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Abstract

The coarsely sampled inverse Jacobian, or “Coarse
Gain” Recurrent Integrator Command Generator
(CGRICG) model* is a preliminary proposal for mo-
tor command generation in the sensorimotor cortex
during unloaded horizontal reaching movements based
significantly upén implicit coordinate transformation.
The core of the model is an integrator that in negative
feedback configuration performs approximate differen-
tiation of a central movement trajectory command. To-
gether with an accurate forward kinematic model and
a distribution and scaling network that is only coarsely
tuned in relation to movement direction, the feedback
configuration achieves inverse kinematic transforma-
tion implicitly throughout the workspace. Simulations
of the CGRICG directing motion of a six-muscle, two-
joint arm model reproduce gross kinematic features of
human and primate arm movement as well as plausi-
ble neurophysiological signals in internal sensorimotor
cortical neurons. The CGRICG model suggests that
cortical network connection strengths may be adapted
to improve straightness of motion without affecting fi-
nal target location.

1 Introduction

Though the importance of the sensorimotor cortex in
generating commands for limb muscles during volun-
tary movements is well established, the variables that
the sensorimotor cortex encodes and how the motor
cortical signals are used to control and command mo-
tor systems to execute even the simplest tasks, such as
point-to-point hand movements, are not known. The
input signals to sensory cortex and output signals from
the motor cortex and their correlations with task vari-
ables such the position of the limb in space, speed of
motion of the limb, or force exerted on that limb have
been measured by many [5, 8, 13]. But these corre-
lations do not necessarily imply causal or controlling
relationships. What is needed, and is suggested here,
is a physiologically plausible model that can explain the
command generating mechanism of the motor cortex in
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view of the signals that are needed by the muscles of

vthe limb.

From the perspective of control, the biological system
under investigation consists of a plant, defined as the
arm and local (cervical) levels of the spinal cord, a dy-
namic compensator representing the action of the ante-
rior cerebellum (CBLLM), and a command generator
consisting of the broadly considered sensorimotor cor-
tical areas of the brain (Figure 1). The various other
components of the complex multi-loop biological motor
control system, such as thalamus and basal ganglia, are
not represented explicitly or investigated here.

2 The Compensated Plant Model

The two-joint arm (Figures 1 and 2), is composed of
the passive skeleton, modeled as rigid links, and the
muscles (actuators) that receive an activating signal, u,
from the central nervous system (CNS: brain and spinal
cord) and accordingly generate the torques required at
the two joints. We follow the equilibrium point hypoth-
esis which proposes that the viscoelastic properties of
muscle enable the arm to follow the “virtual” equilib-
rium trajectory [2, 6, 7, 21] specified by u. The resul-
tant model, similar to that used by others [15, 21, 17],
is of only modest complexity but retains the salient
dynamic characteristics of the human/primate limb.

The state space representation of the six-muscle arm

as it behaves when the dynamic compensation of the
cerebellum is taken into account (Figure 3):
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where g1 = 6, 2 = 6, q1, = O, = [ 0., 6., ],
@ =6.=[6, 6.]. H = H(®) is the 2x2,
symmetric configuration-dependent arm inertia matrix,
and C = C(0,0) is the matrix related to centrifugal
and Coriolis forces. R and D are the 2x2 matrices that
represent net effective nonlinear joint stiffnesses and

viscosities, respectively, that are dependent on the arm
configuration and level of muscle activation. For the
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Figure 1: Basic configuration of the biological motor con-
trol system.
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Figure 2: The six-muscle arm. -

preliminary simulations examined here, constant ap-
proximations to R(u,q;) and D(u,q,q2) were used!.
Not shown in the above state space representation are
the low-pass filtering effects associated with muscular
activation which were also included in the model.

3 The CGRI Command Generator

The Coarse Gain Recurrent Integrator Command Gen-
erator (CGRICG) model is shown in Figure 3 fairly
explicitly in terms of its proposed correspondence
with brain circuitry. The CGRICG model provides
the needed joint position and velocity signals to the
compensator-plant model. We consider that a “refer-
ence command” network encodes the intended hand
trajectory Xu,.,(t) = [zn,.,(t), yn..,(t)]" and projects
this the to “predicted kinematic error” neurons. These,
taken to reside in parietal area 5 [14, 16], are considered
to encode the difference between X, and a roughly

predicted hand trajectory, X, = [2x,#x]’. The latter
signal is proposed to be derived from the integrated
component of the motor command that is fed back to
the motor cortex as a recurrent corollary efferent sig-
nal [3]. We postulate that “distribution” neurons, in
the motor cortex, scale and allocate the parietal sig-
nal appropriately to joint-specific output neurons. We
consider that the scaling factors (see equations 5 and 6)
may be a substrate for motor learning to improve con-
trol of the plant. The site of the proposed integra-
tor has not been established definitively. An attrac-
tive candidate is the “reverberatory” brainstem neural

¥See appendix for the numerical values used in simulations.

circuitry associated with the cerebellum ({1, 12, 17]).
The dashed path in Figure 3 represents proprioceptive
signals that presumably also participate in, and im-
prove hand position prediction and therefore control
(e.g. [17]). This feature was not yet included in cur-
rent simulations. We note that the model does not
include physiological signal transmission delays which
can be as great as 20 ms along some of the internal
paths shown. A variety of models have been proposed
to explain how the CNS, especially the cerebellum, may
compensate for these delays [17, 19, 22] and we assume
here that sufficient compensation is achieved.

The reference command, kinematic error, distribution,
and sensory networks are each built of 8 simple lin-
ear units that represent neurons or neuronal assemblies
(Figure 4). The networks themselves are designed to
have inter-unit connectivities that are broadly consis-
tent with known cerebral cortical micro-architecture.
In a target-directed reaching movement, the reference
command. (RC) network is postulated to represent the
intended motion as a vector pointed at the target in
the workspace, whose magnitude grows smoothly over
time (e.g. Figure 5A). The direction of this vector sig-
nal is represented by the distribution of activity among
the RC units, while its magnitude corresponds to the
overall intensity of firing activity of the population.
This ”population vector” representation of signals has
been found in motor cortex [8] and in parietal area
5 [13, 14, 16]. However, it is not clear yet that these
subpopulations have the postulated time course of ac-
tivity during motion and this remains a point for future
investigation. In any case, each RC unit, ry, is taken to
be principally responsible for commanding movement
in a specific direction; ¢, with the 8 Z ¢, distributed
uniformly from 0 to 77 /4. The activity of each RC unit,
and therefore output signal to the predicted kinematic
error (KE) network, is then determined by the pro-
jection of X}, ,, onto &5 resulting in a broad distribu-
tion of activity within the network consistent with the .
experimentally. observed cosine tuning curves of popu-
lation vectors [8]. Similarly, each sensory (S) network
unit s; is principally responsible for encoding prediction
and movement-related signals in specific uniformly sep-
arated nominal directions, ¢3,. The output of each s,
is determined by the component of X n along ¢;. The
output firing rate of a given KE network unit, e;, is
taken to be a linear combination of the firing rates of
its inputs from RC, S, and neighboring KE units:

ej = Zwijei + kaﬂ'k + Z Ur; sy (1)
i k 1

where w;;, vi;, and u;; are synaptic strengths (connec-
tion weights).

To set the weights, each KE neuron was first assigned
a nominal direction §. The vy; were determined such
that excitatory connections are strongest between RC
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and KE units having closely aligned nominal directions,
and weakest when these directions are very different:
(L&~ L)
Sk A £, 728 2

Vkj = Cy €XP

where ¢, and o, are arbitrary shaping constants.

The uy;, on the other hand, were determined such that
excitatory connections are strongest between S and KE
units having opposite nominal directions, and weakest
when these directions are closely aligned:

—é¢;k+7r)2

/E:
=IO

Upj = Cy €Xp

where ¢, and o, are constants.

The w;; were then determined analogously in the KE
population. Here, the effects of both excitatory and
inhibitory local connections are included as are seen in
cerebral cortex [9]. These are implemented using two
different Gaussian functions of angular separation:

(L& - L&

Wi = kE exp {— 20_E2

20’[2

4)

where kg, kr, og, and o; are constants chosen such
that kg > k; and o; > og; the subscripts E and [
stand for excitatory and inhibitory connections. This

)y exp - L8 L&)

}

1738

specification of the w;; produces net mutual inhibition
between error network neurons having opposite nomi-
nal directions. Together with the cross directional con-
nections of the S network inputs described above, ef-
fective subtraction of the RC and S network vectors is
achieved.

Finally, the distribution (D) network is composed
of 3 sub-networks (D)), each responsible for move-
ment in a set of directions (D;i: 0, 7/4; Dy
n/2, 3 /4, 3 /2, Tw/4, D3: w, 57/4). Only one sub-
network is active during any single movement; this rep-
resents a nonlinear effect that is assumed to be physi-
ologically achievable, but is not yet modeled explicitly.
The structure of each D,, is similar to that of the KE
network. The same method used to assign the RC to
KE connection strengths is used to assign those of the
KE to D units. The connectivities within the subnet-
work are as for the KE network above (equation 4).
The output units receive a linear combination of the
signals, d;,, in the currently active sub-network and
channel these to the compensated plant:

ésc gsn Z aidin

éec = Gen Zl": bidin
i

(5)
(6)

where the values a; and b; are generic for all D,, while
the gsn and g., are subnetwork specific scaling factors.
These factors were chosen such that the net mapping
from KE to output units effectively implement a fixed
inverse Jacobian transformation between Cartesian and
joint coordinates.

4 Simulation Results and Discussion

Once the values of the synaptic weights had been set,
and the values of the g,, and g, had been manually
tuned to yield good movement performance, they were
fixed for all simulations. No effort was made to rigor-
ously optimize the gg, and g, values. All parameters
of the dynamic compensator and plant were held fixed
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Figure 5: Qualitative appearance of typical sensorimotor
cortical neuron firing rate profiles during move-
ment.

as well. The CGRICG-compensator-plant (CGRICG-
CP) model was simulated for different movement dis-
tances (Figure 6) by changing the amplitude of X4,
and for different tangential hand velocities (Figure 7)
by changing its rate of change.

The CGRICG-CP model produces hand trajectories
that are qualitatively similar to those observed in hu-
man/primate subjects (see [7}). Because of its feedback
structure, the simple model is able to achieve fairly
straight movements, and therefore effective Cartesian-
to-joint coordinate transformation using only relatively
coarse tuning at the D network output. Tangential
hand velocities in each of the eight movement directions
have the characteristic bell-shaped profiles and show
that as the movement distance doubles, the peak tan-
gential hand velocity also doubles (Figure 6), as is char-
acteristic of “speed-sensitive” human movements [11]
and consistent with the substantial linearity of the
system. Another kinematic feature of the CGRICG-
CP model is that as in primates/humans, slower hand
reaching movements tend to be straighter than fast
ones [18](Figure 7). This is expected for an arm
controlled by spring-like actuators. However, further
simulations (not shown) reveal that dynamics of the
CGRICG also contribute to the curvature. This fea-
ture in particular awaits experimental validation.

During simulated arm motion, the units of the KE
and D networks exhibit activity time courses similar
to those of experimentally observed cortical neurons.
In particular, both KE and D network neurons’ firing
rates show bell-shaped and bi-phasic profiles over time
(e.g. Figures 5B and C) as has been noted in pari-
etal cortex {5, 13, 14], and in several studies of animal
motor cortex [20, 24]. Furthermore, like M1 and other
cortical neurons [8], the D network units are seen to be
broadly tuned according to hand movement direction.
In particular, if each distribution neuron is assigned a
“preferred” direction (unit vector) 1&,11. based upon the
direction of motion for which it fires most strongly?,

tBecause the movement tracking error vector which is reg-
istered in the parietal error and motor distribution networks is

then the population vector of the active subnetwork,
7 = 3, dintq,, is found to point roughly in the di-
rection of motion. This is an expected effect resulting
from the population vector organization of the RC, S,
and KE networks.

The first central feature of the model is that an in-
tended velocity command is proposed to be the princi-
pal signal observed at the parietal and motor cortices.
This signal is posited to result from approximate dif-
ferentiation of the intended position command that is
achieved by an integrator in negative feedback config-
uration. To the extent that the cerebellum enables the
plant to follow the velocity command, ©., ©, will be
a satisfactory prediction of the true motion ©. In this
case, the integrator functions as a crude (linear) model
of the compensated nonlinear plant [17].

The second central feature is that the CGRICG
achieves effective inverse kinematic conversion using
a distribution network that is only coarsely tuned to
direction. Direct inverse kinematic conversion of ref-
erence workspace position coordinates to joint coordi-
nates is given by:

2 2 21\
. o — (L5 + 1)
0., = arccos (T (7)
e 2 — (1,% +1.%)?
6., =y —arcsin | — vl—(Th (" + L7))
¢ T 411,
(8)

(based on Figure 2). This requires quantitatively pre-
cise nonlinear processing of both ¢, and r,. When
the value of these variables is represented by the selec-
tion of a unique neuronal unit (or set of units), i.e. a
unit coded “map” (e.g [4]), this transformation is eas-
ily accomplished to arbitrary precision by nonlinearly
weighted connections to a corresponding joint coordi-
nate map at the output. This method is postulated
for the forward kinematic transformation N (Figures 3

& 8).
An alternative is to use the differential relationship:
9

where is the inverse Jacobian which is linear at any
given location, ©. This representation is attractive

d@h,., = J"1(O)d Xn..,

‘from the point of view of redundant manipulator con-
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trol [4] and more generally in terms of its potential use
in a feedback loop(Figure 8). Here, A is a scalar and
K(*) a nonlinear vector gain used to address inverse
kinematic conversion. If K(*) equals J~1(©) then it
relates the tracking error, e = AX}, ,, (approximately
x th,), to A®p,,, (approximately o éh“!). If the

generally closely -aligned with the movement direction, S é
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Figure 6: Simulated hand trajectories for movement
distances 0.1m (black) and 0.2m (grey).

latter signal is then integrated, one obtains a signal
O, ; which approximates ©p,,,. This approach has
been adopted previously in a model of sensorimotor
cortical control [23]. It must be noted, however, that
this argument is precise only in the limit of high loop

gain. For low loop gains, Gh,e ; and éh" ; become poor
approximations and therefore intended straight move-
ments become somewhat curved.

More specifically, when A = 1/At and At — dt the
argument is exact. Moreover, it holds for arbitrary
fixed K(*) so long as AK () is stabilizing. Thus, for
any given K(*) increasing A yields much straighter
movements. This affords a simple mechanism by which
usually slightly curved “natural” movements might be
straightened at will. Thus, command generator loop
gain is possibly another important factor among sev-
eral that might affect trajectory curvature (see [23]).

Even when A is not large, because the integrator has
infinite d-c gain, we always have O, — O, as
t — oo (again assuming stability). For small A how-
ever, K(*) ~ J~1(©) significantly improves the rate of
convergence and hence the fidelity of transformation of
rapidly changing Xp,,,. Because in a physical system
loop gain will be limited by the presence of delays and
phase lags, it is likely that the sensorimotor control
system would benefit by K (x) at least somewhat near
J=1(©). How close is necessary has not yet been de-
termined. However, at least in our studied movements,
reasonable control could be achieved by three D,, net-
works that represented only a very coarse sampling of
the inverse Jacobian by gross direction of movement.
In particular, the D,, subnetworks do not depend upon
limb configuration or hand position as in other propos-
als [4], while at the same time it has moderate loop
gains are unlikely to engender instability for loop de-
lays on the order of milliseconds.
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Figure 7: Simulated hand trajectories at two hand
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speeds for movement distance 0.2m.
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Figure 8: Feedback scheme of the CGRICG.

By directly transforming both vector magnitude and
direction the CGRICG potentially yields accurate
Xn,. , as well as X, ,, which is critical to proper dy-
namic control. Moreover, by avoiding the use of fine-
grained unit-coded maps for vector transformation, the
CGRICG requires only 22 gains (gsn, gen, ai, b;) to be
used for tuning. This directly underlies our ability to
tune the network quickly by hand and suggests that
an effective and fairly rapid self-tuning algorithm may
be achievable. However, this also has not been tested.
Finally, as long as the adaptable gains are stabilizing,
they may be adjusted freely without compromising the
endpoint accuracy. This affords the limb control ad-
ditional robustness that appears to be physiologically
realistic.

5 Conclusions & Future Work

The CGRICG model is preliminary and based on sev-
eral simplifying assumptions. Still when used to di-
rect a compensated plant, generally plausible trajec-
tories are produced. Furthermore, in the process, the
CGRICG module exhibits several of the characteristics
of cortical neuron activity such as intensity time course,
directional tuning, and population vector coding. We



believe that these,results are interesting in light of
the CGRICG’s simplicity. The model essentially ex-
tends related previous models [4, 23] by (1) indicat-
ing that effective inverse kinematic transformation can
be achieved implicitly using many fewer computational
units, (2) directing attention to dynamic considerations
involved in this method of coordinate conversion and
their potential impact on path deviations. However,
simulations included only relatively short movements,
neglected signal transmission delays, and involved no
actuator redundancy or external loads. The paths have
not been compared systematically with experimentally
recorded human hand paths. Certain proposed neu-
ronal population behaviors have not been established
and the CGRICG is not yet self-tuning. Therefore, con-
siderable further analysis and experimental validation
will be needed to understand motor cortical operation.$

Appendix

Effective net angular stiffness R (N-m/rad) and angular viscosity

D (N-m-sec/rad) of the limb including effects of dynamic com-

pensation provided by the cerebellum. Values are consistent with

physiological measurements [10]. :
25 2 5 1

=% %] o[ ]

Limb lengths were taken to be l; = I = 0.3m. Limb masses
were taken to be mg = m. = 0.65Kg.

N
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