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Abstract

Categorizing objects sets the stage for more ad-
vanced interactions with the environment. Minimum
Description Length learning provides a framework in
which to investigate processes by which concept learn-
ing might take place. Importantly, the concepts so ac-
quired can be viewed as having a prototype structure
- the concepts may apply to one object better than
to another. We ground our discussion in a real-world
setting - objects to categorize are sensor readings of
the behaviours of two mobile robots.

1 Introduction

Natural and artificial agents are confronted with
the problem of constructing models of their environ-
ments, thereby imposing order on an otherwise chaotic
stream of sensory data. An important step in this di-
rection is to recognize when a novel sense datum is
sufficiently similar to a previously seen one to make
a similar response adaptive. This is the problem of
categorization - how does one decide which proper-
ties of sense data are relevant, and which are acciden-
tal. Obviously, treating all properties as relevant leads
to no generalization at all, and treating all proper-
ties as accidental leads to maladaptive behaviour (un-
less the environment is perverse). This problem has
been explored in various settings using Minimal De-
scription Length (MDL) concept learning, where the
notions of concise encoding of the hypothesis and of
efficient encoding of the observed data impose compet-
ing pressures (generalizing by minimizing theory size
while still being informative about the data), where
the measures of theory size and empirical informa-
tiveness can be adjusted to fit the domain. We have
previously applied this framework both to the clas-
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sification of simple robotic behaviour [1], as well as
to language evolution [4, 5]. In these previous stud-
ies concepts (or languages) were represented as deter-
ministic finite state automata, and percepts were fi-
nite strings over a fixed finite alphabet. Our current
study extends the previous ones in two ways. First, we
enrich the hypothesis space of our agents to include
non-deterministic automata. Although deterministic
and non-deterministic machines are equivalent in ex-
pressive power, enriching the agent’s hypothesis space
in this manner has repercussions for the results of
the learning process. Second, we exploit a particu-
lar property of the MDL setup, yielding a cognitively
interesting prototype structure of concepts which al-
lows for degrees of membership in a category. One
novel aspect of the prototype structure presented here
is that the degrees of category membership are a holis-
tic and emergent property of the conceptual space.
That is, whether a perception is a “good example”
of a particular category depends on what other cate-
gories are available. In our setting, concepts are repre-
sented as finite automata, and perceptions as strings
over a fixed finite alphabet. Given a space of con-
cepts C, a perception p is a good example of a cate-
gory C € C just in case p € L(C) and for any other
C' € C with p € L(C"), the cost of encoding p in C
is less than or equal to the cost of encoding p in C’
(enc(p,C) < enc(p,C")).

We present a simple example in which a learner is
faced with the task of categorizing the behaviour of
two robots, given by means of sensors in the robots’
environment. In the learning stage each set of sensor
data is labeled as an instance of a concept (e.g. 'ran-
dom walking’, 'wall following’, ’chasing’, ...). Our
robot learner then extracts the salient structure from
each training set, possibly generalizing its theory of the
training sets to include as yet unseen sensor inputs.

2 Minimum Description Length

The basic idea of the MDL framework is that the
best hypothesis to adopt when confronted with a set of
data is the one that best navigates between the charyb-



dis of theory complexity and the scylla of faithfullness
to the data set. In other words, we want the sim-
plest theory with the greatest predictive power. Here
we adopt the length of the binary encoding of a ma-
chine as our measure of theory complexity, and the
cost of specifying a parse of the input (an accepting
path though the machine) as our measue of faithful-
ness to the data. The intuition is that the cost of
encoding a string is the amount of information one
needs to exactly reconstruct it. This intuition moti-
vates the following definition: as there might be more
than one parse of a string through a given machine,
we define the cost of encoding a string in a machine as
the cost of the least path through the machine reading
the string.

Formally, we define the cost of the binary encoding
of a machine M = (@, X%, S, F, ), where Q is a finite
set of states, X is a finite vocabulary, S, F C @ are the
start and final states, respectively, and 6 C Q x ¥, —
29 is the transition function, to be

size(M) = size(d) + size(S) + size(F)
where

size(0) = |6] (2log2 |Q] + loga (|| + 1))
and for Qo € @,

size(Qo) = |Qol (log2 |Q))

Identifying a parse with a sequence of arcs m =
ayas . ..a, in M, we define the cost of a parse cost(r)
to be the sum of the number of bits needed to specify
the path through the machine. Setting z; to be the
number of arcs with the same source as a;,

cost(m, M) = X1,z

and the cost of encoding a string o in M is the
amount of information needed to recover o given M;
for II, the set of parses of o in M,

enc(o, M) = min({cost(r)|r € I, })

Given a set of training data T, we first construct
the prefix-tree acceptor P(T) for T. Next, we con-
struct the set of machines formed by merging two
states in P(T), greedily keeping only those machines
M which minimize size(M) + Yserenc(o, M). We
continue this process of merging states and discarding
machines which are suboptimal until we reach a fixed
point.

3 Behavior
Robots

Recognition with Two

The floor was divided into four rectangular sections
and each section was assigned a letter. At any instant,
the positions of the two robots can be represented by a
pair of letters. The position of the robots in a section
was determined by two sensors placed in the room.
The sensor setup is shown in figure 1.
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Figure 1: Experimental Setup

Each robotic configuration (i.e. pair of letters in-
dicating the positions of the first and second robots)
is taken as a primitive symbol in a larger alphabet (of
16 symbols), into which the sensor readings are ulti-
mately translated. Sensor readings were taken every
.2 seconds. As the machines induced by our algorithm
for even a five minute time slice were too large to fit
readably in the space allotted, we give simplified ex-
amples in the next sections.

4 Prototypes

Prototype theory [3] is a theory of concepts which
is intended to account for behavioural asymmetries
in identifying objects as falling under particular con-
cepts, as well as regularities in ‘prototypicality judge-
ments’ across individuals. A model of this type of
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data, should minimally provide an ordering relation
across entities participating in the concept. Osherson
and Smith [2] challenged the sufficiency of this mini-
mal criterion of adequacy. They argued that fuzzy set
theory [6] does not provide an adequate model of the
data, even though fuzzy set membership does provide
just such an ordering over individuals. They point
out that the theory of concepts should be able to ac-
count for the compositional nature of concepts - that
is, that some concepts are formed from others. They
claim that concept compositionality is not faithfully
reflected in Zadeh’s fuzzy set operators. As a simple
example they chose the concept striped apple, which
they took to be composed of the (more) atomic con-
cepts of striped and apple via concept conjunction. On
the assumption that a prototypical striped apple is
neither a prototypical striped thing nor a prototypi-
cal apple, this fact is not well-modeled using Zadeh’s
fuzzy set intersection operator, which identifies the de-
gree of membership of an object in the conjunction of
two fuzzy sets with the least degree of membership of
that object in the conjuncts.

In the model presented herein, the cost of encod-
ing a percept into a machine yields an ordering across
participants of a concept, with p being a more pro-
totypical M than p’ iff enc(p, M) < enc(p’,M). If
we take the standard operations of machine intersec-
tion (cross-product of machines followed by removal of
dead states and arcs) and machine union (creation of
a new start state, and empty transitions to the start
states of each concept) to model the binary conceptual
connectives ‘and’ and ‘or’, we see that in the ‘or’ case
our model and the fuzzy set model (in which an ele-
ment is in the union of two sets to the greater of the
degrees in which it is in each of the individual sets)
coincide (recall that in the fuzzy set model, the higher
the degree of membership, the more prototypical, and
in our model, the lower the cost of the encoding, the
more prototypical). As shown below (in figures 2, 3
and 4), the removal of dead states (and, more impor-
tantly, of the arcs to them) after machine intersection
can increase the goodness of fit of the conjoined con-
cept to the instance. This allows for a prototypical
striped apple to be a better example of the concept
striped apple than of either striped or apple.

Using the floor layout described in figure 1, figure
2 represents the concept of a single robot remaining
arbitrarily long in section a, then moving to b for two
sensor readings, and finally possibly going to ¢ and
staying there.

Figure 3 represents the concept of a single robot
remaining in a for two sensor readings, then possibly

Figure 2: machine M; recognizes L1 = a*bbc*. The
strings with the cheapest encoding (and highest pro-
totypicality) are those in bbc*.

-

Figure 3: machine Ms recognizes Lo = aab*c*. The
most prototypical strings are in aac*.

8)

moving to b and remaining there arbitrarily long, and
finally possibly going to ¢ and staying there.

Finally, figure 4 represents the concept which is the
conjunction of the two previous ones; namely, that
of a single robot remaining in a for two sensor read-
ings, then moving to b and staying there a like amount
of time, and then possibly moving to ¢ and staying
there indefinitely. The observation aabb, which is of
the robot staying in a for two turns before moving
to b and staying there for two turns, participates in
all three concepts, although it is cheapest to describe
(and thus most prototypical) in M3 (see figure 5) as
desired.

5 Summary

We have presented a model of categorization which
results in a natural ordering between instances of a
concept, as well as a way to determine which concept
best fits a new instance. This latter point might be
extremely valuable in practice, especially as having a
way to discriminate between concepts which apply to
the given instance may allow for a more adaptive re-
sponse. The model also seems able to surmount some
intuitive difficulties previous models of concepts had
in regard to the compositional nature of conceptual
structure.
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Figure 4: machine M3 = M; x My recognizes L3 =
L1 N Ly = aabbc*. The most prototypical strings are
those in aabbc*.
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Figure 5: A comparison between the costs of encoding
the string aabb in each machine.
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