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ABSTRACT

A new approach to the problem of estimating length
of a channel impulse response is presented. Unlike the
information theoretic approaches , the new method ex-
amines the unmodeling effect explicitly and indepen-
dent of the additive noise effect.

1. INTRODUCTION

Information theoretic criteria are commonly employed
for estimation of the length of the impulse response of
a channel using finite noisy data. The strong assump-
tion in estimating these criteria is that the true impulse
response is an element of at least one of the compet-
ing model sets. In practical problems the length of the
impulse response is not finite.  In such cases the infor-
mation theoretic criteria point to model sets of higher
and higher order as the length of the data becomes
larger and/or the signal to noise ratio(SNR) grows. It
is expected that with higher SNR and longer data, the
significant part of the impulse response can be cap-
tured by estimates in model sets with much smaller
order than the solution given by these criteria [1].

To overcome the shortcomings of the information
theoretic criteria, we propose a new approach based on
a novel method of quality evaluation of the impulse re-
sponse estimate in the competing model sets {7]. The
method attempts to simply estimate the I, norm of the
impulse response error in each model set. In statisti-
cal approaches, the estimate of such criterion obtained
by considering the unmodeled part of the impulse re-
sponse as a part of the additive noise effects. Unlike
such approaches, the unmodeling is explicit in the prob-
lem formulation for the new approach. Using the in-
formation embedded in the output error in each model
set, an estimate of the unmodeled effects in the impulse
response estimate is provided. The proposed method
corresponds to the compelling problem of quantifica-
tion of the estimation error in system identification (3].
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2. PROBLEM STATEMENT

Consider a single-input/k-output channel for which the
input and output of the sub-channel j, at time n, are
related as follows

Un(3) = Y hi(§)Zn-it1 + wn(4), ey

=1

where h(j) = [h1(j),---]7 is the impulse response of
the jth channel, and wy(j) is the additive white Gaus-
sian noise(AWGN) with zero mean and variance o2,
independent of the input. The input is independent
samples of a binary sequence, +1, with Bernoulli distri-
bution. Finite length data, input X% = [z1,--- ,zn],
and outputs YV (j) = [11(5),-- ,un(d)), 1 < § < &,
is available. Choose a proper length for the impulse
response estimate.

3. CHANNEL ORDER ESTIMATION:
INFORMATION THEORETIC CRITERIA

The information theoretic criteria for model selection,
introduced by Akaike, Schwarz and Rissanen, address
the following problem. Given a finite set of observation,
in our problem X% and YV, and a family of models,
which are parameterized by elements of a set ©, and
a family of probability densities f(YV|0,X¥), select
the model that best fits the data [5).

Akaike information criterion(AIC) is the estimate of
the mean of Kulback-Liebler distance of the true den-
sity f(YN16, XV), and the estimated density f(YN[§N
,X™) in each model set of order m, Sp,. The AIC es-
timate is given by

AIC(Sn) =~ log SV, XM + 2 (2)

where 8 is the maximum likelihood estimate of the
parameter in S,,. The approach suggests to select the
model set which minimizes AIC. Based on information
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theoretic argument, each model set can be used to en-
code the observed data. Rissanen proposes to select the
model which yields the minimum code length, defined
by minimum description length(MDL),

log N

N
, XY+ m N

MDL(Sp) = ~ log f(¥V 8 &)
Bayesian information criterion(BIC) is proposed by Sc-
hwarz. In this method Shcwarz assumes a prior prob-
ability for the competing model sets and suggests to
select the model that yields the maximum posterior
probability. The result in this approach is similar to
MDL criterion in (3).

The information theoretic criteria for the problem
in section 2 is computed as follows. Consider a model
set S, a subspace of order m in RY. In this case 6 is
the impulse response of the system h, and each estimate
in subspace Sy, is the least-square solution GN = hN
For each model set Sy, we have

Hy-¥2
AIC(S,,) = —log( \[i TIEE LT (@
1 Mn’;_'li logN
MDL(S,,) = —1 TNey NG
(Sm) = - log( ) +miEN, 3)

where [[Y — Y||s is the I norm of Y — Y%, and ¥;¥
is the output estimate in subspace Sp,.

4. A NEW METHOD FOR CHANNEL
ORDER ESTIMATION

Information theoretic methods attempt to “determine”
the length of the channel impulse response. In most
practical problems, the impulse response does not have
a finite length. At the receiver we require to detect
the minimum number of taps of the impulse response
which represents the “significant part” of the impulse
response of the channel. Implementing the information
theoretic method in this situation, provides an estimate
for the length of the impulse response which is very
sensitive to the variation in signal to noise ratio(SNR)
1 and in the length of the data [1]. To overcome such
problems, we propose a new method of selecting the
length of the impulse response based on the Iz norm of
the error in the impulse response estimation.

The input-output relationship for each channel in
(1) can be written as

YN = ANRY 4+ BNAN 4wV, (6)

where hﬁ = [hl,"' ’hm]Ts Az = [hm+11 ot 1hN]T
and AY, BY are functions of the input. Consider the

Nnp2
1SNR = 10log;q ”xcl'

subspace Sy, of order m in space RYY. The projection of
A" on S, is AY. Given the finite length input and out-
put of the system, an estimate of the first m taps of the
impulse response of the system in Sy, hm, is obtained
by using the conventional least-square method, there-
fore RN = ((ANYTAN)"Y(AN)TYN. Subspace impulse
response error(SIRE) is the square of I; norm of the
distance between kY and AN in S, ||BY ~ AN |[2. Im-
pulse response error(IRE) is the square of the [2 norm
of the distance between k" and &Y, ||AN — AN|jZ. In
[4] we estimate the variance and expected value of both
SIRE and IRE for any subspace S;;, when m << N.
. We apply the output estimate in each subspace Sy,
Vi» = ANRY, and the output error ||Y — YV||2 to
estlma.te lower and upper bound for the IRE [4]

In each subspace S,,, with probability greater than
Q(a)Q(B8)Q(~/p), IRE is bounded with Lg, and Us,,,
which are functions of u,y,m, N and a,7, 8.2

Ls. < Ik = Bgli3 < Us,,. @)
Note that the computed upper and lower bound con-
verge to each other for particular choise of o, 8,7 as
N grows. We suggest to select the length of the im-
pulse response, m*, such that m* = argmin,, Ug,_,. In
single-input /multi-output case we can compute m*(k)
for each channel separately, or choose one length, m*,
for all the sub-channels such that the summation of all
the upper bounds for all IREs is minimized. The upper
and lower bounds in (7) are as follows [4].

Ls, = ma:r,{O

Lgm
& +<1+Zl+-"_}———\/—}, (®)
Us. = ot + 1+ Pt + BV @

where P, = 2(c

2)2 + ?_U#, and

Ugm = maz{O N 2%, +Xm + 220y \/Q_m}1 (10)
202 2

Lgm, = maz{0, ———Na'” + X~ ——\c}? V@Qm}, (11)

where @, = ———'ﬂ + Xm + 302 and X, = F|lY -

Y2 -02(1 - m) If we choose o, 8 and «v to be
functions of N such that,

12) -

2p = maz;([hi, - ,hjlHe) + M, 1 < 5 < N, where zgy,,
the Heo norm of a vector z, is maxy ||conv(v, z)||2 where v is a
vector with unit {2 norm and con(v,z) is the convolution of v
and z.

lim ay = o0, lim = 00, lim =0
N—oco N ’N—»ooﬁN ’N—voo'yN ?

371



then the probability Q(a)Q(8)Q(v/p) goes to one as N
goes to infinity. The tightness of the upper and lower
bound depends on the choice of ¢, 8 and v. If

TN

By -

then both Ugm and Lgn, in (10), (11) converge to
maz{0, ||V — Y™||2 — 02} as N grows [7]. There-
fore

AN - hM|2 =0 (14)
. 1 .
IR = hN|I2 = maz{0, = |IY - VY2 - 02}, (15)

Note that we can consider subspaces of form S, m,)»
which are of order m; —my +1 and are model sets rep-
resenting the impulse response taps of the channel from
tap m, to tap me. Implementing the proposed criterion
for such model sets enables us to estimate the delay of
the system. The expansion of the new approach to the
multi-input/multi-output case is straightforward [7).

5. COMPARISON OF THE NEW
CRITERION WITH INFORMATION
THEORETIC CRITERIA

As we mentioned in previous sections, all the discussed
approaches, use the least-square estimate of the true
impulse response in each subspace Sy,. Therefore, for
each subspace S, the relation between SIRE and IRE
is as follows

Ik~ A3 = lihy = ARG + 1AZIE, (16)

where AN = [hma1,+++ ,hn]T is the unmodeled part.
As N goes to infinity, the SIRE converges to zero and
the IRE converges to im||AY|12 = ||AZ|2. I the
length of the impulse response is finite, M, then for
any subspace S,,, m > M, SIRE and IRE are the same.
The estimate of the information theoretic criteria, ex-
pressions in (4) and (5), are obtained with the strong
assumption that IRE goes to zero as N grows. Such
assumption is valid only if |AXN||? is small enough to
be ignored. If the true impulse response, h, is an ele-
ment of Sy, AIC and MDL are expressions in (4) and
(5). Otherwise an estimate for AIC and MDL are not
computable. In order to use (4) and (5) as AIC and
MDL for when h is not an element of the model set, the
effect of the unmodeled part of the impulse response,
[|AX|I2, is treated as a part of the additive white noise
effects. With this assumption the expression in (4) and
(5) is estimated using only the statistics of the input
[5]. With such inaccurate assumption the variance of
noise varies for different subspaces. The obtained crite-
ria is widely used for order estimation in blind channel

identification. The new approach, however, applies the
output error, to separate the effects of the noise versus
the effects of the unmodeled part in estimation of IRE.
For that reason, we require a training signal.

The Additive Noise Variance: In practical prob-
lems the variance of the additive noise is usually un-
known. In the information theoretic approach, the pa-
rameter in each subspace Sp41 is Omt1 = (Am,02).
Here o2, is the variance of the noise, to be estimated
for each model set, Sy, separately. For each subspace,
6Y is the maximum likelihood estimate of the param-
eter. First ﬁN is computed by minimizing the out—
put error and then the variance is estimated by 42,
LY —¥|]>. The AIC and MDL in this case are given
by [2].

(1o 2 IY = Y2
AIC » (1+ Fr)—F"", 17)

o log N, |IY - V7|2
MDL = (1 +m ) ) (18)

In the proposed approach, we first estimate the vari-
ance of the noise which is the same for all subspaces.
We suggest using the estimate of the variance obtained
for the model set with highest order in the estimation,
ie. Mumaz. Therefore, the estlmated variance for all
model sets is 62 = &||Y — mn:“N

5.1. Consistency Issues

When the length of the impulse response, M, is finite
the information theoretic methods of order estimation
focus on estimating M. One method to compare these
different criteria is to check whether they are consis-
tent, i.e., as N — 00, the selected order, 71, approaches
M with probability one. Consequently, we can consider
the question of finding f(IV) for which the following cri-
terion
N |j2
E =2l 4 o2 1), 19)
is consistent. It has been shown that AIC, for which
f(N) = #, is not consistent. Whereas, in MDL and
BIC, f(N) = li‘,-(v]—v)- makes the criterion consistent.
Hannan suggests another consistent method by using
FIV) = M which decreases faster than f(N) =
"’—g}\,ﬂ in MDL as N grows [6].

In the new approach, the choice of a, 3,7 play a
major role for checking the consistency. If they satisfy -
conditions in (12), (13), then the consistency of the
method is guaranteed. For exampleL fa=8=v=0
in (8), (9), and 0 < (1+ ,"\',)(NIIY YNlIz (1-%od),
then E(||AY — hV||?) ~ —02 + BoZ +(1+B)HY -
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Y, ¥||2. This expression resembles AIC when m > M,
since in this case B(%||Y — Y||Z ~ Bo2. On the
other hand by choosing o? = 8 = 7% = loglog N, both
conditions of (12), (13) are satisfied. Note that in this
case the provided upperbound in 7 is similar to the
criterion proposed by Hannan.

When the length of the channel impulse response
is not finite, the consistent methods point to a higher
and higher length for the impulse response estimate
as N grows. With the new proposed method we can
avoid such problem by using a threshold for the impulse
response error. If a threshold € is assumed for the min-
imum acceptable IRE, then we choose the smallest m
for which Us,, <e.

6. SIMULATION RESULTS

‘We use the microwave radio channel, chan10.mat, which
is found at http://spib.rice.edu/spib/microwave.html.
Figure (1) shows the real part of the first 60 taps of the
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Figure 1: ’*’: The real part of the first 60 taps of a
microwave radio channel impulse response.

impulse response. The simulation result for N = 300
and SNR=30db is as follows: m(AIC)=41, i(MDL)=38.
The new proposed criterion selects m* = 41. Figur-
e(2) shows the upper and lower bound on IRE for N=800,
SNR=:90db. The bounds on the error are from (8), (9)
with @ = /f = 7 = loglog N. The solid line is the
estimate of expected value of LR.E, E(||2Y — a™)||?),
when o = f = v = 0. In this case all the methods
select an impulse response length which is larger than
130. With higher SNR and/or longer data sample, all
the methods choose a larger and larger length for the
impulse response estimate. However, if we choose a
threshold for the acceptable IRE to be 1073, the new
criterion selects m* = 35. With this threshold m* < 35
when SNR grows and/or the length of data gets larger.
Counting for the delay of the system, with the same
threshold, the proposed method chooses the 10 taps of
the impulse response estimate from 27 to 36 for mod-
eling the channel.

Figure 2: '* line: Impulse response error, ||AN — h||2,
for SNR=90db, N=800. *-.’: Upperbound and lower-
bound of IRE. Solid line: Estimate of E||hY — h||3.

7. CONCLUSION

We presented a new approach to the estimation of the
length of a channel impulse response. We elaborated
on the advantages of implementing this method over
the available information theoretic solutions.
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