
ICCAS2001 International Conference on Control, Automation and Systems

1. Introduction

Computer security has become an important issue
and is ever more critical as computers are rapidly and
densely interconnected worldwide. Any novice equipped
with minimal knowledge of computing can breach
computer security because of the wide availability of

hacking scripts and tools. Furthermore, current operating
systems are so complex they cannot practically be made
provably secure from attack.
 There are many ways to enhance the security of
computer systems: encryption of data, access control,
programs that detect malicious code such as computer
viruses and Trojan horses, and so on. One such method

that is receiving attention is the use of an intrusion
detection system (IDS). These attempt to identify,
preferably in real time, unauthorized use, misuse, and

1 This work was supported by Brain Korea 21 project.
2 This work was supported by NSF LIS program.

abuse of computer systems and networks [3].
 IDSs can be categorized according to the detection
methods employed: misuse detection, anomaly detection,
and specification-based detection. A misuse detection
model recognizes known patterns of exploitations and
guards against attack by matching the current events to

those known patterns. The principal shortcoming of this
approach is that it cannot detect previously unknown or
unsuspected means of attack. Anomaly detection models
monitor and learn normal behaviors of the computer
systems or networks, and identify suspicious behaviors
that deviate from the norm. These may use a variety of
techniques to learn normal behavior: statistics, finite state

automata, hidden Markov models, neural networks,
genetic algorithms, and artificial immune systems have
all been employed [4,5]. Problems with anomaly
detection methods are that they have high probabilities of
issuing false alarms, and, at least in theory, that intruders
could train the IDS in such a way that their attacks are
considered normal behavior. Specification-based models

Natural Language Interface to an Intrusion Detection System

K. Wee1,* , T. Collier2,**, G. Kobele2,***, E. Stabler2,****, and C. Taylor2,*****

* Graduate School of Information and Communication, Ajou University, Suwon, Korea 442-749
(Tel : 82-31-219-2635; Fax : 82-31-219-1811 ; E-mail: kbwee@ajou.ac.kr)

** Department of Organismic Biology, Ecology, and Evolution, University of California, Los Angeles, CA 90095
(E-mail: travc@alife.org)

*** Department of Linguistics. University of California, Los Angeles, CA 90095

(E-mail: kobele@ucla.edu)
**** Department of Linguistics. University of California, Los Angeles, CA 90095

(E-mail: stabler@ucla.edu)
***** Department of Organismic Biology, Ecology, and Evolution, University of California, Los Angeles, CA 90095

(E-mail: taylor@biology.ucla.edu)

Abstract: Computer security is a very important issue these days. Computer viruses, worms, Trojan horses, and

cracking are prevalent and causing serious damages. There are also many ways developed to defend against such
attacks including cryptography and firewalls. However, it is not possible to guarantee complete security of computer
systems or networks. Recently much attention has been directed to ways to detect intrusions and recover from damages.

Although there have been a lot of research efforts to develop efficient intrusion detection systems, little has been done
to facilitate the interaction between intrusion detection systems and users. Reports and presentations of current states of
the computers or networks to the user in a format that is easy to understand as well as specification of security policies
from the user are important aspects of intrusion detection systems. We present our first steps to develop natural
language interface between a user and an intrusion detection system using minimalist transformational grammar and
Prolog. Our system takes a pseudo-English query from the user, parses it using CYK -like algorithm, converts it into a
formula in Horn logic, feeds it to Prolog, and then gets the answer back in a simple format.

Keywords: intrusion detection, computer security, natural language interface, minimalist grammar, Prolog

ICCAS2001 International Conference on Control, Automation and Systems

formally specify acceptable behaviors of programs and
report behavior that does not conform to the
specifications[7,8]. In theory these have zero rate of false
alarm, but at the cost of having to specify normal

behavior of every program we want to monitor.
Commercial packages typically employ a combination of
these techniques.
 While much effort has been put into developing new
techniques for detecting intrusions, less attention has
been paid to their user interfaces[1]. The interface

between the IDS and its user should present only the
relevant information to the user in a way that is easy to
understand in order to facilitate monitoring and
controlling the IDS. The user in turn should be able to
specify the policy in a way that the IDS can enforce. It
would be helpful to have mechanisms for making
specific queries to the IDS and to get just the relevant

information back. When the IDS reports a potential
intrusion alarm, the user would like to have information
of the current states of the computer system available in a
format that will enable the user to determine whether it is
really an intrusion, how the intrusion was staged, and
what damage was incurred.

In this paper, we present our first steps toward

developing a system whereby the IDS and its user can
interact using natural language. Section 2 describes the
architecture of our system, Section3 explains the
experiments we performed. Section 4 concludes the
paper.

2. Architecture

Our system takes queries in English, parses the

sentence using a minimalist transformational
grammar[2,9,10], converts it into predicate logic
expressions, feeds it to Prolog, and gets an answer back
in a simple format. Chomsky[2] notes that although finite

inflection appears on English verbs, when one considers
the inflectional patterns in auxiliary verb sequences,
negated sentences, and adverb positions, it is natural to
assume that the tense marking is in some sense “above”

the verb, close to the front of the sentence. In the same
spirit, agreement, complementizers, and determiners do
not intervene between lexical categories, but wrap
around them from above.

We designed and implemented the prototype of such a
system on Red Hat Linux (version 7.0) using Sicstus

Prolog. We are exploring a score of predicates including
start(Subject, Program), chmod(Subject, File,
Permission), open(Subject, File, Mode), exec(Subject,
Program), fork(Subject, PID), and a few others. When an
English query is entered, it is parsed by a CYK-like
parser[6], fed to Prolog, and then the answer is returned
by Prolog (figure 1). Predicates are imp lemented by use

of system predicates in Sicstus Prolog, various filters,
and audit trails generated by a Linux auditing system
called Seer Observer developed by Geoff Kuenning of
the File Mobility Group in the UCLA Computer Science
Department.

The following examples show the trace of processing
a query and the corresponding minimalist grammar.

|: who open ed /etc/passwd?
building chart...............::accepted
as category c

%%% Sentence parsed:
who open ed /etc/passwd

%%% Compact representation:
2 4 5 14 29 35

%%% Standard semantic representation:
[t:[question,[past,[[tr,[open_meaning,
/etc/passwd]],wh]]]]

CYK-like

parser

Prolog

Linux monitor

answer

query in natural
language

statement
in
predicate
logic

Figure 1

ICCAS2001 International Conference on Control, Automation and Systems

%%% Logic:
~wh(A,some(B,some(C,open_meaning(A,/et
c/passwd,B,C) and

C<<datime(2001,7,20,16,5,37))))

%%% CNF:
(-A<<datime(2001,7,20,16,5,37) v

-open_meaning(B,/etc/passwd,C,A))

%%% Prolog:
answer(A) :-
usr:B<<datime(2001,7,20,16,5,37),
usr:open_meaning(A, /etc/passwd',_, B).

%%%
actor([31345,??,'500']),actor([32147,'
/bin/vi','500'])].

% complementizers, marking assertive
force
[]::[=i,c]@((t->t):assert).
[]::[=i,+wh,c]@((t->t):question).

% inflectional elements, marking tense
[s]::[=pred,+v,+k,i]@((t->t):pres).
[ed]::[=pred,+v,+k,i]@((t->t):past).

% transitiviser tr
[]::[=vt,+k,=d,pred]@(((e->t)->(e->t))
:tr).
[]::[=v,pred]@((t->t):id).

% verbs
[praise]::[=d,vt,-v]@((e->e->t):praise
).
[laugh]::[=d,v,-v]@((e->t):laugh).
[be]::[=d,vt,-v]@((e->e->t):be).

% audit verbs
[create]::[=d,vt,-v]@((e->e->t):create
).
[open]::[=d, vt, -v]
@((e->e->t):open_meaning).

% names
['Lavinia']::[d,-k]@(e:'Lavinia').
['Titus']::[d,-k]@(e:'Titus').
[root]::[d,-k]@(e:actor([_PID,_Process
Name,'0'])).
[travc]::[d,-k]@(e:actor([_PID,_Proces
sName,'500'])).

% files
[cdrom]::[d,-k]@(e:cdrom).
['/etc/passwd']::[d,-k]@(e:'/etc/passw
d').

% processes
[cp]::[d,-k]@(e:actor([_PID,'/bin/cp',
_UID])).
[vi]::[d,-k]@(e:actor([_PID,'/bin/vi',
_UID])).

% wh-names
[who]::[d,-k,-wh]@(e:wh).
[what]::[d,-k,-wh]@(e:wh).

% determiners
[some]::[=qual,d,-k]@(((e->t)->(e->t)-
>t):some).
[every]::[=qual,d,-k]@(((e->t)->(e->t)
->t):every).
[a]::[=qual,d,-k]@(((e->t)->(e->t)->t)
:some).
[an]::[=qual,d,-k]@(((e->t)->(e->t)->t
):some).

% wh-determiners
[which]::[=qual,d,-k,-wh]@(((e->t)->(e
->t)->t):wh).
[what]::[=qual,d,-k,-wh]@(((e->t)->(e-
>t)->t):wh).

% adjectives of size
[big]::[=nat,size]@(((e->t)->(e->t)):b
ig).
[little]::[=nat,size]@(((e->t)->(e->t)
):little).
[]::[=nat,size]@((_->_):id).

% adjectives of nationality
[unix]::[=n,nat]@(((e->t)->(e->t)):uni
x).
[windows]::[=n,nat]@(((e->t)->(e->t)):
windows).
[]::[=n,nat]@((_->_):id).

% nouns
[file]::[n]@((e->t):file).
[process]::[n]@((e->t):process).
[action]::[n]@((e->t):action).
[human]::[n]@((e->t):human).

3. Experiments

We experimented with our system to detect

intrusions that exploit the known vulnerabilities of
privileged Unix programs, rdist and fingerd.

Expected normal behaviors of rdist and fingerd

have been formally specified in [7,8]. The program
rdist is a Unix utility for maintaining identical copies

of files over multiple hosts. It has the flaw that when

updating a file it can access the chown and chmod

system calls for symbolic links. This flaw has been
exploited by attackers to set the setuid bit of a system
shell. (The normal behavior specification of rdist has

many checkpoints, one of which requires that it can

change the permission mo de and the ownership of only
the files that it created.) Consequently the attack
described above can be detected by asking IDS if rdist

has changed the permission mode or the ownership of a
file that it did not create.
 The second vulnerability we studied, fingerd,

ICCAS2001 International Conference on Control, Automation and Systems

reads finger requests using gets library call, which does
not specify a maximum buffer length. An attacker may
send a long request message to the finger daemon that
overwrites the run-time stack with its own code. When

the call to gets returns, it executes the attacker’s code.
(One of the normal behavior specifications of fingerd

is that it can execute only the finger program.) So an

attacker’s attempt to execute her own code can be
detected by asking our IDS if fingerd is trying to

execute a file that is not the finger program.
 The following example shows how our system would
respond to pseudo-English sentences inquiring a trace
about hypothetical rdist and fingerd attacks.

% rdist chmod ed a file that it not create
ed?
‘Not as far as I know’.

% fingerd execute ed a program that be s
not “/usr/ucb/finger”?
[‘/tmp/hackersprgrm’].

4. Conclusion

In this paper we described our efforts to build a
system that facilitates the interaction between intrusion

detection systems and users through natural language
interface.

As far as we know, there has been no previous
research in this direction of direct intercourse between
users and IDSs. It can be seen that our system is still
rudimentary. We are currently extending the grammar of
the language and implementing a wide variety of

predicates, so that it will become more expressive in its
ability to specify the normal behaviors of privileged
programs.

Our future work will make more use of Prolog’s
deduction capability to detect intrusions. We are
developing another version that runs constantly and
detects intrusions in real time, rather than responding to

queries, making our system able to learn normal
behaviors and intrusion patterns, and we plan to extend
our IDS from a single host-based system to a
network-based system.

References

[1] J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff,
E. Spafford, and D. Zamboni, An architecture for
intrusion detection using autonomous agents, Proc.
Computer Security Applications Conference, 1998.

[2] N. Chomsky, Minimalist inquiries: the framework ,
MIT Press, 1998.

[3] M. Crosbie and G. Spafford, Defending a computer
system using autonomous agents, Technical Report No.
95-022, Department of Computer Science, Purdue
University, 1994.

 [4] S. Forrest, S. Hofmeyr, A. Somayaji, and T.

Longstaff, A sense of self for UNIX processes, Proc.
IEEE Symp. on Security and Privacy, pp. 120-128, 1996.

[5] S. Forrest, A. Perelson, L. Allen, and R. Cherukuri,
Self-nonself discrimination in a computer, Proc. IEEE
Symp. on Security and Privacy, 1994.

[6] H. Harkema, A recognizer for minimalist grammars,
Proc. 6 th Int. Workshop on Parsing Technologies, 2000.

[7] C. Ko, G. Fink, and K. Levitt, Automated detection of
vulnerabilities in privileged programs by execution
monitoring, Proc. Computer Security Applications
Conference, 1994.

[8] C. Ko, M. Ruschitzka, K. Levitt, Execution
monitoring of a security-critical programs in distributed
systems: a specification-based approach, Proc. IEEE
Symp. on Security and Privacy, 1997.

[9] E. Stabler, Derivational minimalism, in: C. Retor, ed.,
Logical aspects of computational linguistics, Lecture
Notes in Computer Science 1328, pp. 68-95,
Springer-Verlag, NY, 1997.

[10] E. Stabler and E. Keenan, Structural similarity, Proc.
Algebraic Methods in Language Processing, University

of Iowa, 2000.

