desired attitude r (see Fig. 3 (b)). Define
the following triangular orientation function

h(x, y, z) := det

 x1 x2 1
y1 y2 1
z1 z2 1

 (20)

that is widely used is computer vision and computational geometry. For all i ∈ {1, . . . , n}, set

Ori(qi) :=
{

“right” if h(x, y, qi) ≤ 0
“left” if h(x, y, qi) > 0 (21)

If Ori(qi) = “left”, then vehicle i is a member of class 1 and takes the left path around the obstacle, otherwise
it is a member of class 2 and takes the right path around the obstacle. This is a distributed algorithm for
splitting a group of vehicles into left and right subgroups. In the sense that all the agents have to come
to a consensus [15, Chap. 12] regarding the values of r, (x1, x2)T . Further study of the consequences of
the uncertainties and delays created by solving such a consensus problem in an asynchronous fashion [15,
Chap. 14] on the separation of the two subgroups of the vehicles is the topic of future research. We have
presented several examples. All the aforementioned methods are implemented and simulation results for
split, rejoin, and reconfiguration of formations are available upon request (even in the form of movies) and
will be included in the final presentation of the paper.
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5 Conclusion

In this paper, we provide a unified graph-theoretical framework that allows us to formally define formations of
multiple vehicles and their stabilization issues. We clarified the important role of graph rigidity and minimally
rigid graphs in construction of structural potential functions and manipulation of multiple formations. This
includes formal representation of split, rejoin, and reconfiguration maneuvers for formations of multi-vehicle
systems. We presented a hybrid system framework for consecutive execution of a set of maneuvers for a
group of agents/vehicles that allows high-level planning of operations in multi-vehicle systems. We introduce
an algebra that formalizes performing some basic operations on graphs and allows creation of larger rigid-
by-construction graphs by combining smaller rigid subgraphs (the size is measured in terms of the number
of nodes in the graph). This is particularly useful in performing and representing rejoin/split maneuvers of
multiple formations in a distributed fashion.

A Appendix

A.1 Proof of Theorem 2

The result is obvious if G is a single node graph. Therefore, assume G is a multi-node rigid graph. Based
on Laman’s Theorem, there exists an essential subgraph H of G with n ≥ 2 nodes and |EH| = 2n− 3 edges
such that each Laman subgraph Y of H satisfies |EY | ≤ 2|VY | − 3. Define an augmented graph

Ha := H|(vi,vj) ⊕ {vk}

with n+1 nodes and |EHa
| = (2n−3)+2 = 2(n+1)−3 edges, i.e. the relation |EHa

| = 2|VHa
|−3 is satisfied

for Ha). We prove that Ha is an essential subgraph of Ga. Every Laman subgraph Ya of Ha either contains
vk or not. In the latter case, Ya = Y where Y is a proper Laman subgraph of H and thus the relation
|EYa

| ≤ 2|VYa
|− 3 holds. In the former case where vk is a node of Ya, the subgraph Ya can be decomposed as

Ya = Y |(vi,vj) ⊕ {vk}

which implies |EYa | = |EY |+ 2 and |VYa | = |VY |+ 1, thus

|EYa | = |EY |+ 2
≤ (2|VY | − 3) + 2
= 2|VY | − 1
= 2|VYa

| − 3

(22)

and this proves Ya is a proper subgraph of Ha. Therefore, Ha is an essential subgraph of Ga and Ga is
rigid.

A.2 Proof of Theorem 3

The set of edges E of G is the union of two disjoint set of edges E1 and E ′2 where E ′2 is the set of edges of
G′2 = Ren([G2]−e2

; vk, vl|vi, vj). By definition of an essential subgraph, it follows that H1,H2 are graphs with
n1, n2 nodes and m1 = 2n1 − 3,m2 = 2n2 − 3 edges, respectively. Define H = H1|e1 ⊕H2|e2 . We prove that
H, the attachment of essential subgraphs of G1,G2, is a valid essential subgraph of the attachment G. First,
observe that

m := |EH| = |EH1 |+ |EH2 | − 1 = 2(n1 + n2 − 2)− 3 = 2n− 3

where n = |VG| is the number of the nodes in the attachment G. This means H has the correct number of
edges. Let Y be a Laman subgraph of H, then EY can be decomposed into two disjoint set of edges EY1 ⊂ E1
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and EY ′
2
⊂ E ′2 such that EY = EY1 ∪ EY ′

2
. Define Y1 = (V(EY1), EY1) and Y ′2 = (V(EY ′

2
), EY ′

2
). Three cases

arise: i) vi, vj ∈ VY ′
2
, ii) either vi ∈ VY ′

2
, or vj ∈ VY ′

2
, and iii) vi, vj 6∈ VY ′

2
. In case i) set

Y2 = [Ren(Y ′2 ; vi, vj |vk, vl)]+ekl

in cases ii), without loss of generality assuming that vi ∈ VY ′
2
, set

Y2 = Ren(Y ′2 ; vi|vk)

and in case iii) set Y2 = Y ′2 . By definition, Y1, Y2 are Laman subgraphs of H1,H2, respectively. Since G1,G2

are rigid both Y1, Y2 are proper subgraphs, therefore |EYk
| ≤ 2|VYk

| − 3 for k = 1, 2. In addition, in case i),
Y ′2 has one edge less than Y2 which means |EY ′

2
| ≤ 2|VY ′

2
| − 4. In cases ii) and iii), Y ′2 has the same number

of nodes and edges as Y2 and thus |EY ′
2
| ≤ 2|VY ′

2
| − 3. In all three cases, |EY | = |EY1 |+ |EY2 |. We obtain that

in case i), the graph has |VY | = |VY1 |+ |VY ′
2
| − 2 nodes and the number of edges of Y satisfies the following

upper bound
|EY | ≤ (2|VY1 | − 3) + (2|VY ′

2
| − 4) = 2|VY | − 3 (case i)

In case ii), the graph Y has |VY | = |VY1 |+ |VY ′
2
| − 1 nodes and

|EY | =≤ (2|VY1 | − 3) + (2|VY ′
2
| − 3) < 2(|VY1 |+ |VY ′

2
| − 1)− 3 = 2|VY | − 3 (case ii)

Finally, in case iii), the graph has |VY | = |VY1 |+ |VY2 | nodes and

|EY | ≤ (2|VY1 | − 3) + (2|VY ′
2
| − 3) = 2(|VY1 |+ |VY ′

2
|)− 6 < 2|VY | − 3 (case iii)

As a result, in all three cases, Y is a proper Laman subgraph of H, and therefore G is rigid.

A.3 Proof of Theorem 4

Without loss of generality, assume e1 = (v1, v2) and e2 = (v3, v4). Define the following graph

Z ′ = ({v′1, v′2, v′3, v′4}, {z′1, z′2, z′3, e′1, e′2})

where Z ′ is obtained from the Z-link Z = ({v1, v2, v3, v4}, {z1, z2, z3}) with

z1 = (v1, v3), z2 = (v3, v2), z3 = (v2, v4)

using successive basic operations of edge-addition (twice) and renaming (once) as seen in the following

Z ′ = Ren([[Z]+e1
]+e2

; v1, v2, v3, v4|v′1, v′2, v′3, v′4)

In addition, ‖e′i‖ = ‖ei‖ for i = 1, 2. Thus Z ′ is attachable to both G1 and G2 via e′1 and e′2, respectively.
Observe that the graph Z ′ with n(Z) = 4 nodes and ne(Z) = 2n(Z)−3 = 5 edges is a minimally rigid graph.
As a result, e′1, e

′
2 are edges of the essential subgraph of Z ′. By direct calculations, G = G1|e1 ⊕Z G2|e2 can

be expressed as the successive attachment of Z ′,G2 and then a consecutive attachment to G1, i.e.

G = G1|e1 ⊕ (G2|e2 ⊕ Z ′|e′2)|e′1 (23)

since attachment preserves rigidity, the obtained graph G is rigid. The only remaining technical point is to
show that after attachment of Z ′ and G2 that creates G3 = G2|e2 ⊕Z ′|e′2). There exists an essential subgraph
of G3 that contains the edge e′1. Let H2 be an essential subgraph of G2 that contains e2 and recall that Z ′ is
a minimally rigid graph. Thus H3 = H2|e2 ⊕Z ′|e′2 is a minimally rigid graph that contains the edge e′1. It is
straightforward to show that H3 is the essential subgraph of G3. Therefore, we showed that by construction,
there exists an essential subgraph of G3 = (G2|e2 ⊕ Z ′|e′2) contains the edge e′1 and according to Theorem 3,
the obtained graph G = G1|e1 ⊕ G3|e′1 is rigid.
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