
Modeling and control of a multi-agent system using mixed

integer linear programming

Matthew G. Earl1 Raffaello D’Andrea2

Abstract

The RoboFlag competition was proposed by the sec-
ond author as a means to study cooperative control
of multi-vehicle systems. Here we study a simplified
version of the competition that we model as a hybrid
system. We use an optimization approach to synthe-
size control policies by solving mixed integer linear pro-
grams.

1 Introduction

We are interested in using collections of agents in a co-
operative manner to autonomously perform complex
tasks. This is not a new idea given that there ex-
ist autonomous multi-agent systems today that work
fairly well—Cornell’s RoboCup team [4] is a good ex-
ample. But, these systems lack prevalence which is in
part due to two important issues. First, for many ap-
plications, the control strategy for such systems must
meet performance and safety criteria which currently is
hard to guarantee. And second, developing strategies
for large complex systems is extremely difficult. There-
fore, there is a need for systematic analysis and synthe-
sis tools. Numerous researchers from computer science,
controls, and the operations research communities have
contributed valuable work toward this end—see the pa-
pers [1, 3, 6, 8] and the references therein; in fact, an
interdisciplinary approach seems ideal. In this paper
we present first steps toward strategy synthesis, via an
optimization approach inspired by [2], within the con-
text of a new test-bed for studies in cooperative control.
In [7] similar ideas, developed independently, are used
for aircraft trajectory planning.

The RoboCup competition is a valuable means to study
multi-agent systems but, due to the small field and
fast pace of the game, complex strategies are usually
not optimal. Due to this the second author has pro-
posed RoboFlag as a companion competition in hopes
to provide a fertile test-bed for advances in cooperative
control technology involving complex strategies. The
RoboFlag competition is described in detail on the sec-
ond authors web page; here we give a brief description

1Cornell University, e-mail: mge1@cornell.edu
2Cornell University, e-mail: rd29@cornell.edu

D

A

Defense
Zone

Figure 1: The defenders D guard the defense zone from
the attacking robots A .

to give a flavor for the game. The competition is be-
tween two teams of eight robots appease and is similar
to the well known games “capture the flag” and “paint-
ball.” The objective is to infiltrate your opponents ter-
ritory, get their flag, and bring it to your home base
while, at the same time, trying to thwart your oppo-
nent from capturing your own flag. While pursuing the
objective there are a number of other factors to worry
about. Some parts of the field are off limits, moving
obstacles and golf balls shot by the opponents must be
avoided, and each robot has a limited amount of fuel.
This game is complicated and it would be a daunting
task to develop winning strategies at this point in time.
As a first step we consider a vastly simplified version
of the competition which we call the RoboFlag Drill.
The drill involves two teams of robots, the attackers
and the defenders, on a playing field with a region at
its center called the defense zone. The attackers are
drones directed toward the defense zone. The objec-
tive for the defenders is to thwart the attackers from
entering the defense zone by intercepting each attacker
before it enters the zone. Once an attacker enters the
defense zone or is intercepted by a defender it remains
stationary for the remainder of the drill. While pur-
suing its objective defenders must avoid collisions with
other defenders and obstacles as well as avoid entering
the defense zone which is off limits to defending robots.

To intelligently perform the drill the defenders need a
strategy that is consistent with the objective and ide-

ally optimal with respect to the objective. We assume
the strategy is implemented with a centralized con-
troller with perfect knowledge of the system, perfect
access to all states, and with the ability to transmit
control signals to the defenders instantaneously. The
controller needs to figure out the inputs to provide each
defending robot so that the objective is achieved. To
achieve this we pose the problem as an optimization.
We seek a set of control inputs that minimize the num-
ber of attackers that enter the defense zone over the du-
ration of the drill and, in addition, is consistent with
the system dynamics (robot dynamics) and the con-
straints (no collisions, etc.).

We model the RoboFlag Drill as a system composed of
continuous and discrete states (a hybrid system) with
linear dynamics subject to inequality constraints and
logical rules. We convert this model to a mixed integer
linear program (MILP) using techniques that can be
found in [2, 10, 9]. We solve the resulting optimization
problem using ILOG CPLEX [5].

2 Modeling

2.1 The defense zone

The region which the attackers are trying to infiltrate
and the defenders are trying to guard, but must not
enter, is called the defense zone as shown in Figure 1.
The defense zone G is a square centered at the origin
of the playing field and is defined by

G := {(x, y) : (−b ≤ x ≤ b) ∧ (−b ≤ y ≤ b)} (1)

where b is a positive constant.

2.2 Defenders

There are ND defenders that participate in the
RoboFlag Drill. Each defender, denoted Di where
i ∈ {1, . . . , ND}, has state defined by

xi(t) := (xi(t), yi(t), ẋi(t), ẏi(t)) (2)

where (xi(t), yi(t)) are the coordinates at time t of Di

with respect to the origin of the playing field and ẋi(t)
and ẏi(t) are the respective velocity components. We
model the dynamics of Di with a set of linear ordinary
differential equations of the form

ẍi(t) + αẋi(t) = βuxi(t)
ÿi(t) + αẏi(t) = βuyi(t)

(3)

where uxi(t) and uyi(t) are the control inputs and α
and β are constant parameters. The initial condition
is given by

xi(0) = (x0i, y0i, ẋ0i, ẏ0i) (4)

This is reasonable since, as described in [4], a local
controller can be implemented so that the dynamics of

the vehicle obey equation (3). Since these dynamics
are linear we can solve for xi(t) explicitly.

The state and the input of Di are both subject to con-
straints. Since the defending robots have limited con-
trol authority we constrain the inputs to the box

−umax ≤ uxi ≤ umax

−umax ≤ uyi ≤ umax.
(5)

More complicated regions can be modeled by a set
of linear inequalities defining a polygon that approx-
imates the desired region.

Defender Di is forbidden to enter the defense zone G,
therefore, we impose the state constraint (xi(t), yi(t)) /∈
G, i.e.

(xi(t) < −b) ∨ (xi(t) > b) ∨ (yi(t) < −b) ∨ (yi(t) > b).
(6)

We associate with each defender Di a region rigidly
attached to Di and centered at its coordinates
(xi(t), yi(t)). This region, denoted Ii(t), is a box de-
fined by

Ii(t) := {(x, y) : (−c ≤ x− xi(t) ≤ c) ∧ (−c ≤ y − yi(t) ≤ c)}
(7)

where c is a positive constant. The region serves two
purposes:

1. It is used to avoid collisions between defending
robots, i.e. the coordinates of all other defending
robots must not lie within Ii(t). This condition
imposes the additional state constraints: for all
k ∈ {1, . . . , ND} such that k 6= i, (xk(t), yk(t)) /∈
Ii(t), or equivalently:

∀ k ∈ {1, . . . , ND}, k 6= i
(xk(t)− xi(t) < −c) ∨ (xk(t)− xi(t) > c)

∨(yk(t)− yi(t) < −c) ∨ (yk(t)− yi(t) > c)
(8)

2. It is used to determine if an attacker is inter-
cepted. If an attacking robot is within region
Ii(t) and not within the defense zone G then it is
considered intercepted which we define precisely
in Section 2.3.

2.3 Attackers

There are NA attacking robots that participate in the
RoboFlag Drill. Each attacker, denoted Aj where
j ∈ {1, . . . , NA}, has state composed of continuous
and discrete components. The continuous component
is given by

pj(t) := (pj(t), qj(t), ṗj(t), q̇j(t)) (9)

where (pj(t), qj(t)) are the coordinates at time t of Aj

with respect to the origin of the playing field and ṗj

γ
j(t)=1 δ ji (t)=1

E

i

γ
j(t)=0 δ ji (t)=0A

i

aj(t)=1 aj(t)=0
active inactive

Figure 2: State machine for attacker Aj .

and q̇j are the respective velocity components which
we assume to be constant in this paper. The discrete
component aj(t) ∈ {0, 1} denotes the robot’s status
where aj(t) = 1 signifies Aj is active and aj(t) = 0
signifies Aj is inactive.

We introduce the auxiliary binary variable δij(t) ∈
{0, 1} to represent whether Aj is inside or outside de-
fender Di’s region Ii(t). More precisely, we define

δij(t) = 1 ⇐⇒ (pj(t), qj(t)) ∈ Ii(t) (10)

for all i ∈ {1, . . . , ND} and j ∈ {1, . . . , NA}. Simi-
larly, we introduce the auxiliary binary variable γj(t) ∈
{0, 1} to represent whether Aj is inside or outside the
defense zone G. More precisely we define

γj(t) = 1 ⇐⇒ (pj(t), qj(t)) ∈ G (11)

for all j ∈ {1, . . . , NA}.

Attacker Aj moves along a straight line with constant
velocity when active (aj(t) = 1) and with zero veloc-
ity when inactive (aj(t) = 0). In discrete time these
dynamics are captured by the equations

pj(t+ 1) = pj(t) + ṗjaj(t)
qj(t+ 1) = qj(t) + q̇jaj(t)

(12)

with initial condition

pj(0) = p0j

qj(0) = q0j .
(13)

Initially the attacker Aj is active, i.e.

aj(0) = 1. (14)

and it remains active until it enters the defense zone
G or it is intercepted by a defender Di. When one of
these two events occur attacker Aj transitions to an
inactive state and remains inactive for the remainder
of the drill. This is precisely captured by the state
machine in Figure 2 or the state equation:

aj(t+1) =

{

1 if aj(t) = 1 ∧ γj(t) = 0 ∧ (∀i δij(t) = 0)
0 otherwise

(15)

2.4 Objective

The defender’s objective is to minimize the number of
attackers that enter the defense zone. The number of
attackers within the defense zone at any time t is given
by

NA
∑

j=1

γj(t) (16)

therefore the objective can be captured precisely by
minimizing the number of attackers within the defense
zone at the final time of the drill, namely

NA
∑

j=1

γj(T − 1) (17)

where T is the duration of the drill. We take T to allow
each attacker, if not impeded, enough time to enter the
defense zone G. To allow for this we simply take T to
be

T = max
j

(
√

r2
j + b2

ṗ2
j + q̇2

j

)

(18)

where rj =
√

p2
0j + q2

0j .

We can also add a penalty on the control effort to the
cost for more efficient control strategies in which case
the cost to be minimized becomes:

NA
∑

j=1

γj(T − 1) +

T−1
∑

t=0

ND
∑

i=1

(|uxi(t)|+ |uyi(t)|) (19)

3 Optimization

Using techniques for converting logic into inequalities
such as those outlined in [2, 10, 9] we convert this op-
timization problem into a MILP of the form

minw fTw
such that A1w ≤ b1, A2w = b2

(20)

where w is a vector of the control inputs and auxiliary
binary and continuous variables, introduced by the con-
version process, for each time step t ∈ {0, 1, . . . , T −1}.

We solve the MILP problem using ILOG CPLEX [5].
Figure 3 shows an example problem in which three de-
fenders successfully defending the zone from eight at-
taching robots. Figure 4 shows the control inputs to
the defender that corresponds to the lower plot in Fig-
ure 3. Note that in this example we did not penalize
the control action. This particular problem consists of
4040 integer variables, 400 continuous variables, and
13580 constraints. It was solved in 244 seconds on a
PIII 866MHz computer running Linux.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

defense
zone

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

zone
defense

Figure 3: Three defending robots (circles) successfully
defend the zone from eight attacking robots
(stars). The filled circles denote the initial po-
sitions of the defending robots. The lower fig-
ure shows the trajectories of a single defending
robot and the attackers it intercepts.

4 Conclusions and future work

For the simplified problem at hand we have successfully
generated a strategy to minimize the objective, but the
procedure is computationally intensive and assumes a
static environment. Recently we have augmented this
procedure for dynamically changing environments by
implementing a replanning strategy in which we per-
form the above optimization online at every time step.
This procedure can handle more general attacker mo-
tion since the constant velocity vector assumption is
reasonable for short time steps. However, the proce-
dure is limited computationally since the problem does
not scale well with increased numbers of agents.

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

u

u vs t

Figure 4: Here we plot ux (dashed line) and uy (solid
line) for the defender shown in the lower plot
of Figure 3.

Acknowledgments

We thank Richard Murray and Jason Hickey from Cal-
tech and Carla Gomes, Bart Selman, and Pritam Gan-
guly from Cornell for helpful discussions.

References

[1] R. Alur, A. Das, J. Esposito, R. Fierro, Y. Hur,
G. Grudic, V. Kumar, I. Lee, J. P. Ostrowski, G. Pap-
pas, J. Southall, J. Spletzer, and C. Taylor. A frame-
work and architecture for multirobot coordination. Ex-
perimental Robotics: LNCS Series. Springer-Verlag,
2001.

[2] A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, vol. 35, pp. 407-428, Mar. 1999.

[3] M. Bowling and M. Veloso. Multiagent learning
using a variable learning rate. Artificial Intelligence.
2002, to appear.

[4] D’Andrea, R., Kalmár-Nagy, T., Ganguly, P.,
Babish, M. The Cornell Robocup Team. In Kraet-
zschmar, G., Stone P., Balch T. editors: Robot Soccer
WorldCup IV, Lecture Notes in Artificial Intelligence.
Springer, 2001.

[5] ILOG, Inc. CPLEX 7.1
http://www.ilog.com/products/cplex/

[6] M. J. Mataric. Learning in Behavior-Based
Multi-Robot Systems: Policies, Models, and Other
Agents. In Cognitive Systems Research, special issue

on Multi-disciplinary studies of multi-agent learning.
Ron Sun, ed., 2(1), Apr 2001, 81-93.

[7] A. Richards and J. P. How. Aircraft Trajectory
Planning With Collision Avoidance Using Mixed Inte-
ger Linear Programming. In Proc. American Control

Conf., 2002.

[8] P. Stone. Layered Learning in Multiagent Sys-

tems: A Winning Approach to Robotic Soccer. MIT
Press, 2000.

[9] F.D. Torrisi, A. Bemporad, and D. Mignone.
HYSDEL—A language for describing hybrid sys-
tems. Technical Report AUT00-03, ETH Zurich, 2000.
http://control.ethz.ch/~hybrid/hysdel

[10] H. P. Williams. Model Building in Mathemati-

cal Programming. John Wiley and Sons, Third Edition,
1993.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 41st IEEE Conference on Decision and Control Las Vegas, Nevada USA, December 2002
	session: TuA04-2
	footer: 0-7803-7516-5/02/$17.00 ©2002 IEEE
	01: 107
	02: 108
	03: 109
	04: 110
	05: 111

