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Abstract

In an effort to better guide research into self-configuring wireless sensor networks,
we discuss a technical definition of the term self-organization. We define a self-
organizing system as one where a collection of units coordinate with each other
to form a system that adapts to achieve a goal more efficiently. We then lay out
some conditions that must hold for a system to meet this definition and discuss
some examples of self-organizing systems. Finally, we explore some of the ways this
definition applies to wireless sensor networks.
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1 Introduction

We are currently engaged in a project using self-configuring and adaptive
wireless sensor arrays. One of our goals will be to make them self-organizing,
by which we mean only the usual, dictionary definition – able to form into
a coherent unity or functioning whole. 1 This definition captures the spirit of
our intention but is not precise enough for technical application.

Email address: travc@ucla.edu (Travis C. Collier).
URL: http://taylor0.biology.ucla.edu/al (Travis C. Collier).

1 For example, The Oxford English Dictionary lists several meanings for “organize”;
the meaning appropriate to the current context is “2a: to form into a whole with
mutually connected and dependent parts; to coordinate parts or elements so as
to form a systematic whole (with either the whole or parts as object); to give a
definite and orderly structure to; to systematize; to frame and put into working
order (an institution, enterprise, etc.); to arrange or ‘get up’ something involving
united action.”[1]. To self-organize would be to do so autonomously.
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Fig. 1. A portion of the James Reserve sensor array. The figure depicts a 250m wide
area colored by vegetation type. Rectangles are nest boxes with sensors, crosses are
weather stations, and circles are network cluster heads.

Given the complexity of a sensor network such as the one at the James Reserve
depicted in Figure 1, where many sensors of different types are deployed in
a heterogeneous and somewhat hostile environment, self-organization is an
obvious goal. However, without a more technically suitable definition, it is
also a nebulous goal. It would be helpful if we could state clear conditions
under which the arrays are capable of self-organizing or not. For example,
it might enable us to specify properties that must be engineered in, such as
requiring a minimum fidelity of communication among the constituent parts.

“Self-organization” has proven difficult to study scientifically, despite of its
centrality to complex systems and adaptive complex systems. On the one
hand, most of us share Alan Turing’s observation that “Global order can arise
from local interactions”[2]. On the other hand, there seems to be no good
formulation for the topic that is sufficiently precise[3]. Much has been written
of the topic, most of which has been sufficiently abstruse that many scientists
“feel a negative visceral reaction to the term ‘self-organization’ ”[4].

Marvin Minsky has distinguished between informal, intuitive use of a word
and its appropriateness for technical use[5]. A word may be helpful for general
discussion, but when technically precise limiting conditions are required, then
the word or concept fails. This does not mean the term is not useful, only that
its technical status is limited. Gell-Mann has made a similar point in a dis-
cussion about levels of explanation[6]. When pushed to the limit, there seems
to be no clear definition of “emergent properties”, but the term is nonethe-
less quite useful for discussing different levels of organization (another concept
that is fuzzy and probably not useful for technically precise usage, but still
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useful for discourse). Possibly “self-organization” is also in this class. We sug-
gest, however, that the term can be made precise, at least in artificial systems
designed by humans.

We begin by distinguishing between “self-ordered” and “self-organized” sys-
tems and list features necessary for any self-organizing system. We then review
some prominent examples of self-organizing systems that have been described
and studied in the literature. Finally, we discuss these criteria in more detail
as they apply to self-configuring and adaptive wireless sensor arrays.

2 Self-ordering vs self-organizing

A recent authoritative review[7] defines self-organization as

“... a process in which pattern at the global level of a system emerges solely
from numerous interactions among the lower-level components of the sys-
tem. Moreover, the rules specifying interactions among the system’s com-
ponents are executed using only local information, without reference to the
global pattern.”

While appealing, it seems to us that this definition pushes back the problem
to defining other terms – e.g. levels of organization, emergence, pattern, and
local vs. global information. These terms are very difficult to define precisely,
perhaps more difficult than the term “self-organization” itself.

Organization involves something more than simply pattern. We prefer to follow
Cairns-Smith by distinguishing between systems that are self-organized from
those that are simply self-ordered [8]. In a self-ordered system, the state of part
of the system influences the state of another part through local interactions.
Examples of self-ordered, but not self-organized, systems would include sand
forming waves on the desert floor, water molecules that assemble to form ice,
chemical oscillations like the Belousov-Zhabotinskii reaction, molecules that
fall into place to form crystals, and arrays of bipolar magnetized needles that
settle in to homogeneously-aligned regions. Certain cellular automata might
also fit this definition[9,10]. Critical here is the distinction between pattern
and function. These examples of self-ordering systems all achieve some order
from greater randomness, but there is little that would compel us to regard
them as achieving a coherent or functioning whole – essential to the meaning
of “organization”.
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3 Features of self-organizing systems

In our view, a system is self-organizing if a collection of units coordinate with
each other to form a system that adapts to achieve a goal more efficiently.
Roughly speaking, they form an ensemble, rather than a mere collection. It
seems inescapable that the system be viewed as having a goal or goals that the
ensemble seems to pursue or in some way optimize. It should be possible to
view the system as having inputs, with respect to which it acquires complexity,
and some sort of output which it accomplishes more or less efficiently. Adap-
tation is internalizing information encoded from the inputs to more efficiently
or accurately produce the “desired” output.

The importance of the system’s environment should not be underestimated.
Inputs, output, and adaptation are all explicitly dependent on the particulars
of the environment the system is in. We must expect that in some environments
a system might be self-organizing, while in others it might not be.

The role of “goals” in this discussion is problematic. There are deep philosoph-
ical issues about whether natural systems can be regarded as having goals and
whether one can legitimately infer what these goals are (see [11] for a variety
of viewpoints and further references.) We take no stance on that. Rather, we
will opt out of that debate and narrow our discussion to engineered systems
where we can unambiguously designate the goals of the system ourselves.

This definition of self-organization can be enumerated into a list of features.

(1) The system is composed of units which may individually respond to local
stimuli.

(2) The units act together to achieve a division of labor.
(3) The overall system adapts to achieve a goal or goals more efficiently.

For these features to hold, the following are some of the conditions that must
be met.

(a) The system must have inputs and some measurable output.
(b) The system must have a goal or goals.
(c) The units must change internal state based on their inputs and the states

of other units.
(d) No single unit or non-communicative subset of units can achieve the sys-

tem’s goal as well as the collection can.
(e) As it gains experience in a specified environment, the system achieves its

goals more efficiently and/or accurately, on average

The three primary features appear sufficient to classify a human-engineered
system as self-organizing. We intend that each of these features will be evident
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in the discussion of examples to follow.

4 Examples of self-organized systems

Several engineered systems have been described as self-organizing and stud-
ied sufficiently well that they can serve as models. These include: (1) self-
organizing neural networks; (2) swarm intelligence; (3) self-configuring wire-
less networks; and (4) cultural acquisition of a common language. This list
is by no means inclusive. Important omissions include economic systems[12],
metazooan body structure[13], ant colonies[14,7,15], and biological systems
in general[16]. We don’t dispute that these examples are self-organizing, but
because we wish to state precise conditions, we would finesse the question of
just what are the goals of these systems. Our discussion will be directed at in-
stances where there are well-analyzed theoretical abstractions of the processes
concerned.

4.1 Self-organizing neural networks

Neural networks come in many flavors, some emphasizing biological realism,
some designed for engineering efficiency, and others for ease of theoretical anal-
ysis. Among the most obvious examples of self-organization are unsupervised
learning using Hopfield networks[17], the Willshaw and von der Marlsburg
scheme[3], and Kohonen’s self-organizing maps (SOM)[18]. There are several
excellent treatments of these. For this discussion we will focus on SOM, and
more or less follow the treatment of Haykin[19].

In general, SOM are unsupervised learning systems employed to map high di-
mension inputs to a lower dimension output where similar inputs are mapped
near each other. Sophisticated variations have been developed for various ap-
plications and mathematical and statistical properties of SOM have been ex-
plored [see Kohonen’s 1995 monograph[20]].

Imagine a two-dimensional lattice of output neurons all connected to a com-
mon input. The input is in the form of an n-dimensional vector, and each
neuron contains a single model vector of the same dimensionality. This con-
figuration is illustrated in Figure 2A.

When an input comes into the system, each node computes the distance be-
tween that input and its model vector. The node with the closest model vector
is chosen to fire either by a master control, a decentralized inhibition scheme,
or something in between. Learning is accomplished by the firing node moving
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Fig. 2. A: The topological configuration of a Self-Organizing Map. B: An example
of a SOM mapping uniformly random 3-dimensional (RGB color) input vectors to
a 2-dimensional map. The top is the initial random configuration, and the bottom
is the organized map.

its model vector closer to the last input vector by some delta. The firing node
then communicates to each of its neighbors prompting them to do the same
with a smaller delta. As those neighbors communicate to their neighbors and
so on, a wave of decreasing adjustment toward the last input vector propa-
gates across the network. Typically, the wave of communication is limited to
a certain radius centered on the firing node to reduce communication costs,
and the delta value decreases with time so that the network is guaranteed to
converge.

The output of the system is the identity of the node that fires given a certain
input. The two-dimensional lattice in our example is not a real constraint as
a huge number of output topologies can be constructed simply by changing
how neighbors are defined. Starting from random connections and completely
without being informed of what are correct or incorrect responses aside from
their own recognition, the system acquiring a feature map, Φ, that takes spa-
tially continuous input vectors, x from a space H and maps them to a discrete
space, A, the topology of which is determined by the spatial array of the out-
put neurons. Figure 2B shows an example of such a mapping, taking uniformly
drawn random RGB color values (3-dimensional) to a discrete 20 by 10 2-D
plane.

The coordination of the nodes and division of labor is quite clear in this
system. Communication is explicit, as is the response of the internal state in
response to the inputs and the reinforcement from neighbors. Division of labor
is accomplished by decomposing the memory required to store patterns in the
inputs as well as the computation of distance between input and model vectors
across the nodes. Also, no noncommunicatve subset of nodes can accomplish
the mapping as well as the entire network since the output of the network is
implicitly defined by the communicative topology of the nodes.

System-wide adaptation is achieved by creating a map. A precise mathemati-
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cal formulation of the goal is beyond our scope here, but it intuitively involves
creating a map where the distance in the output topology is correlated with
the distance observed between the inputs. In terms of the formalization above,
the system is able to generalize by mapping a large number of inputs drawn
from H to a smaller region in A. For simple topologies and distance measures,
convergence has been shown[21]. Inputs, outputs, a goal, and adaptation to-
ward that goal are all satisfied. By all of the criteria discussed above these
systems are self-organizing.

While this system is most often implemented as a single computer program,
it is conceptually composed of multiple units, the nodes, that individually re-
spond to the inputs. When a centralized method is used to choose which node
fires, it becomes less clear that the nodes themselves take actions; however, by
formulating the choice process as decentralized the “collection of agents” view
is clear. This raises the important point that it is often possible to describe a
system as self-organizing, and then turn around and describe the same system
in a way that is not obviously self-organizing. How the system is conceptual-
ized, either as monolithic or as a collection of interacting parts, is sometimes
important.

4.2 Swarm intelligence

Swarm intelligence is a technique for designing optimization algorithms mod-
eled after the apparent self-organization of social insects. There is a great deal
of literature on these sorts of algorithms as well as dedicated conferences. For
our discussion, we will roughly follow the brief survey by Bonabeau et al.[22]

One swarm intelligence application, known as Ant Colony Routing, is inspired
by the way ants of species such as Lasius niger converge on a path when for-
aging. When an ant forages, it marks its path by laying a pheromone trail. If
it returns to the nest with food, more workers will leave the nest to gather
food by following pheromone trail reinforcing it as they go. This has inspired
an algorithm to solve the Traveling Salesman Problem, or TSP, which involves
finding the shortest path between n cities, visiting each only once. Each path
between two cities is marked by a pheromone level. A collection of compu-
tational agents select routes that visit each city only once, called tours, by
choosing between routes probabilistically weighted by the pheromone level on
each segment. Then each agent lays down more pheromone on each route in
its tour proportional to how good (or short) the overall tour is. By iterating
this process and having the pheromone trails decay over time, the agents dis-
cover a tour that is quite short if not always the absolute shortest. With slight
modifications, this algorithm performs very competitively compared with all
other state of the art algorithms.
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The same notion of agents probabilistically following and reinforcing a virtual
pheromone trail has led to a host of other algorithms in scheduling and rout-
ing. Network routing using the ant colony metaphor, known as Ant Colony
Routing, is particularly noteworthy as it often produces better results than
other commonly used standards and is used commercially[23].

While these algorithms could be formulated in terms of reinforcement opti-
mization, the explicit formulation in terms of computational agents is useful
in designing them. As with SOM, one could describe them as a monolithic im-
plementation that is not self-organizing by our definition, but describing the
algorithms in terms of a collection of agents is part of the point of using the
ant colony metaphor in the first place. In contrast to SOM, agents in swarm
intelligence systems keep very little internal state and do not communicate
with each other directly. Their state is typically just their location and com-
munication is achieved by depositing the virtual pheromone trail. This does
satisfy our criteria for self organization, as collaboration between the agents
is achieved by their collective action of depositing pheromones. Part of short
tours in the TSP, or uncongested links in the routing algorithm, are strongly
marked since they are used by many agents.

The inputs and outputs of the system as a whole also contrast SOM. The
input in the case of the TSP algorithm is the static topology of the cities, and
the output is the best observed tour, list of cities in order, an agent makes.
The goal is explicit, finding the shortest tour, and has been shown empirically
to be optimized by the system as a whole[24]. For ant colony routing, the
input is again the topology of the network, but the topology changes as traffic
patterns change and nodes are added or fail. The goal which is optimized by
the system is an implicit function of throughput and latency of traffic coming
into the system, maximizing the former and minimizing the latter.

Swarm intelligence is a paradigm for producing efficient and adaptive agent
based algorithms. Unsurprisingly, it provides many good examples of self-
organizing systems, of which routing is but one.

4.3 Self-configuring wireless networks

The challenge of producing a well connected network on small wireless devices
leads to some of the clearest examples of self-organization available. Limited
power, low radio range, potentially high density, and an ever changing envi-
ronment all push for a distributed and adaptive solution. These are some of
the same challenges facing wireless sensor network design[25].

One problem faced by wireless sensor networks is how multiple units can
coordinate their communication, since no two units in the same area can suc-
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cessfully transmit on the same frequency at the same time. This is the “media
access control problem” and has generated huge amounts of study, includ-
ing relatively early talk of self-organization[26]. One approach is to assign
each unit a specific time slot when they are allowed to communicate. Schemes
along this line, called TDMA for “Time Division Multiple Access”, work rea-
sonably well, but are inefficient when there are many units that are not all in
range with each other. They also require that all of the units to have precisely
synchronized clocks, which requires costly global communication.

An alternative scheme is for each unit to coordinate only with its neighbors,
the units its radio can directly reach. This notion has been taken to quite a
sophisticated level including a system called S-MAC specifically designed for
sensor networks[27]. Among other things, S-MAC has local groups of nodes
coordinate “sleep schedules” requiring them to turn on their radios for only
short periods of time to conserve energy.

Beyond initially determining media access control and routing information,
wireless networks must continuously deal with the connectivity topology chang-
ing. Units may fail, units, or their surroundings, move around, and the weather
might even shift and change which nodes are within radio range of each other.
Self-organization through continuous local coordination of the units is often
the design paradigm of choice to handle these complications.

Unlike the SOM and swarm intelligence examples here, wireless networks are
physically composed of communicating units. Collaboration is necessary be-
tween the units not only for medium access control, but also time synchro-
nization and routing. On the other hand, the goal is implicit. Just as with
swarm intelligence routing, the goal of a wireless network is to provide a high
throughput, low latency connection between any two units in the network.
This may be modified, especially in the case of a sensor network, to providing
a connection between data sources and data sinks, which are not necessarily
uniformly distributed across the network. That is, some units may produce
traffic more often, and others may be the destination of that traffic. High
throughput between those points is more important than high throughput to
normally quiet units.

4.4 Cultural acquisition of a common language

Acquisition of a common language by a collection of units is a less well explored
self-organizing system. One instantiation of such a system is a network of
sensors developing a high-level language among themselves to communicate
observed events. Among the motivations for the use of such a learned language
include the ability to communicate using very short transmissions as opposed
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to sending the raw data of observations and the ability to express observations
that were not anticipated by the designer of the system.

The mechanisms of event perception and perceptual grounding of utterances
provide the basic ingredients of the development of language in a population.
This idea has been explored by several researchers with promising but still
quite limited success.

Steels explored how shared simple meanings might emerge from simple lan-
guage games[28,29], ignoring syntax. Hashimoto and Ikegami[30] have ex-
plored a more mathematical perspective by creating an evolutionary language
game.

Kirby has constructed systems that can evolve the ability to tie observa-
tions to statements having a well-defined syntax[31]. He assumes that mean-
ings are given (avoiding the event perception problem) and he represents
them in a standard predicate-argument notation, e.g. kills(stan,kenny).
This meaning is drawn from a semantic space of atomic concepts — sim-
ple nouns and verbs such as“john”, “alice”, “loves”, “kills”, “admires”, or
“believes” — that are combined into simple predicate-object propositions,
such as admires(john,alice) or believes(mary,admires(john,alice)).
Note that there can be limitless nesting, e.g. with “believes”. There are ut-

terances that consist of strings of alphabetic characters which are associ-
ated with meanings, such as <alicelovesjohn, loves(alice,john)> or
<gjtejfqpb, admires(mary,alice)>. Finally, there are grammars, simple
definite—clause grammars, such as:

S/p(x,y) → N/x V/p N/y

V/loves → loves

S/loves(alice,john) → alicelovesjohn N/alice → alice

N/john → john

One agent (the speaker) sends an utterance/meaning pair to another (the
learner), e.g. <alicelovesjohn, loves(alice,john)>, and the pair is added
to the learner’s grammar. The utterance/meaning pair defines a rule for the
grammar. After each rule is incorporated there is a search for generalizations,
e.g.

S/loves(alice, john) → alicelovesjohn

S/loves(alice, george) → alicelovesgeorge

gets compressed to
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S/loves(alice, x) → aliceloves N/x

and the following rules get added to the grammar:

N/x → john

N/x → george.

There is a facility for invention, so if an agent does not know how to say what
it wants, then it makes up a string at random, and adds that to its grammar
as well as stating it.

Clearly there is a lot in the combining algorithm. An outline of the induction
algorithm is given in [31], and it is spelled out more fully in [32]. One speaker
presents a fixed number of utterance/meaning pairs to a learner. The speaker is
then removed. The learner becomes the speaker, and a new agent becomes the
learner. This is repeated many times. Kirby observed that languages evolved
from random utterances: strings became paired with atomic concepts and
grammars evolved that composed these.

When this sort of language game is applied to a large collection of agents, all
members of the population come to share a common meaning when they hear
a similar sentence. The agents may converge to a common understanding of
utterances under certain conditions. In terms of self-organization, the system
adapts to develop a mutually understandable language to express the percep-
tual events which are the inputs into the system. The output of the system is
the shared perception-to-meaning mapping in the form of a grammar.

5 Self-organization of sensor arrays

As noted in the discussion of wireless networks, wireless sensor arrays are a
good example of a self-organizing system in the way they form a coherent
network. However, in sensor arrays we have the opportunity to make them
self-organizing in an even more interesting way by having them perform data
fusion. Pottie and Kaiser describe the goal of a sensor network as “given a
set of observables {Xj} to determine which of several hypothesis {hi} are
true”[25]. This is accomplished by extracting a feature set from the observ-
ables and choosing the hypothesis that has the highest probability given that
feature set. This deviates from basic decision theory because each node in the
sensor network has only some of the observables and therefore cannot make
the best decision, yet communicating all of the observed data to a central
node is typically far too costly given constraints on energy. Combining useful
information from multiple nodes, called data fusion, often allows for a better
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system overall.

The primary challenge of data fusion is for the sensor nodes to extract and
transmit only the useful information[33]. Imagine a dense cluster of seismic
sensors deployed to detect and localize traffic. A vehicle enters the field of
sensors, providing input to many, though perhaps not all, nodes in one area.
The nodes transmit to each other that they have spotted something. By com-
bining just the timing information from two nodes, a directional time-of-arrival
computation can be performed to give some location information. The location
can more accurately be determined by involving more nodes in the calculation,
but nodes that are very near the first two have little they can contribute to
localization. What is needed is for the nodes to be able to predict how much
they can contribute to the calculation, and only transmit if they can provide a
significant improvement. There are algorithms that can provide this particular
form of self-organization[34,35].

The network need not pass its raw data after localization has occurred, but
instead just the summary “at time T, something was spotted at location X.”
Similarly, data fusion techniques could potentially have the nodes nearest the
vehicle analyze their data and come to a classification such as “truck”, “tank”,
or “auto”. Multiple modalities of sensing can also be fused to provide an even
greater gain.

Consider how nodes in a sensor array might self-organize to generate an adap-
tive language they can communicate with. This is a self-organizing coding
scheme in a sense, since it provides the ability to communicate a great deal of
information with few bits. An adaptive language might be particularly useful
when we consider a heterogeneous sensor network, where nodes have different
sensing modalities from each other. In this case, a single event may be viewed
very differently between, say, a seismic and a magnetic sensor. For data fusion,
it is important that the nodes be able to recognize that they are sensing the
same event, and therefore need language to communicate the “meaning” of
their observations that is somewhat independent of their sensor modality.

Beyond language development, sensor arrays can also employ distributed stor-
age, hierarchical structure, and potentially mobility, all of which lead to inter-
esting self-organizing implementations.

What criteria should be used to define whether or not a sensor array is self-
organizing? Consider an example: a field of distributed sensors, on the order
of 10 - 100, distributed throughout a field. Each sensor can be one of several
types, in this case three – seismic sensor, acoustic sensor, or designated wireless
communicator to the central human processor. For each sensor there will be a
state-dependent cost of sensing, cost of processing, and cost of communicating.
The task of the sensor array is to localize a source moving through the field,
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and one would like to maximize accuracy, life of the system and stealth (which
would be related to communication expenditures).

The goal of this system is to follow a single source, minimizing the tracking
error (integrated over time), while at the same time minimizing the power
consumption and communication. We define the system as organized, with
respect to the goal just described, if it minimizes the the weighted sum of
tracking error, power consumption, and communication.

Organization is reduced to an optimization problem by this approach. We
can then define self-organization as a constraint on the method whereby the
system becomes organized autonomously.

6 Discussion

We have attempted to be precise and concrete at the expense of being gen-
eral. For example, a colony of leafcutter ants, Atta sp., surely exemplifies
self-organization in the colloquial sense[15]. Because of problems with iden-
tifying goals, however, they would not qualify as self-organizing under the
definition proposed here. It might be possible to say that this ant behavior
is self-organizing with respect to fitness or with respect to food-gathering. This
suggests that we could assign a goal to a natural system, rather than simply
infer one, then speak of self-organization with respect to that assigned goal.
Note that this approach would lead to inferring self-organization with respect
to some goals, but not necessarily to others.

Goals in our sense refers to the ensemble – and each individual might not
share that goal. We observed earlier that some, perhaps all, self-organizing
systems can be conceived either as distributed and self-organizing, or as a
single system about which self-organization makes little sense. This is related
to the fact that all distributed processes can be simulated by a single process
(though not all single processes can be simulated by distributed ones). But it is
not so simple. There are several features of self-organizing, multi-agent systems
that are not typically shared by monolithic systems. These include the ability
to recover from damage and a distributed presence. While a network of sensors
that loses half of its members to being crushed might still be able to process
in a self-organized manner, albeit less efficiently, a single processor, half of
which is crushed, is unlikely to recover (see, e.g. Twain’s story of Puddin’head
Wilson[36]). Clearly, how a system is conceived of logically is only half the
story.

Finally, the utility of this approach will be determined largely by the value of
those generalizations that can be made about self-organizing systems. One of
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the earliest mathematical studies of self-organization was the monograph by
Eigen and Schuster on hypercycles[37]. They found that certain conditions on
fidelity of reproduction are required for hypercycles to grow or even to persist.
Komarova and Nowak found that these same conditions, more or less, apply
to the fidelity of word usage in self-organizing languages[38]. Resnick made
a related observation noting that ants that lay pheromone trails to food can
only maintain those trails if the density of ants following the trail is sufficiently
high[39]. These exemplify the generalization that a minimum combination of
density and communication is necessary for information to percolate through
a system and allow it to be self-organizing. Probably the same is true for the
density and fidelity of communication in sensor networks.

Will there be enough other generalities about self-organizing systems to make
this approach useful? Von der Marlsburg offered some heuristics for self-
organization, but observed that “A canonical mathematical formulation of
self-organization has yet to be developed”[3]. If our approach is to rise above
a “distinction without a difference” then it must lead to other generalizations
that are found useful. Other generalizations are not difficult to identify. The
point here is not to enumerate all the possible statements that can be proven
about such system, but simply to point out that once a clear definition has
been adopted, then (and only then) it is possible to make correspondingly
clear statements about the conditions for self-organization to occur.

We expect that engineered self-organizing systems will become more common
and important as computation becomes more ubiquitous, as computational
explanations become more accepted by the general scientific community, and
as principles of self-organization become better understood. We hope that the
formulation proposed in this paper will allow more precise identification of
such systems, allow more general principles about them to be derived, and
provide insight into how such systems might more readily be constructed.
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