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Abstract: In this paper, we propose a framework for formation stabilization of
multiple autonomous vehicles in a distributed fashion. Each vehicle is assumed to
have simple dynamics, i.e. a double-integrator, with a directed (or an undirected)
information flow over the formation graph of the vehicles. Our goal is to find
a distributed control law (with an efficient computational cost) for each vehicle
that makes use of limited information regarding the state of other vehicles. Here,
the key idea in formation stabilization is the use of natural potential functions
obtained from structural constraints of a desired formation in a way that leads to
a collision-free, distributed, and bounded state feedback law for each vehicle.
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1. INTRODUCTION

Control of systems consisting of multiple vehicles
(or agents) with several sensors and actuators that
are intended to perform a coordinated task is
currently an important and challenging field of re-
search. This is due to broad range of applications
of multi-agent systems in automated highways,
air traffic control, control of a cluster of tele-
scopes, satellite formations, coordinated control of
vehicles involved in search and rescue operations,
cooperative control of mobile robots capable of
playing games (e.g. soccer), and formation flying
of autonomous unmanned aerial vehicles (UAV).

In this paper, our goal is to address distributed
structural stabilization of formations of multiple
vehicles using structural potential functions ob-

1 This work was supported by DARPA under contract

F33615-98-C-3613.

tained naturally from the formation graphs of the
vehicles. An alternative is to use artificial potential
functions as in Leonard and Fiorelli (2001).

The use of the second approach—imposing artifi-
cial potentials among different agents—in robotics
applications began near a decade ago, e.g. see
Rimon and Koditschek (1992). More recently, in
Leonard and Fiorelli (2001), artificial potential
functions have been used for coordination of mul-
tiple vehicles. The main feature of such potential
functions is that they are constant beyond a cer-
tain distance d > 0. This leads to a distributed
control law for each vehicle which does not de-
pend on the position and velocity (i.e. state) of
all other vehicles in the formation. However, the
distributed controller suggested in Leonard and
Fiorelli (2001) does not guarantee stabilization of
the system of multiple vehicles to a unique de-
sired formation. According to Leonard and Fiorelli
(2001), depending on the number of vehicles and
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their initial conditions, the formation of the sys-
tem of vehicles might converge to one of the many
possible formations which is rather undesirable.
This nonuniqueness effect occurs whenever am-
biguity of a formation graph is not taken into
account.

In our work, the distributed property of the con-
troller of each vehicle is achieved by imposing a
specific structure on a weighted graph associated
with the formation of the vehicles. In other words,
the interconnections of the formation graph of the
vehicles are designed in such a way that guaran-
tees collision-free stabilization of the system of
multiple vehicles to a unique and unambiguous
desired formation.

In Fax and Murray (2001), the Laplacian of a
formation graph is used to determine a Nyquist-
type criterion for stability analysis of multi-vehicle
formations in closed-loop with linear controllers.
Though the control design approach in this work is
substantially different from the methods and tools
used in Fax and Murray (2001), it turns out that
in both works, the information flow among the
vehicles, modeled as a graph, has an important
role in stability (or lack of stability) of the closed-
loop formation dynamics.

Formation tracking and reorientation problems
are topics that are addressed in an upcoming
sequel of this paper.

Here is an outline of the paper: In section 2, we
define basic notions related to graph theory, rep-
resentation of multi-agent formations, structural
potential functions, and formation stabilization.
Our main results are presented in section 3. Fi-
nally, in section 4 we make concluding remarks.

2. BASIC NOTIONS AND DEFINITIONS

In this section, we introduce the notion of metric
formation graphs for coordination of multiple ve-
hicles. We begin by explaining the basics of graph
theory and later introduce a class of graphs that
are more convenient for dealing with control of
systems consisting of multiple agents (or vehicles).
The reader should refer to Diestel (1997) for more
details on graph theory.

The planar formation graph (or network) of mul-
tiple vehicles is a planar directed graph or a triplet
G = (V,A, E) that consists of a set of vertices V
with elements vi and i ∈ I = {1, 2, . . . , n} (I is
called an index set), an adjacency matrix A with
elements aij in {0, 1}, and a set of edges E with
elements eij = (vi, vj) ∈ V × V for i, j ∈ I. We
say vj is a neighbor of vi if eij ∈ E . A graph
G is called undirected if it satisfies the property
∀i, j ∈ I, i 6= j : eij ∈ E ⇔ eji ∈ E .

From a computational complexity point of view,
for systems consisting of multiple agents (or vehi-
cles), both the complexity of control design (e.g.
the dimension of the space in which a given convex
optimization problem has to be solved) and the
computational cost of implementing the obtained
controller for each vehicle is proportional to the
degree in which a network of agents are intercon-
nected.

Let us define the connectivity number of vertex vi

as the number of edges leaving vi and denote it by
|vi|. Then, we define the maximum connectivity of
G as m = |V| := maxi∈I |vi| and the connectivity
ratio of G as

ρ(G) =
|V|
|I|

(1)

Notice that by definition, ρ(G) ∈ [1/n, (n −
1)/n] ⊂ (0, 1) where n = |I|. In addition, ρ(G) =
(n−1)/n corresponds to a graph in which each ver-
tex is connected to every other vertex excluding
itself and ρ(G) = 1/n corresponds to a graph that
each vertex is connected to at most one more ver-
tex. We refer to graphs with ρ(G) � 1 as weakly
connected graphs. Also, graphs with ρ(G) = 1− ε
such that 0 < ε � 1 are referred to as strongly
connected graphs.

For instance, consider a directed binary tree G(l)
with l ≥ 1 levels and n = 2l − 1 nodes. For G(l),
m = |V| = 2 is fixed and as the number levels l
increases, the connectivity ratio ρ(G(l)) = 2/(2l−
1) exponentially decreases as a function of l. In
other words, a binary tree with relatively large
number of levels (l � 1) is an example of a weakly
connected graph.

In this paper, we are interested in formation
graphs of multiple vehicles that are weakly con-
nected. Therefore, the adjacency matrices A of
the cases of interest are sparse matrices. This
motivates us to use a compact representation of
A that is more appropriate for weakly connected
graphs. For this purpose, instead of A, we use
the connectivity matrix C which is an n × m
matrix where m = |V| (thus, ρ(G) = m/n). Let
cij ∈ Ve denote an element of C, where Ve = V ∪
{v∞}, v∞ 6∈ V is the extended set of vertices with
an infinite vertex v∞. If all vertices have equal
number of neighbors, then define Ve = V. In
addition, let Ni be the set of neighbors of the
vertex i, i.e. Ni := {vj ∈ V : eij ∈ E} and
Ki := (k1, k2, . . . , kni) ∈ I × I × · · · × I with
ni = |vi| be an ordered ni-tuple (i.e. for all s < t,
ks < kt) of the indices of the elements ofNi. Then,
we define cij as follows:

cij :=
{

vkj
, if 1 ≤ j ≤ |vi|

v∞, otherwise (2)

i.e. the first ni = |vi| elements of the ith row of
C are equal to the neighbors of vi which are or-
dered increasingly according to their vertices. The



remaining elements are all equal to the infinity
vertex v∞ (and are essentially unimportant).

Denote the coordinates of vi in R2 by qi. We define
a metric formation graph (MFG) as a triplet G :=
(Ve, C,D) where D is called the distance matrix
and has the same dimension as the connectivity
matrix C. The element dij of D is the distance
between vi and its jth neighbor vkj

if 1 ≤ j ≤ |vi|
and infinity otherwise, i.e.

dij :=
{
‖qkj

− qi‖, if 1 ≤ j ≤ |vi|
∞, otherwise (3)

where ‖ · ‖ denotes the 2-norm.

Example 1. Consider the metric formation graphs
Ga and Gb as shown in Fig. 1 (a) and (b), respec-
tively. The connectivity ratios for these two graphs
are ρ(Ga) = 2/4 and ρ(Gb) = 3/4 which means Gb

is more connected than Ga. The set of vertices,
connectivity matrix, and the distance matrix for
Ga and Gb are given in the following

v

vv

v1

2 3

4

a

a

a

a

a

v

vv

v1

2 3

4

a a

a a

a

3 a

(a) (b)

Fig. 1. Two directed metric formation graphs each
with four vertices.

V(a)
e = {v1, v2, v3, v4}, V(b)

e = {v1, v2, v3, v4, v∞}

C(a) =


v2 v3

v1 v3

v1 v2

v2 v3

 , C(b) =


v2 v3 v∞
v1 v3 v∞
v1 v2 v∞
v1 v2 v3



D(a) =


a a
a a
a a
a a

 , D(b) =


a a ∞
a a ∞
a a ∞√
3a a a


One notices that the first and last row of C(a),D(a)

are exactly equal for Ga, but the same rows in
C(b),D(b) are substantially different for Gb. In fact,
if the vertices v1 and v4 coincide in Fig. 1 (a), then
the C and D matrices corresponding to this graph
remain the same as C(a) and D(a). In addition,
in Fig. 1 (a), if the edges (v2, v3) and (v3, v2)
are removed, the distance between v2 and v3

can take any arbitrary value in [0, 2a] and the

graph will not be uniquely determined by its C
and D matrices. Both of these ambiguities are
undesirable in local/global formation stabilization
of multiple vehicles.

We make use of the following definitions in this
work: A formation graph G with n vertices is
called rigid if it has at least 2n − 3 critical
links where any directed/undirected edge counts
as a single link (i.e. the edges (v, w), (w, v) ∈
E , v 6= w count as a single link). A link that
eliminates a single flexible degree of freedom of
the graph is called a critical link. According to this
definition, by removing the link between v2 and v3

in Fig. 1 (a), one gets a nonrigid formation graph.
If there exists a pair of distinct vertices v, w ∈ V
(v 6= w) in G that share the same neighbors
which are located on a straight line not passing
through v, w, then G is called a foldable graph
and [v, w] is called a foldable pair. In addition, a
formation graph G with no foldable pairs is called
an unfoldable graph. A formation graph G that
is both rigid and unfoldable is called unambiguous
(i.e. can be uniquely constructed from its C and D
matrices). In other words, any nonrigid or foldable
graph is ambiguous. For planar formation graphs,
a foldable pair of vertices [v, w] ∈ V × V can
be rendered unfoldable by adding a new edge
(v, w) to E , e.g. adding the edge (v4, v1) to Ga

in Fig. 1 (a) renders the graph unfoldable and
therefore unambiguous.

Denote the set of s (non-redundant) constraints
of the lengths of the edges in a metric formation
graph G by φl(qi, qj) = 0 for l = 1, . . . , s and
i, j ∈ I, i 6= j. Each element φl(qi, qj) is a function
of (qi, qj), the coordinates of vi, vj , as the following

φl(qi, qj) := ‖qi − qj‖ − dij , el := (vi, vj) ∈ E
(4)

where dij is an element of the distance matrix D
corresponding to the length of the edge (vi, vj).
We refer to the set of equations in (4) as the set
of algebraic structural constraints of G. Denoting
q = col(q1, . . . , qn) and Φ(q) := col{φl}s

l=1, the
set of structural constraints of G can be expressed
as Φ(q) = 0. We refer to Φ(q) as the structural
constraint function of the formation graph G. Let
G be a metric formation graph with structural
constraint function Φ(q). A point q̄ ∈ R2n is
called an equilibrium formation iff Φ(q̄) = 0.
Equivalently, we say that the formation G is
centered at q̄. It is easy to check that algebraic
structural constraints of a metric formation graph
remain invariant under rotation and translation of
all the coordinates, i.e. Let q̂i = Rqi+b, q̂j = Rqj+
b where (R, b) ∈ SE(2) and RT R = I, then

‖q̂j − q̂i‖ = ‖R(qj − qi)‖ = ‖qj − qi‖
Therefore, by uniqueness of an equilibrium forma-
tion q̄, we mean uniqueness up to an SE(2) sym-



metry. For a system of multiple vehicles, we refer
to a positive definite function V (q) that depends
on the set of algebraic structural constraints of
the formation graph of the vehicles as a structural
potential function. A special class of such potential
functions is V (q) := 〈Φ(q), QΦ(q)〉. We call this
the natural potential function of G where 〈·, ·〉
denotes the standard inner product in Rs.

In this paper, our main goal is to address struc-
tural formation stabilization of a group of n ve-
hicles to a desired undirected metric formation
graph using structural potential functions (e.g.
a natural potential function V (q) with Q = I).
Consider a planar formation of n vehicles with
the following dynamics{

q̇i = pi

ṗi = ui
(5)

where qi, pi, ui ∈ R2 and i = 1, 2, . . . , n. The set
of equations in (5) can be rewritten in a more
compact way as a multi-variable double-integrator{

q̇ = p
ṗ = u

(6)

with q, p, u ∈ R2n. Now, we are ready to define
a stabilization problem for the formation of these
multiple vehicles.

Definition 1. (structural formation stabilization)
Let G be a metric formation graph of n vehicles
with the overall dynamics given in (6) centered
at the equilibrium formation q̄ ∈ R2n. Denote the
equivalent class of desired equilibrium points of
(6) satisfying Φ(q) = 0 up to a symmetry by [x̄] =
col([q̄], 0) ∈ R4n. Then, by structural formation
stabilization of a group of n vehicles to G, we mean
(global/local/asymptotic) stabilization of system
(6) to the equilibrium formation manifold [x̄] in
the sense of Lyapunov.

Definition 2. (neighborhood of a formation) Let
G = (Ve, C,D) be a metric formation graph cen-
tered at q̄ ∈ R2n. Let V (q) be a positive defi-
nite structural potential function for G satisfying
V (q̄) = 0. Denote a connected compact neigh-
borhood of the point q̄i ∈ R2 by Ωi ⊂ R2 and
let c ≥ 0 be a nonnegative constant. We define
a c-level neighborhood of G induced by V (q) as
Ω(c) =

⋃
i∈I

Ωi ⊂ R2 such that the following condi-

tions hold:

i) The Ωi’s are mutually disjoint, i.e. Ωi ∩Ωj =
∅, ∀i, j ∈ I, i 6= j.

ii) V (q) ≤ c, ∀(q1, . . . , qn) ∈ Ω1 × · · · × Ωn.

We call c a separable level-value of G w.r.t. V (q)
iff for every choice of the set of neighborhoods
Ω1, . . . ,Ωn satisfying condition ii) of definition 2,
the Ωi’s remain mutually disjoint.

Definition 3. (collision-free trajectories) Let qi(·)
with i ∈ I denote the trajectory of the ith vehicle
in a formation of n vehicles. We say the position
trajectories of the formation is collision-free iff the
following property holds for

@tc ≥ 0 : qi(tc) = qj(tc)

for all i, j ∈ I, i 6= j.

3. MAIN RESULTS

Let us view the formation of n vehicles with a met-
ric formation graph G and a structural constraints
function Φ(q) centered at a desired equilibrium
formation q̄ ∈ R2n as a simple Lagrangian system
consisting of n particles each with a constant mass
mi > 0. We take the following natural potential
function

V (q) := 〈Φ(q),Φ(q)〉 (7)
as the potential energy of the formation. Denoting
the mass matrix by M = diag(m1, . . . ,mn), the
structural Lagrangian function of the formation
can be written as

L(q, q̇) =
1
2
q̇T Mq̇ − 〈Φ(q),Φ(q)〉 (8)

Due to symmetry of the structural constraints
equations, V (q) is invariant under rotation and
translation of the elements of R2 × . . . × R2 (re-
peated n times), and therefore L(q, q̇) is invariant
under SE(2) symmetry as well. Denoting the gen-
eralized momentum conjugate to q by

π =
∂L
∂q̇

= Mq̇ (9)

the structural Hamiltonian of the system can be
expressed as

H(q, π) =
1
2
πT M−1π + 〈Φ(q),Φ(q)〉 (10)

For the special case of M = I (i.e. I is the
identity matrix), we have p = π and the structural
Hamiltonian takes the following form

H(q, p) =
1
2
‖p‖2 + 〈Φ(q),Φ(q)〉 (11)

Now, we are ready to present our main result
on uniform local structural stabilization of forma-
tions of multiple vehicles.

Theorem 1. (local formation stabilization) Con-
sider a group of n identical vehicles with the for-
mation dynamics given by

q̇ = p, ṗ = u (12)

Then, the following smooth state feedback law

u = K(q, p) := −∇〈Φ(q),Φ(q)〉 −D(q, q̇) (13)

with a damping force D(q, q̇) that satisfies the
following properties

〈D(q, p), p〉 > 0,∀p 6= 0 and D(q, 0) = 0 (14)



guarantees collision-free local asymptotic stabiliza-
tion of the vehicles formation to a desired undi-
rected and unambiguous formation graph G cen-
tered at q̄ ∈ R2n for initial positions of vehicles
starting in a neighborhood Ω(c) of G where c > 0
is a separable level-value of G w.r.t. V (q) and the
initial velocities of vehicles belong to the set

Ωp := {p ∈ R2n : ‖p‖ ≤
√

2c2 − 2‖Φ(q(0))‖2}

In addition, the structural Hamiltonian H(q, p) in
(11) is a valid local Lyapunov function for the
system.

Proof. First, one observes that for all p(0) ∈ Ωp,
the initial energy is bounded, i.e.

H(q(0), p(0)) ≤ c2

In addition, due to Ḣ ≤ 0 that follows from

Ḣ = 〈ṗ, p〉+ 〈∇V (q), p〉
= 〈D(q, p), p〉 ≤ 0

we have H(q(t), p(t)) ≤ H(q(0), p(0) ≤ c2,∀t > 0.
Thus

V (q(t)) ≤ c2, ∀t ≥ 0

or
Φ(q(t)) ≤ c, ∀t ≥ 0

From definition 2, q(t) ∈ Ω(c) for all time t > 0.
Since c ≥ 0 is a separable level-value, all the Ωi’s
are mutually disjoint (i.e. Ωi∩Ωj = ∅,∀i 6= j) and
therefore the position trajectories of the n vehicles
remains collision-free (definition 3) for all time
t > 0 and never leave the neighborhood Ω(C) of q̄.
On the other hand, Ḣ vanishes iff p = 0. But the
largest invariant set in Ω0 := {(q, p) ∈ Ω(c)×Ωp :
p = 0} is the equilibrium formation {(q̄, 0)} and
thus according to LaSalle’s invariance principle
{(q̄, 0)} is (locally) asymptotically stable for the
system. Furthermore, H(q, p) is a valid Lyapunov
function for the closed-loop system with a semi-
negative definite Ḣ. 2

Remark 1. Based on the definition of Ωp (i.e. the
set of initial velocities), the higher the separable
level-value c ≥ 0 of a local neighborhood of a
formation equilibrium of G, the larger the region
of attraction for the control law in (13).

Remark 2. Since H(q, p) is a physically meaning-
ful (local) control Lyapunov function for the for-
mation dynamics, it is possible to perform robust-
ness analysis for the obtained controller in (13)
and test effects like string stability of the system.

Remark 3. The main drawback of the stabiliza-
tion result in Theorem 1 is that it is only ap-
plicable to undirected graphs. In fact, the same
problem exists in Leonard and Fiorelli (2001).
This will be resolved in the sequel of this paper.

Theorem 2. (bounded feedback stabilization) Sup-
pose all the conditions in Theorem 1 hold. Define
the following structural potential function

Vb =
ūλ1

2

∑
i∈I

1
|Ji|

∑
j∈Ji

[1 + (‖qi − qj‖ − dij)2]
1
2 − 1

satisfying Vb(q̄) = 0 where q̄ denotes the coor-
dinates of the non-infinity vertices of an unam-
biguous formation graph G and Ji is the set of
the indices of the neighbors of vi ∈ V. Then, the
following smooth nonlinear state feedback

u = −∇Vb(q)− ūλ2σ(p) (15)

gives a bounded distributed control law satisfying
‖ui‖ ≤ ū which achieves collision-free local sta-
bilization of the vehicles formation to G where
σ : R2n → R2n denotes a vector sigmoidal func-
tion with n identical elements σ2(·) defined by
the m-dimensional sigmoidal function σm(y) =
y/

√
1 + ‖y‖2, y ∈ Rm. In addition, ū > 0 and

λ1, λ2 ∈ (0, 1), λ1 + λ2 = 1.

Proof. Similar to the proof of Theorem 1,Hb(q, p)
defined as the following

Hb(q, p) :=
1
2
‖p‖2 + Vb(q)

is a valid Lyapunov function for the closed-loop
system. Let c > 0 be a separable level-value of G
w.r.t. Vb(q). Then, Ω := {(q, p) ∈ R4n : Hb(q, p) ≤
c} is an invariant set for the trajectories of the
n vehicles. In addition, the trajectories of all
vehicles remain collision-free for all time t > 0. To
prove that the state feedback in (15) is uniformly
bounded, let us express the control of the ith
vehicle ui explicitly as the following

ui =
∑
j∈Ji

wijuij − ūλ2σ2(pi) (16)

where wij is a scalar weight and uij is a unit
vector defined as

wij :=
ūλ1

|Ji|
σ1(‖qi − qj‖ − dij)

uij :=
qj − qi

‖qj − qi‖

(17)

where σ1(y) = y/
√

1 + y2 is a scalar bounded
sigmoidal function. From the definition of wij , we
have ∑

j∈Ji

|wij | < ūλ1

Thus, the control law in (16) is a bounded dis-
tributed nonlinear state feedback satisfying the fol-
lowing bound

‖ui‖ ≤ ū(λ1 + λ2) = ū (18)

where ui is explicitly given by

ui =
ū

|Ji|
∑
j∈Ji

λ1σ1(‖qi− qj‖− dij)uij − ūλ2σ2(pi)

2



Fig. 2 demonstrates simulation results for dis-
tributed formation stabilization of 3 vehicles with
bounded control to an equilateral triangle that
each of its sides are of length a = 5 using the
controller given in (3) (see Theorem 2). The initial
conditions and parameters are chosen as follows:
q(0) = (−10, 14,−7,−9, 20, 20)T , p(0) = 0, ū = 3,
and λ1 = λ2 = 0.5. As another example, the
simulation results for a formation of n = 6 vehicles
in shown in Fig. 3. The desired formation is de-
picted in Fig. 3 (b). The initial condition is q(0) =
(−30, 5,−20,−5,−10, 7, 0,−7, 10, 9, 20,−9)T and
p(0) = 0. Also, the control bound is ū = 10 and
λ1 = λ2 = 0.5. From Fig. 3 (a), it is clear that no
two vehicles collide including v5 and v6.

4. CONCLUSION

In this paper, we proposed a distributed con-
trol design approach for local collision-free sta-
bilization of formations of multiple vehicles with
undirected interconnection graphs using poten-
tial functions that are obtained naturally from
the structural constraints of a desired formation.
After minor modification of the potential func-
tion associated with the formation, we obtained
a bounded stabilizing nonlinear state feedback
for the formation with an arbitrary (small or
large) upper bound. We provided two examples
of structural formation stabilization of groups of
n = 3 and n = 6 vehicles using distributed
bounded state feedback laws. Global stabilization,
tracking, and reorientation of formations of multi-
vehicles with directed graphs using artificial po-
tential functions is the topic of a forthcoming
sequel of this paper.
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Fig. 2. Formation stabilization for 3 vehicles: (a)
q1, q2, q3 in R2 and (b) q(·).
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Fig. 3. Formation stabilization for 6 vehicles: (a)
q1, . . . , q6 and (b) formation graph G.




