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Abstract

The problem of quantifying the error in estima-
tion of low-complexity models for stable linear time-
invariant(LTI) systems is investigated. We elaborate
on the advantages of implementing a new method for
order selection of the model class.

1 Introduction

Robust control synthesis requires not only a nominal
model, but also bounds on the accuracy (or quality) of
the model. This has motivated a number of researchers
in control community to come up with a proper quanti-
fied error model. The existing methods, such as conven-
tional or set-membership identification methods, have
their own strengths and drawbacks in quantifying the
impulse response error of LTI systems [4]. In this pa-
per we present a method which considers a similar prior
assumption about the additive noise that is used in con-
ventional system identification methods [3]. However,
unlike the conventional method, the new method distin-
guishes between the effects of noise and the unmodeled
portion of the impulse response in quantifying the im-
pulse response error.

A fundamental question of system identification is how
to choose a finite order subspace and search for the
“closest” element of this subspace to the true impulse
response of the system using finite noisy data [10].
When the only source of noise is an additive output
noise and the measure of closeness is in the form of I,
norm, the least-square algorithm can be used to esti-
mate the model [3]. The objective of this paper is to
quantify the error between such an estimate of the im-
pulse response and the true impulse response and to
compare the estimates in subspaces of different orders.
As the length of the data grows in each subspace, the
estimate approaches a fixed point in the subspace. Here
we consider two errors: impulse response error defined
as the distance between the true system and the esti-
mate in the subspace, and subspace impulse response
error, the distance of the estimate to the projection of
the true system (the closest element of the subspace to
the true system).

Venkatesh [8] designs an input that guarantees conver-
gence of the subspace impulse response error to zero as
the length of the data grows. He uses a bound on the
norm of unmodeled dynamics to derive an upper bound
for the rate of convergence of subspace impulse response
error. In conventional system identification the trade
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off between bias and variance error represents the sub-
space impulse response error. Our goal is to use the
data to find a tight upper bound on the norm of the
unmodeled dynamics for each subspace of different di-
mensions, i.e., to find bounds on both impulse error
and subspace impulse response error.

" The comparison of the impulse errors of subspaces with

different dimensions can be used as a tool in the order
selection problem. We discuss the conventional meth-
ods of order estimation, AIC [1], MDL [6], BIC [7],
and mention the benefits of implementing the proposed
method in the process of order estimation.

2 Problem Statement
We consider causal, single-input/single-output, linear
time-invariant, discrete-time systems with bounded
power/power gain (bounded Ho, norm). Input and out-
put of the system are related as follows

n
Yn = Z hitn_iy1 + Wy, (1)
i=1
where h = [hy,---]T is the impulse response of the

system and w [wy,--]7 is the additive white,
zero-mean random vector. Each w; has variance afl,,
and is independent of the input. The input is assumed
to be a quasi-stationary signal [3].

Finite length data, input [u1,---,un], and output
[y1,---,yn], is available and u; = 0 for ¢ < 0. There is
no assumption on the length of the impulse response.
However, only the first N elements of h, kY, relate the
N points of the input and output.

Consider subspace S,, of order m in space RY. The
projection of AY on S, is AY. Given the finite length
input and output of the system, an estimate for A} in
Sm, h;”n, is obtained using the conventional least-square
method (ML estimation). Subspace impulse response
error(S.LR.E) is the [y norm of the distance between
hY and AN in S,,. Impulse response error(LR.E) is
the Iy norm of the distance between h™ and hY. Our
objective is to estimate the variance and expected
value of both S.LLR.E and L.R.E for any subspace S,

“when m << N.
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Model Quality Evaluation The method we propose can
be used for quality evaluation of the estimate of impulse
response in subspace Sy,. For each subspace Sy, there
exist functions of a,u,y,m, and N, Ly (o, u,y,m,N),
L% (e,u,y,m,N), Ut (a,u,y,m,N), and




UZ (o,u,y,m,N), such that with probability greater
than Q%(a), (Q(z) = e~ du)

1
S.

7 Ilae

To estimate the order of the system we suggest to pick
m* such that

m* = argminU§_(o,u,y,m,N). (2)
m

We show that a can be a function of N such that

limpy 00 @y = 00, 50 as N grows, Q{ay) goes to one.

3 Impulse Response Error

The following method can be used for any subspace of
RN, S,,. However, for simplicity of presentation let 5,,
be a subspace which includes the first m taps of the im-
pulse response. Form (1) the input-output relationship
for the finite data is as follows

YN = UWAY +wN
hon
= [ Am(N) Bm(N) ] +wN (3)
Ay
where YN = [y, ---,yn]T, U(N) is N x N a Toeplitz
matrix generated by the mput ANV = [hY; AN] AN =
[hla Yy m]T [hm+11 hN] 9 Am(N) 18 a NX

m matrix, By, (N) is a N x N —m matrix and w” is the
white additive noise. The least-square method is used
to find the estimate of the first m taps of the impulse
response hY

by (An (V)T Am(N) (A (N)TY). (4)

(From here we drop N from w”) Then the S.LR.E and
the LR.E are

fLN—hN = BmAN)IC B, A“+wszw
2=
N et

—

unmodeled noige
+2wTCr B AN (5)
cross term
[~ BN 15 = |lhi = Bmll3 + AN (6)

where Cp, = A (AL Am) (AL A,n) AT (From here
we drop N from A.,,(N), Bn(N)).

We use the stochastic properties of the noise to provide
soft bounds for the noise related parts of the S.I.R.E
and L.R.E. Then we use the output error to estimate
the components of S.I.R.E and I.R.E which are caused
by the unmodeled part, AXN.

Asymptotic Behavior As N goes to infinity, the
terms which are noise dependent asymptotically go to
zero (Ump— o0 20T Cry B AN = 0, imy oo wTCraw =
0) [11],

Jim (1A~ kllf = (AR)T(Jim BRCmBm)AR (7)

Jim ||~ hllf = Jim [IAY ~ BYIE + IAZIR. (8)

Ly, <llhy ~hJIP < U, L§, < |IWY ~hJIP < UE,..
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The second component of the impulse response er-
ror in (8) is the unmodeled dynamics of the system.
The first component, however, is a function of the
input and the unmodeled dynamic. Since the input
is qua51 stationary lim & AT mBm and lim j},AT A, ex-
ist, B nCmBm has a hm1t If the input is such that
lim & AT T By, goes to zero, then this term vanishes as N
goes to inﬁnity, which implies that the subspace impulse
error(7) asymptotically goes to zero. If lim AT B,
does not go to zero asymptotically, there is a fixed bias
in the subspace impulse response error (7) as N goes to
infinity.

3.1 Output Error

The output error is the l; norm of the distance between
the output and the estimated output obtained by the
estimated impulse response in Sy,

1 - 1
N“Y - Yl “% = N(BmAan)TGmBmA% (9)
unm;;:led
+ —l—wTG w4+ —2—wTG B, AN
N "N T
7;{99 crossvterm
where G, = (I — A (AL Ap)~1AT).

In absence of an additive noise, the S.I.LR.E, the L.LR.E
(5),(6) and the output error are decreasing functions
of m. Assume that there exists M such that hpr # 0,
h; =0, ¢ > M. If M < N, then all errors are none
zero for m < M and zero form > M. If M > N, then
all errors are decreasing functions of m. In this case
using the output error, which is available, is enough for
“comparing” the distance of the impulse response of the
system from the subspace estimates of different order.
Therefore to find the model set with minimum order
m* which minimizes the impulse error, we can use the
output error. If the output error is non-zero for all m,
then m* = N, otherwise, the smallest m for which out-
put error is zero is m* = M.

In presence of an additive noise, the output error is
a decreasing function of m. However, regardless of the
amount of M, which can be less than N or greater than
N, the impulse response error is minimized at some
point m*. And m*, which is less than or equal to M,
might be less than or equal to N. In the next section
we elaborate the relationship between the output error
and the impulse response error in presence of the addi-
tive noise. There exist methods which use the output
error and add an extra term, which is a function of m,
N and o, to select the optimum order for the system
such as AIC, MDL, BIC. We will compare our method
to these conventional methods later.

Note that in off-line identification the expected value
and variance of the subspace estimate, hY, can be cal-
culated approximately by repeating the experiment, us-
ing the same input( similar to Monte Carlo simula-
tions). Although, in this case, we obtain estimates for
the bias and variance error of the subspace estimate,



this method can not provide any estimate of LR.E [5].
Our goal is to estimate both S.I.R.E and L.R.E.

4 Bounds on The Impulse Response Error
In this section we find the estimate of variance and

expected value of S.I.R.E and LR.E in presence of an
additive white noise. The additive white noise is such
that

E(ww;) =0, ifi=j E(ww;)=0,i#j (10)
and E(w}) is bounded. From (5)and (6) we have

. E(Hﬁﬁ - hﬁ)lP) = tr(Cm)Utzu +me- (11)
E(|IRY - k™M)|I%) = E(I1RY - B)IP) + IANI1? (12)
where m,; = (BnAN)TCr B AN and the variance of
both errors is
var(||hy, — h™V)|?) = var(||hjy — hy)|?) =
var(w? Crpw) + 4(Bm AN C2 B, AN 62

(13)

(Note that E(wT Cpw)(2wT CrnBrnAN) = 0). We can
calculate the two noise related elements of both ex-
pected value and variance of the S.I.R.E and the LR.E,
tr(Cm )02 and var(w? Cw), using only the input and
statistics of the noise.

Next we want to estimate the unmodeled re-
lated components of the expected value and vari-
ance of impulse response errors in (11), (12), and
(13), (AN)TBLCnBRAL, (AN)TBRLCELBRAY, and
||AN}|2. In the following three steps we provide proba-
bilistic bounds on the S.I.LR.E and the I.R.E using the
output error.

4.1 Step One: Using The Output Error
The output error (9) is a random variable for which we
have

1 - 1

BV - ¥7IB) = 3 4r(Gm)od + 9gm  (14)
where

1
99m = N(Bmﬁﬁ)TGmBmAﬁ- . (15)

The variance of the output error is

1 " 1 402
var(NHY - Yl’”\l%) = var(NwTGmw) + —Nﬂggm (16)-

(Note that since G, is a projection matrix G2, = G,).
This random variable, +||Y — ¥:™||2, is almost a Gaus-
sian random variable when N is large (using Central
- Limit Theorem). By using the observed output error
we can find bounds on the unmodeled part of the out-
put error, ggm.

If a Gaussian random variable X,, has mean mx and
variance 0% then

Prob(mx —aox < Xm <mx +aox) =Q(a) (17)

where Q(a) = [° e */%da.

Using the input and the output, we can calculate X, ==
Y = Y2 ~ &tr(Gm)o?,. Here X,, is a random
variable with E(X,,) = ggn. Variance of X,, is the
same as variance of %||Y — Y12 in (16). Therefore
with probability Q(a) for X,, we have

99m — e/ Zp < X < g9m + o/ Z, (18)

where Z, = 402 %2 + v, and vy, = var(Fw Grw).
This gives an upper and lower bound for gg,, Lgm <
99m < Ugm where

2 2
Ugm = maz{0, 9121 + Xm + aav/Jn} (19)
o?a? A
Lgm = maz{0, 35— + X — aa/Jn} (20)
it I = 3+ 0= B,

4.2 Step Two: Bounds on The Unmodeled Parts
of S.I.R.E and LLR.E

To find the expected value and variance of S.I.LR.E
and ILR.E use the upper and lower bounds on
99m in (15) which are calculated in previous
step and find upper and lower bounds for terms
which are caused by unmodeled dynamics, m.
(AN BT Cp BnAN, v, = 402(Bo,AN)TC2 B,,AN,
lAN[{%in (11),(12),(13). Therefore with probability
Q(a)

Lm, < m.<Ume, Lv. < v, < U,

Lma < [[ARIP <Uma (21)

Note that this step is a deterministic procedure which
solves a constrained optimization problem.

4.3 Step Three: Upper and Lower Bounds for
S.I.R.E and L.R.E

Here we use the results of the previous steps and con-
clude with the following theorem [11] :

Theorem 1 For z; = || — hY||2 — tr(C,n)02, with

~ probability larger than Q(a)Q(8) we have :
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maz{—tr(Cn)o>,Im, - B\/ch + var(wT Cpyw)}

< 21 < Ume + 8y/Une + var(w? Cruw) (22)

For 23 = ||AY — AN||2 — tr(Cpn)02 we can use the
same boundary by replacing Lm. and Um, in (22) with
Lm; + Lma and Um, + Uma respectively. .

Asymptotic Behavior In [11] we show that the noise
related part of the output error, vy = HwTGnw in

(9), is such that v, < & where ! is a fixed finite num-

ber. Therefore a /v, < 3\/% and by choosing a as a
function of IV, ay, such that lim "‘N = 0, the upper

bound and lower bounds of gg, in (19) and (20) ap-
proach each other as N goes to infinity. In order for
these upper and lower bound to hold with probability



which goes to one as N grows, we can choose ay such
that imy_00 @y = oo, therefore Q(an) — 1. One
candidate for ay for example is log(N).

While as N grows, with proper choice of ay, the lower
bound and upper bound of ggm (15) in (20),(19) ap-
proach each other, the upper and lower bounds of un-
modeled related terms of S.IR.E and I.R.E in (21)
might not approach each other as N grows. Note that
since the input is quasi-stationary the limits exist and
are finite numbers. The asymptotic behavior of these
bounds depends on the structure of the input. For ex-
ample if the input is independent identically distributed
random variable the upper bound and lower bounds,
bounds of the unmodeled part of S.I.LR.E and L.R.E in
second step, also converge to each other as N grows.
To guarantee that the bounds we find in step three
are also valid with probability which goes to one as
N grows, we pick 8 in (22) as a function of N such
that limyseoBn = 0. In order to have finite values
for the upper and lower bounds of 2z; and 22 the term
B/ Uv. + var(wT C,w) in (22) has to be finite for all
N. In [11] we show that Uv, + var(wTCprw) < &,
where [, is a finite number. Therefore as long as the
rate of growth of By is such that limy_ % =0,
the upper bound and lower bounds in (22) are only
functions of bounds of the mean m. and unmodeled
dynamic ||AN||? in (21). Note that in section 2, the
bounds for the model quality evaluation is given by
probability Q?(a), there we have considered a special
case a = 3.

5 Deterministic Noise

Set description for the additive noise and worse case
gains are the tools which enable the robust control de-
signer to integrate both disturbances and other descrip-
tions of uncertainty in system models. Most works in
this field use a very conservative description for additive
noise, i.e., bounded power signals, signals with bounded
Ly or Ly, norm. However, in practical problems the ad-
ditive noise has more properties, i.e., it is uncorrelated
with the input and therefore belongs to a subset of these
sets. One method of presenting such noise is to restrict
the set with additional constraints on the correlation of
the noise with the input or with itself. Paganini intro-
duces such set descriptions in [5]. Also [8] defines the
noise with a set description which has some correlation
constraints.

To make a bridge between set description and stochas-
tic additive noise, similar to the idea presented in [5], we
can check the richness of a set with the probability that
a stochastic noise is a member of such set. For example
let’s assume that the additive noise in (1) belongs to
the following set, W,

W = {v| fZ < %ﬂg(m\ﬂzzm)‘,
2 RUOWER0),1<T<N

(23)

vN

|Ra(7)] <
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a; ay/Re(0)(RY*(0) — (R2(0))?
IR0-R(0) 3 ol < 2RO D) - (EOR)
where a is a bounded power sequence and RY(7)
%Ef;l ViVi+ra;, RY(T) = I%Zfil V;Vi+r. Then the
method presented in previous section provides the
supyew and infyew of {|hN — AN||2 and ||RY — AN|2.
As N grows, an additive white Gaussian noise is a mem-
ber of such set with probability [@(a)]V*2. As it is
mentioned in previous sections a can be a function of
N such that ay goes to infinity as N grows. Therefore
AWGN is a member of such set asymptotically.

}

6 Independent Identically Distributed Input

Here we assume that the additive noise is white Gaus-
sian noise(AWGN) and the input is a sequence of inde-
pendent identically distributed(I.I.D) random variables
with unit variance and zero mean. An Example of such
input is a Bernoulli sequence of £1 which is commonly
used in communication. ‘'We can use the properties of
this type of input to show the asymptotic behavior of
the procedure introduced in section 4. In [11] we prove
the following theorem.
Theorem 2 If the input of the linear system in (3) is
LLD, then the upper bound and lower bound for sub-
space impulse response error(5) and impulse response
error(6) with probability greater than Q(a)Q(8)Q(v/k)
(k =mazj([h, -, hjla.) +m,1 < j < N, zg, is the
H, norm of vector ) are

m L
ma:c{O,—a +N1+gml ———\/ m} <
vN
AN _ BN +m Ugm  BVm
1A = hII3 < N + V1o + =5 VPn (24)

w

"‘U 7. Lgm and Ug, are lower

where P, = 2(0?)? +
and upper bounds on the anmodeled part of the out-
put error in (20),(19) Ugm = maa:{O 2“ %o+ X+
ot V) L = a0, 255 + X 580 V),
where @, = 'Tv"'L + Xm + %afv and X, = &||Y -
Y73 - 02(1— 2). The lower bound for impulse error
135 = RN is maz{0, Fo®+ (1+5) 1§23 — E%=V/Pr}
and the upper bound is

m Ugm
N/1-<

N

GV,

Rate of Convergence If we choose o, 3 and v as
functions of N such that limay = o0, lim Sy = 00 and

lim vy = oo, then the probability Q(a)Q(8)Q(v/k) in
theorem 2 goes to one as N goes to infinity. Also if

T2 4 1+ = (25)

hm% =0, lsz = 0, and llm\/-7= = 0, then Ugm
and Lgn, both converge to maz{0, %||Y — Y2 -02},
therefore
Il = kol ~ 0 (26)
~ 1 N
llAm = kY13 - maz{0, HIY - Y - 0%} (27)



The bounds of errors in (24),(25), provide tight esti-
mates for the rate of convergence of the errors to their
limits. ‘
7 Results and Simulations

The impulse response in our experiment is h(n) =
3(.5)™ ! + 3(n — 1)(.8)*"1. The input is an LILD
Bernoulli sequence of +1 and the noise is an additive
white Gaussian. Figure (1) shows the result of simula-

Figure 1: '*:
ow = .2 and N=400. -’: Bounds calculated for
a? = 4% = 8 = log(N), *.”:Bounds calculated
for o® = 4* = B = 2. Solid line: the estimate

of Ellhm — k™|[3 (29).

Impulse response error, ||iz’{” — N2, for

tion for I.LR.E. The bounds on the error are calculated
base on upper and lower bounds given in (24), (25).
The solid line in both figures is the estimate of expected
value of S.LR.E [11]

E(|B, = hY)II%)  tr(Cm)o?, + T (max{0, Xn}) (28)
and expected value of LR.E E(||hY — hV)||2) ~

tr(Crm)or, + max{0, (1 + 7) Xm} (29)
where X, = L||Y — V|12 - 1r(Gpm)o2,. Figure (2)
shows the simulation results for inputs with different
lengths and a fixed noise variance, o, = .02. Fig-
ure (3) shows the simulation results for S.I.LR.E when
N = 400 for two different noise variances. Finally, fig-
ure (4) shows the simulation results for N = 400 with
two different noise variances, oy = .2, 0y = .02.

8 Order Estimation Problem

Assume that the system has a finite impulse response of
length M. Conventional order estimation methods at-
tempt to detect M with a given input/output of length
N. Akaike suggests to use a cost function which is the
information distance of the estimate of the true system
to the true system. When the additive white noise is
Gaussian, the cost function for (3) is {1]

N

V(hm(N)) = Jim ~Elog( ¢ NT). (30)

1
(V27mg,)N

10

Figure 2: ’*' line: Impulse response error, || — h|)3,
ow = .02 and N=200,400,1000.
E||hT — hl|3

Solid line:

¥ line: Subspace impulse response error, ||hT* —

hml|l3, 0w = .02, 0w = .2, N=400, Solid line:
E||hT = hmll3.

Figure 3:

where € = ||Y (h) — Y (A (V))]|? is the output error.

If the model set includes the true system( m > M),
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Akaike shows that

N
e‘-“"’wﬁ )

V(hm(N)) ~ — log( + (31)

1 m
(V2ray,)N N
which is Akaike Information Criterion (AIC). Although
the expression is not a valid estimate of (30) when
m < M, in AIC method the same expression (31) is
used for the-model sets of any order.

The idea of minimum description length (MDL) is
rooted deeply in information theory. It suggests to pick
the model order which minimizes the description length
of a given output of the system. Rissanen [6] shows that
for model sets of order m > M, when the additive noise
is Gaussian for (3), the MDL criterion is
_ Y(h)—:hs‘::gN)) 2 log N
N

)+m (32)

log( ! e
(V2ro,)N

While BIC uses a different approach to the order esti-

mation problem [7], the criterion in this method is the

same as MDL in (32) for when m > M. Each of the

above methods introduces a criterion and calculates the



¥7 line: Impulse response error, Hﬁl -~ h||3,
for 0w = .02 and 0 = .2 N=400. Solid line:
E|RT —hll3 .

Figure 4:

closed form of the criterion for when the true system is
an element of the model set, and uses the same closed
form for all model sets. To find the closed form of the
criterion, in all the mentioned methods, the assumption
is that the estimate of the system, h,,, approaches the
true system, h, as N grows, which is valid only if the
true system is an element of model set. .
We suggest using the impulse response error, ||h—hX||?,
as the model order selection criterion. For example
when the input is LID, the estimate of E|lh — hY||?
in (29) is obtained by using theorem 2 with a = ,3 =
=0. When 0< (1+ R)(#IY - Y{"Hz - (1~ Roi),
from (29), we have E(|[hN —hN||?) & —02 + Bo2 +(1+
2Ly - ¥;™||. This expression resembles AIC crite-
rion when m > M since in this case R (&Y - Vg ~
Fow-
In real problems the impulse response usually is not fi-
nite. While our method finds the order, m, which mini-
mizes E||h— h(N)||?, we could also pick a fixed thresh-
old for acceptable minimum mean-square impulse error.
For example let’s assume that we ignore any impulse er-
ror less than 1073, As figure 4 shows, for g, = .02, the
impulse response error-is 1073 at m ~ 40, while the
order, m, which minimizes ||h — &, ||? is around 50. In
this problem as N goes to infinity, 7 stays around 40.
However, the MDL method is not able to use the de-
sired threshold. Since MDL is a consistent method, and
the length of the impulse response is infinity, as N goes
to infinity, /(M DL) also goes to infinity. Same prob-
lem raises in order determination for channel identifica-
tion in communication. [2] shows that as SNR grows,
MDL picks higher orders for the impulse response of
the channel, while the goal is to only detect the order

for which the “significant” part of the impulse response -

is included.

If the variance of the noise is not known, conven-
tional methods, AIC, MDL, estimate the variance of
noise for each model set m “separately” as 62(m) =
~ Y () - Y (hm(N))||? and use it in the proposed cri-
terion. However, in the process of finding the criterion,

the variance of the noise is assumed to be fixed, o2 [3].
In the new method, we suggest to use the estimate of
the variance obtained for the highest order, i.e. My,4z,
for all the model sets. Therefore the estimated variance
for all model sets is 62 = %|[Y (k) — Y (hp,,.. (V))[]%.

9 Conclusion

In this paper we suggest a method of quantifying the er-
ror of impulse response estimates of LTI systems. The
estimation is obtained by parametric least-square iden-
tification of the true system in the space of finite im-
pulse responses. We assume that the input is a quasi-
stationary signal and for a subset of such input we find
a tight upper and lower bound for the impulse response
error. We compare the advantages of this method
over the conventional order estimation methods. The
method can be expanded to order estimation of the im-
pulse response with any general orthonormal basis, for
example in the frequency domain estimation[9].
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