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Abstract

In this paper, we provide a theoretical framework that consists of graph theoretical and
Lyapunov-based approaches to stability analysis and distributed control of multi-agent forma-
tions. This framework relays on the notion of graph rigidity as a means of identifying the shape
variables of a formation. Using this approach, we can formally define formations of multiple
vehicles and three types of stabilization/tracking problems for dynamic multi-agent systems.
We show how these three problems can be addressed mutually independent of each other for a
formation of two agents. Then, we introduce a procedure called dynamic node augmentation
that allows construction of a larger formation with more agents that can be rendered struc-
turally stable in a distributed manner from some initial formation that is structurally stable.
We provide two examples of formations that can be controlled using this approach, namely, the
V -formation and the diamond formation.

1 Introduction

Formation stabilization and tracking for systems of multiple vehicles/agents are of primary interest
in both military and industrial applications. Multi-agent systems arise in broad areas including
formation flight of unmanned aerial vehicles (UAVs), coordination of satellite clusters, automated
highways, understanding the coordination and movement of flocks of birds or schools of fish [1],
coordination of underactuated underwater vehicles and surface vessels for search and rescue oper-
ations, and molecular conformation problems [2].

The applications that are of primary interest in our work include performing maneuvers by
UAVs which (possibly) require doing split/rejoin maneuvers in case a group of vehicles come across
an obstacle, or changing the communication configuration (or information flow [3]) in the network
of vehicles due to the loss of line of sight and/or failure of a communication link (Fig. 1 (a)). In
addition, we are interested in reconfiguration of the formation of a group of vehicles (Fig. 1 (b))
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Figure 1: (a) communication reconfiguration for a group of 6 vehicles that leaves the formation
unchanged and (b) Formation reconfiguration maneuver for a group of 6 vehicles moving in R2.

due to a change of the team-strategy in team-on-team competitive games like playing capture the
flag using mobile robots known as the RoboFlag [4].

A sequence of operational maneuvers that changes the formation and/or information flow in a
multi-agent system is shown in Fig. 2. A crucial element in performing the majority of these ma-
neuvers is the capability to solve stabilization/tracking problems for formations of multiple dynamic
agents.
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Figure 2: A Hybrid System representing the switching between multiple formations via performing
a set of maneuvers.

The problem of distributed structural stabilization of formations of multiple vehicles using
bounded control inputs is addressed in [5]. This is done by construction of a structural poten-
tial function from a minimally rigid graph that has a unique global minimum (up to rotation,
translation, and folding [5]). In [1], a different type of potential function is used. In the context of
that work, a unique global minimum of the overall potential function is not desirable. Furthermore,
according to [1] construction of a global potential function with a unique minimum requires adding
several virtual vehicles.

In both potential function based methods suggested in [5], [1], the information flow in the
network of multiple agents is undirected and every two agents that are connected through a link
either communicate with each other, or sense relative coordinates w.r.t. each other. This is in
sharp contrast to the work in [3] which readily allows directed information flow. However, the
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mathematical framework in [3] does not apply to agents with nonlinear dynamics and/or performing
operations like rotation of the attitude of a formation.

In summary, the main contribution of this work is to provide a means for performing stabiliza-
tion/tracking in multi-agent systems in distributed and directed fashion that is capable of dealing
with agents that have nonlinear dynamics and/or performing arbitrary rotations and translations.
The key analytical tool is a separation principle that decouples structural stabilization from naviga-
tional tracking and the dynamic node augmentation procedure. This procedure allows construction
of a larger formation with more agents that can be rendered structurally stable in a distributed
manner from some initial formation that is structurally stable.

Here is an outline of the paper. In section 2, we define formations of multiple dynamic agents.
In section 3, we give some background on graph rigidity and define minimally rigid graphs. In
section 4, structural stabilization and tracking for a formation of two agents is presented. In
section 5, we present our main result on dynamic node augmentation. Finally, we make concluding
remarks.

2 Formations of Dynamic Multi-Agents

In this section, we define a formation of n-agents, the position, and the attitude of a formation.
Consider a group of n agents (n ≥ 2) each with the following dynamics{

q̇i = pi

ṗi = ui
(1)

where qi, pi, ui ∈ Rm for all i ∈ I = {1, . . . , n}. Therefore, each agent has a linear dynamics.

Remark 1. This assumption is made for the sake of presenting the main geometric and graph-
theoretic ideas rather than getting involved in the technical details of dealing with nonlinear control
of underactuated/nonholonomic mechanical systems. Control of formations of mobile robots that
are underactuated or posses nonholonomic velocity constraints is the topic of a sequel of this paper.
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Figure 3: (a) A formation of n ≥ 2 agents with a base (1, 2) in R2, and (b) Position and attitude
(qc, r) of the formation of three vehicles.

We refer to a set of n points in Rm as an n-grid. The column vector q = (q1, . . . , qn)c ∈ Rmn is
called the configuration of the n-grid. Identifying an agent i ∈ I by its position qi, an agent can
be viewed as a point in Rm. Assume ‖q2 − q1‖ > 0 and connect the agents 1 and 2 by a directed
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partial-line e12 that is called the base-edge of the n-grid. An n-grid in which the distance between
each two agents is greater than zero is called collision-free, i.e. ‖qj − qi‖ > γ, ∀i, j ∈ I, i 6= j.
Define γ = min1≤i<j≤n ‖qj − qi‖. We call γ the safety margin of the n-grid. Notice that in any
collision-free n-grid, the safety margin is positive (γ > 0). In Fig. 3 (a), an n-grid of agents and
its base-edge e12 is shown. For any n-grid in R2, a body-axes can be defined by taking e12 as the
x-axis and e⊥12 = Te12 (read “orthogonal e12”) as the y-axis where T is a rotation by π/2 as the
following

T =
[

0 −1
1 0

]
Notice that for a vector x = (x1, x2)T , x⊥ = Tx = (−x2, x1). Let n(x) = x/‖x‖ and for qi 6= qj
define

nij = n(qj − qi) =
qj − qi
‖qj − qi‖

Then, (φ1, φ2) = (n12,n⊥12) defines the bases of the body-axes. In general, in a collision-free n-grid,
any two arbitrary agents can be used to define an orthonormal bases (nij ,n⊥ij). For the special choice
of e12 as the base-edge, the coordinates of points 1 and 2 in the body-axes are given by (0, 0)T and
(0, l)T (with l = ‖q2 − q1‖), respectively. l is a single degree of freedom (DOF) that determines
the distance between agents 1, 2. The position of the remaining (n − 2) is each specified in the
body-axes by their (x, y)-coordinates. Therefore, each remaining agent introduces 2 more degrees
of freedom. Thus, the total number of degrees of freedom of an n-grid is f = 1 + 2(n− 2) = 2n− 3
given that n ≥ 2. In the body-axes, an n-grid is uniquely specified by a (2n−3)-dimensional vector

ϕ = (l, x3, y3, x4, y4, . . . , xn, yn) ∈ Q := R≥0 × R2n−4 (2)

We refer to µ as the vector of internal degrees of freedom of an n-grid. Apparently, µ remains
invariant under rotation and translation of all the points in an n-grid. Let b ∈ R2 denote the
coordinates of agent 1 in the reference-frame and R be the rotation matrix by θ such that n12 = Re1
where e1 = (1, 0)T denotes the 1st base of the reference-frame. Then (b, R) ∈ SE(2) (which is a
3-dimensional manifold) represents the 3 external degrees of freedom of an n-grid. We call (b, θ)
the navigational variables of the n-grid. In general, any point qc =

∑n
i=1 λiqi with a fixed set of

λi’s satisfying
∑n

i=1 λi = 1 and an arbitrary unit vector r satisfying

< r,n12 >= c0 = const.

can be chosen to represent the position and attitude of the formation of an n-grid as (qc, r). The
(qc, r) can be interpreted as the position and attitude of a virtual agent called the navigation
(virtual) agent associated with the formation of n agents.

Remark 2. A special choice of λi’s and c0 is λi = 1/n that gives the position of the center of mass
of all agents and c0 = 0 corresponding to r = n⊥12. Another interesting choice of the attitude r is
r = (qj − qc)/‖qj − qc‖ where qc is the center of mass and agent j is an attitude leader.

Note. For the special case where all agents in an n-grid coincide, define n12 = e1. This case is
excluded throughout the paper, unless otherwise is stated.

Definition 1. (formation) A formation ϕ of n-agents is a point on the manifold Q (defined in (2))
associated with the set of n-grids in R2. The position and attitude of a formation is defined as
ψ = (qc, r).
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Example 1. In Fig. 3 (b), an equilateral formation of three vehicles (i.e. a 3-grid) with its associated
position and attitude (qc, r) is shown. Here, vehicle 3 is the attitude leader.
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Figure 4: A formation of n ≥ 2 agents with bases (1, 2), (1, 3) in R3.

The method that is introduced here for representation of formations of planar n-grids can be
directly generalized to any other dimension m ≥ 3. Fig. 4 shows an n-grid in dimension m = 3
with two base-edges e12, e13 that are constructed on a triangle with vertices 1, 2, 3 and a nonzero
area. In this case, the degrees of freedom of a formation is f = 3 + 3(n− 3) = 3n− 6. In general,
for dimension m ≥ 2, the degrees of freedom of the formation of an n-grid is

f = f(m,n) = m(m− 1)/2 +m(n−m) = mn−m(m+ 1)/2

and the dimension of the navigation variables of the formation is m(m + 1)/2.The first term in f
comes from the fact that in a group of m nodes that construct the set of m − 1 base-edges the
distance between each two nodes introduces one degree of freedom, the remaining number of nodes
are n − m and the dimension of their coordinate vector in the body-axes is m. Thus the total
number of degrees of freedom of the formation is f = m(m − 1)/2 + m(n − m). This naturally
raises the following question:

Question 1. Is it possible to specify f = f(m,n) algebraic constraints in the form of the distance
between the points in an n-grid that uniquely determines the formation associated with the n-grid?

The correct answer depends on the choice of m,n and what we mean by uniqueness.

3 Graph Rigidity and Shape Dynamics of a Graph

Let G = (V, E ,W) be a weighted graph with the set of vertices V = {v1, . . . , vn} (i.e. |V| = n
where | · | denotes the number of elements of the set), the set of edges E , and the set of weights
W. In addition, define I = {1, 2, . . . , n} as the set of indices of the element of V. Each agent in a
multi-agent system can be viewed as a node of the graph G which represents the overall system.

Remark 3. Throughout this paper, we assume that controller of the multi-agent system is dis-
tributed. This means that each agent performs sensing and communication with all of its neighbors
Ji := {j ∈ I : eij ∈ E} in a graph G = (V, E). As a special case, this definition of a neighbor
includes the case of spatial neighbors of an agent that are located within a distance d > 0 of each
agent (see [1]).
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Let qi ∈ Rm denote the coordinates vector assigned to node vi of the graph. Then q =
(q1, · · · , qn)c ∈ Rmn is called a realization of G iff

‖qj − qi‖ = wij , ∀eij ∈ E , qi, qj ∈ Rm

where W = {wij}, E = {eij}. The pair (G, q) is called a framework. An infinitesimal motion is an
assignment of a velocity vector pi to the vertex vi of the graph G such that

〈pj − pi, qj − qi〉 = 0, ∀eij ∈ E (3)

where 〈·, ·〉 denotes the inner product. A framework (G, q) is called rigid iff the only acceptable
infinitesimal motions of the framework are due to rigid motions in Rm. For the sake of this paper,
we use the Laman’s theorem as the definition of rigidity in R2. For a detailed treatment of graph
rigidity in the context of formation stabilization of multi-agents we refer the reader to [6].

Definition 2. (Laman subgraph) A Laman subgraph of a graph G = (V, E) is a graph H = (VH, EH)
such that VH ⊂ V, |VH| ≥ 2, and EH = E|VH := {eij ∈ E : vi, vj ∈ VH} (We read EH is the
restriction of E to VH)

Theorem. (Laman, 1970 [7]) A planar graph G = (V, E) with n ≥ 2 nodes is rigid iff there exists a
subset EH ⊂ E of 2n− 3 edges of G such that for the graph H = (V, EH) with n nodes, each Laman
subgraph Y = (VY , EY ) of H satisfies the property |EY | ≤ 2|VY | − 3.

Any rigid graph G with n ≥ 2 nodes and 2n− 3 edges is called a minimally rigid graph (MRG).
Apparently, any MRG is the essential subgraph of itself. In addition, every edge of an MRG is
independent.

Due to computational and communications costs in a network of n-vehicles, we are interested in
the least possible number of edges between the agents that creates a rigid graph and thus a locally
stabilizing distributed control law for each vehicle [5]. This makes minimally rigid graphs the ideal
choice for us. Moreover, it will become clear later that MRGs benefit from nice analytic properties
that allow one to construct bigger graphs through connecting minimally rigid subgraphs. This is
explained in complete details in [6].

The edges of a minimally rigid graph G = (V, E ,W) define the following set of shape variables
for the graph:

ηij := ‖qj − qi‖ − wij , ∀eij ∈ E (4)

We call the column vector η and manifold Q(G) defined by

η = {ηij} ∈ Q(G) := Πeij∈E [−wij ,∞) ⊂ R2n−3 (5)

as the shape configuration and shape manifold of G. Any point at the boundary of Q(G) corresponds
to a collision between two agents. The shape velocity of G is defined as ν = {νij} with elements
νij = η̇ij given by

νij :=
〈qj − qi, pj − pi〉

‖qj − qi‖
= 〈nij , pj − pi〉, ∀eij ∈ E (6)

By definition of ν, any infinitesimal motion of the graph maintains the shape velocity at zero. The
shape dynamics of G is a set of equations in the form

edge dynamics of eij :
{
η̇ij = νij

ν̇ij = (‖pj − pi‖2 − ν2
ij)/‖qj − qi‖+ 〈nij , uj − ui〉

(7)
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where eij = (vi, vj) ∈ E is an edge of the graph G. The overall shape dynamics of G can be expressed
as the following

shape dynamics of G :
{
η̇ = ν
ν̇ = Φ(q̃, p̃) +B(q̃)ũ

(8)

where Φ(q̃, p̃) vanishes at p̃ = 0, B(q̃) is an f × 2f matrix (f = 2n− 3) and

q̃ = {(qj − qi)}eij∈E , p̃ = {(pj − pi)}eij∈E , ũ = {(uj − ui)}eij∈E

are column vectors of relative positions, relative velocities, and relative controls in R2f , respectively.
The structural potential function of the graph G is defined as a smooth, proper, and positive definite
function V (η) that satisfies V (0) = 0. Two examples of V (η) (or V (q)) are given in [5] as the
following:

V1(η) =
∑

eij∈E η
2
ij

V2(η) =
∑

eij∈E [(1 + η2
ij)

1
2 − 1]

(9)

Definition 3. (structural stabilization) By (asymptotic) structural formation stabilization, we mean
(asymptotic) stabilization of the shape dynamics of G around the equilibrium point (η, ν) = 0 such
that for the closed loop system in (8),(η, ν) = 0 is (asymptotically) stable in the sense of Lyapunov.

Remark 4. Clearly, V2(q) := V2(η) has a bounded gradient w.r.t. q and this is the key in designing
a bounded control input for structural formation stabilization in [5].

The following lemma shows that for a formation of n = 2 dynamic agents, exponential structural
formation stabilization can be readily achieved.

Lemma 1. The shape dynamics of G in (8) for n = 2 agents satisfying ũ = α12 · n12 with a scalar
control input α12 ∈ R is fully-actuated.

Proof. For n = 2, ũ = u2 − u1 ∈ R2. Applying the invertible change of control

ũ = [γ12 − Φ(q̃, p̃)]n12

where γ12 ∈ R is the new control, we get {
η̇12 = ν12

ν̇12 = γ12

which is a fully-actuated system with a single degree of freedom.
In this paper, our approach is to define and achieve structural stabilization and navigational

stabilization/tracking for a formation of n = 2 dynamic agents. Then, we augment this formation
with further agents and demonstrate a three-way separation principle in control design for both
current and successively added agents. This process in a graph theoretical setting is called node
augmentation and in [6] it is proved that node augmentation preserves minimal rigidity property
of the obtained graph.

7



y

x

β/2
−β/2

2 u

.

.

t

−α/2

α/2

1

2

Figure 5: The control inputs applied to each agent in a two-agent formation.

4 Stabilization and Tracking for n = 2 Agents

In this section, we demonstrate that structural stabilization, position tracking, and attitude tracking
for a formation of n = 2 agents can be reduced to three separate stabilization problems.

Theorem 1. (structural stabilization and navigation control separation) For a formation of n = 2
agents, shape, rotational, and translational dynamics can be decoupled as the following:

shape:
{
η̇ = ν
ν̇ = us

rotation:
{
Ṙ = Rω̂
ω̇ = ur

translation:
{
ẋ = v
v̇ = ut

(10)

where η = ‖q2 − q1‖ − w12, R = [n12|n⊥12], x = (q1 + q2)/2, ω̂ ∈ so(2), and u1, u2 are given by

u1 = −α
2 n12 − β

2n
⊥
12 + ut

u2 = +α
2 n12 + β

2n
⊥
12 + ut

(11)

and us, ut ∈ R are, respectively, obtained from α, β ∈ R by applying an invertible change of control
and ut ∈ R2.

Proof. The forces applied to each agent are shown in Fig. 5. We have u1 + u2 = 2ut, thus ẍ = ut.
Moreover, since u2 − u1 = αn12 + βn⊥12, the term 〈u2 − u1,n12〉 = α does not depend on the choice
of β. For the shape dynamics of the edge e12, we obtain

η̇ = ν
ν̇ = φ12 + α

(12)

where φ12 = Φ(q̃, p̃). After applying the change of control

α = us −
‖p2 − p1‖2 − ν2

‖q2 − q1‖

8



one gets η̈ = us which determines the structural dynamics of the formation. It remains to establish
the connection between β and the control of the attitude dynamics ur. For doing so, observe that

ω̂ =
[

0 ω
−ω 0

]
and from Ṙ = Rω̂, we have ṅ12 = −ωn⊥12 and ṅ⊥12 = ωn12. Thus, after differentiating both sides of
the following equation

‖q2 − q1‖n12 = q2 − q1

with respect to t, we get
νn12 − ω‖q2 − q1‖n⊥12 = p2 − p1

which means

ω = −〈p2 − p1,n⊥12〉
‖q2 − q1‖

(13)

after differentiating
‖q2 − q1‖ω = −〈p2 − p1,n⊥12〉 (14)

w.r.t. t, we obtain
νω + ‖q2 − q1‖ω̇ = −〈u2 − u1,n⊥12〉 − 〈p2 − p1, ωn12〉 (15)

Noticing that 〈p2 − p1, ωn12〉 = νω and 〈u2 − u1,n⊥12〉 = β does not depend on the choice of α (or
ut), one gets

ur = ω̇ = − β + 2νω
‖q2 − q1‖

(16)

or
β = −(‖q2 − q1‖ur + 2νω) (17)

This change of control is invertible as long as q1 6= q2. The overall control input for agent-i (i = 1, 2)
takes the following explicit form:

ui =
(−1)i

2

(
us −

‖p2 − p1‖2 − ν2

‖q2 − q1‖

)
n12 +

(−1)i+1

2
(‖q2 − q1‖ur + 2νω)n⊥12 + ut (18)

where the controls us, ur, ut can be determined mutually independent of each other.

Theorem 2. Collision-free exponential structural stabilization and navigational tracking can be
achieved for a formation of n = 2 dynamic agents.

Proof. Exponential structural formation stabilization can be achieved using the following controller

us = ks(η, ν) := −c1η − c2ν, c1, c2 > 0 (19)

that is linear in (η, ν) and nonlinear as a function of relative positions and velocities q̃, p̃. Apparently,
us can be chosen to be bounded us = −σ(c1η + c2ν) where σ(·) is a bounded sigmoidal function
(e.g. saturation or tanh(·)). Set y = (η, ν)T ∈ R2 and let Vs(η, ν) = yTPy where P > 0 is a positive
definite matrix be the Lyapunov function for the closed-loop shape dynamics. Then, all the level
sets of Vs(η, ν) in R2 the lie on the right hand side of the vertical line η = −w12 correspond to
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collision-free trajectories of the system. The overall region of attraction of the closed-loop shape
dynamics that is collision-free is a bigger set than the initial conditions starting at the internal part
of the larges level set of Vs(y) that is tangent to η = −w12. This is schematically demonstrated
in Fig. 6. Clearly, exponential collision-free structural stabilization with a margin of ε > 0 is
achieve locally for initial conditions in a set that contains Ω = {(η, ν) ∈ R2 : Vs(η, ν) ≤ c0(ε)} with
c0(ε) = −w12 + ε and 0 < ε < w12. According to the separation principle in Theorem 1, whether
the trajectories of a formation of n = 2 vehicles is collision-free or not has to do nothing with
the choice of its attitude and position controllers and is solely determined by the controller of the
shape dynamics. The size of Ω depends on the values of the parameters w12, ε > 0 and the choice
of c1, c2 > 0. Let θ denote the angle between n12 and the x-axis of the reference frame. Then,
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Figure 6: The collision-free region of attraction of the closed-loop shape dynamics of the formation.

θ̈ = ur. Let xd(·), θd(·) denote the desired position and attitude for tracking. Then, the following
control laws achieve exponential tracking of these trajectories

ur = −c3(θ − θd)− c4(ω − θ̇d) + θ̈d, c3, c4 > 0
ut = −c5(x− xd)− c6(v − ẋd) + ẍd, c5, c6 > 0

(20)

For exponential stabilization to an equilibrium point (xd, θd), simply set (ẋd, ẍd, θ̇d, θ̈d) = 0 in (20).
Substituting the structural control us from equation (19) and the navigation controls ur, ut from
equation (20) in (18) gives the overall control input for each dynamic agent.
Remark 5. According to the separation principle in Theorem 1, whether the trajectories of a
formation of n = 2 vehicles is collision-free or not has to do nothing with the choice of its attitude
and position controllers and is solely determined by the controller of the shape dynamics.
Remark 6. Despite the fact that the structural and navigation controllers in equations (19), (20)
are linear, the controller of each agent in (18) is inherently a nonlinear controller.
Remark 7. For coordinate-independent exponential attitude tracking for SO(2) and SO(3) matri-
ces, we refer the reader to the important work of Bullo [8] for the kinematic equation Ṙ = Rω̂ and
its generalization in [9, pp. 179–184] to the dynamic case.
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5 Main Result: Dynamic Node Augmentation

One possible way to view a multi-agent formation or group of vehicles with n ≥ 3 agents is to start
with a formation of n = 2 agents and then successively add more agents to the formation. This
process is formally described in [6] and is called node augmentation. Roughly speaking, each new
agent, say agent-k, establishes two edges with two exiting agents, say agent-i and agent-j, in the
graph representing the formation. This is shown schematically in Fig. 7. In [6], it is proved that a
minimally rigid graph remains minimally rigid under node augmentation.

i

k

j

Figure 7: Augmentation of the node k at the edge (i, j) of a multi-node graph representing a
multi-agent formation.

Two examples of graphs created using node-augmentation are shown in Fig. 8. Here is a
sequence of nodes and edges that create a (minimally) rigid graph shown in Fig. 8 (a), (b).

Ga : 1; 2, (2, 1); 3, (3, 1), (3, 2); 4, (4, 2), (4, 3).
Gb : 1; 2, (2, 1); 3, (3, 1), (3, 2); 4, (4, 2), (4, 3); 5, (5, 3), (5, 4);

6, (6, 4), (6, 5); 7, (7, 5), (7, 6).
(21)

2 4

31
.

1

2 3

4 5

6 7

.

(a) (b)

Figure 8: (a) A rigid graph Ga with n = 4 nodes and ne = 5 edges representing a diamond formation
and (b) A rigid graph Gb representing a V -formation of n = 7 vehicles with ne = 11 edges.

In this section, we describe the process of control design for the augmented agent, called agent-
k, to achieve structural stabilization of the obtained formation with the use of control inputs of
agent-i and agent-j. The edge dynamics associated with the augmented edges eki and ekj can be
expressed as follows:

eki :
{
η̇ki = νki

ν̇ki = φki + 〈nki, ui − uk〉

ekj :
{
η̇kj = νkj

ν̇kj = φkj + 〈nkj , uj − uk〉

(22)

11



where

φab =
‖pb − pa‖2 − ν2

ab

‖qb − qa‖
(23)

for all indices a, b ∈ {i, j, k}, a 6= b.

Assumption 1. Suppose initially dynamic agent-k is not collinear with agent-i and agent-j and
in addition agent-k applies a control input in the following form:

uk = γinki + γjnkj (24)

where γi, γj ∈ R are new controls for agent-k.

Define the following quantities:

λi = φki + 〈nki, ui〉
λj = φkj + 〈nkj , uj〉

(25)

Under Assumption 1, we obtain the following dynamics for the augmented edges:

eki :
{
η̇ki = νki

ν̇ki = λi − γi − 〈nki,nkj〉γj

ekj :
{
η̇kj = νkj

ν̇kj = λj − 〈nkj ,nki〉γi − γj

(26)

Defining η = (ηki, ηkj)T , ν = (νki, νkj)T , λ = (λi, λj)T , γ = (γi, γj)T , and

S =
[

1 〈nki,nkj〉
〈nki,nkj〉 1

]
(27)

The shape dynamics associated with the augmented edges in (26) can be rewritten as

η̇ = ν
ν̇ = λ− S · γ (28)

where η, ν, λ, γ ∈ R2 and S = ST is an invertible matrix. The invertibility of S follows from
Assumption 1 and the fact that det(S) = 1 − 〈nki,nkj〉2 > 0 for three non-collinear agents i, j,
and k.

Theorem 3. (dynamic node augmentation) Suppose each agent in a group of n dynamic agents
applies a control input that guarantees structural stabilization of a desired formation ϕd with an
associated minimally rigid graph G. Let agent-k be a new agent that is augmented to the exiting
group of agents (represented by G) by two new edges and call the augmented graph Ga. Suppose
agent-k satisfies Assumption 1, then applying the distributed control law uk = γinki + γjnkj by
agent-k with [

γi

γj

]
= S−1(cpη + cdν + λ), cp, cd > 0 (29)

achieves structural stabilization of the shape dynamics of the augmented graph Ga.

12



Proof. The closed-loop shape dynamics of the augmented edges takes the form:

η̇ = ν
ν̇ = −cpη − cdν

(30)

and therefore (η, ν) = 0 is (locally) exponentially stable. A collision-free region of attraction Ω for
the shape dynamics of the augmented edges can be obtained in a similar way that is discussed in
the proof of Theorem 2.

For a general formation of n-agents with n ≥ 3 that can be constructed using successive node
augmentations satisfying the non-collinearity condition in Assumption 1, the dynamic node aug-
mentation procedure can be summarized as follows. The first two agents are used to solve structural
stabilization and navigational tracking problems for a formation of n = 2 agents. Then, each new
agent solves the structural stabilization for the shape dynamics of the augmented edges. This pro-
cedure leads to a distributed control law with a sensing and communication pattern shown in Fig 9.
Here, the source might or might not be an agent and it plays the role of a task command center
for the formation of the vehicles. Apparently, the sensing pattern (flow) required to implement the
controllers obtained using dynamic node augmentation procedure is uni-direction.

Source

1 2

1 2

Communication:

Sensing:

Communication:

i

j
k

k
i

j
x   

u

u

i

j

dx   

Sensing:

.

..

.

,θd,θdd

Figure 9: The information flow in dynamic node augmentation in terms of inter-agent directions
of sensing and communication.

6 Conclusion

In this paper, we provided a theoretical framework that is a mix of graph theoretical and Lyapunov-
based approaches to stability analysis and distributed formation control for dynamic multi-agent
systems. The notion of graph rigidity and minimally rigid graph turned out to be crucial in iden-
tifying the shape variables of a formation. Graph rigidity allowed us to formally define formations
of multiple dynamic agents and three types of stabilization/tracking problems for multi-agent sys-
tems. We stated a separation principle that allows addressing structural stability and navigational
tracking problems independently for a formation of two agents. Then, we introduced a proce-
dure called dynamic node augmentation that allowed construction of a larger formation with more
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agents that can be rendered structurally stable in a distributed manner given that the initial for-
mation is structurally stable. We provided two examples of formations that can be controlled in
a distributed fashion using this approach. Namely, the diamond formation and the V -formation.
One of the main advantages of this framework is that it can be directly generalized to formation
control in R3. Moreover, the sensing performed by each agent in dynamic node augmentation is
uni-directional as supposed to bi-directional sensing as a result of using potential functions.
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