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Abstract

We study the stabilizability of uncertain stochastic systems in the presence of finite capacity

feedback. Motivated by the structure of communication networks, we consider a stochastic digital link

that sends words whose size is governed by a random process. Such link is used to transmit state

measurements between the plant and the controller. We derive necessary and sufficient conditions for

internal and external stabilizability of the feedback loop. In accordance with previous publications,

stabilizability of unstable plants is possible if and only if the link’s average transmission rate is above a

positive critical value. In our formulation the plant and the link can be stochastic. In addition, stability

in the presence of uncertainty in the plant is analyzed using a small-gain argument. We show that the

critical average transmission rate, for stabilizability, depends on the description of uncertainty and the

statistical properties of the plant as well as the link.

I. INTRODUCTION

With a wide range of formulations, control in the presence of communication constraints

has been the focus of intense research. The need to remotely control one or more systems

from a central location, has stimulated the study of stabilizability of unstable plants when the

information flow in the feedback loop is finite. Such limitation results from the use of an analog

communication channel or a digital link as a way to transmit information about the state of the

plant. It can also be viewed as an abstraction of computational constraints created by several

systems sharing a common decision center.
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Various publications in this field have introduced necessary and sufficient conditions for the

stabilizability of unstable plants in the presence of data-rate constraints. The construction of a

stabilizing controller requires that the data-rate of the feedback loop is above a non-zero critical

value [20], [21], [17], [18], [13]. Different notions of stability have been investigated, such as

containability [23], [24], moment stability [18] and stability in the almost sure sense [20]. The

last two are different when the state is a random variable. That happens when disturbances are

random or if the communication link is stochastic. In [20] it is shown that the necessary and

sufficient condition for almost sure stabilizability of finite dimensional linear and time-invariant

systems is given by an inequality of the type C > R. The parameter C represents the average

data-rate of the feedback loop and R is a quantity that depends on the eigenvalues of A, the

dynamic matrix of the system. If a well defined channel is present in the feedback loop then C
may be taken as the Shannon Capacity. If it is a digital link then C is the average transmission

rate. Different notions of stability may lead to distinct requirements for stabilization. For tighter

notions of stability, such as in the m-th moment sense, the knowledge of C may not suffice. More

informative notions, such as higher moments or any-time capacity [18], are necessary. Results

for the problem of state estimation in the presence of information constraints can be found in

[23], [19] and [12].

A. Main contributions of the paper

In this paper we study the moment stabilizability of uncertain time-varying stochastic systems

in the presence of a stochastic digital link. In contrast with [16], we consider systems whose

time-variation is governed by an identically and independently distributed (i.i.d.) process which

may be defined over a continuous and unbounded alphabet. We also provide complementary

results to [16], [6], [10] because we consider a more general problem formulation where we

consider external disturbances and uncertainty on the plant and a stochastic digital link.

Our work provides a unified framework for the necessary and sufficient conditions for robust

stabilizability by establishing that the average transmission rate must satisfy C > R + α + β,

where α, β ≥ 0 are constants that quantify the influence of randomness in the link and the plant,

respectively. As a consequence, C must be higher than R to compensate for randomness both

in the plant and the digital link. The conclusion that C > R does not suffice in the presence

of a stochastic link was originally derived by [19]. We quantify such difference for stochastic
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digital links. The work of [19] was an important motivation for our work and the treatment of

the nominal stabilization of first order linear systems, using a parameterized notion of capacity,

denoted as anytime capacity, can be found there. If the plant and the link are deterministic, we

get β, α = 0 which is consistent with the condition C > R derived by [20]. We also show that

model uncertainty in the plant can be tolerated. By using an appropriate measure, we prove that

an increase in C leads to higher tolerance to uncertainty. All of our conditions for stability are

expressed as simple inequalities where the terms depend on the description of uncertainty in the

plant as well as the statistics of the system and the digital link. A different approach to dealing

with robustness, with respect to transmission rates, can be found in [11].

In order to focus on the fundamental issues and keep clarity, we start by deriving our results

for first order linear systems. Subsequently, we provide an extension to a class of multi-state

linear systems. As pointed out in [16], non-commutativity creates difficulties in the study of

arbitrary time-varying stochastic systems. Results for the fully-observed Markovian case over

finite alphabets, in the presence of a deterministic link, can be found in [16].

Besides the introduction, the paper has five sections and one Appendix: section II comprises the

problem formulation and preliminary definitions; in section III we prove sufficiency conditions

by constructing a stabilizing feedback scheme for first order systems; section IV contains the

proof of the necessary condition for stability; some of the quanties, introduced in the paper, are

given a detailed interpretation in section V and section VI extends the sufficient conditions to a

class of multi-state linear systems. The Appendix motivates and discusses implementation issues

associated with the communication link used in the paper.

The following notation is adopted:

• Whenever that is clear from the context we refer to a sequence of real numbers x(k) simply

as x. In such cases we may add that x ∈ R
∞.

• Random variables are represented using boldface letters, such as w

• if w(k) is a stochastic process, then we use w(k) to indicate a specific realization. According

to the convention used for sequences, we may denote w(k) just as w and w(k) as w.

• the expectation operator over w is written as E [w]

• if E is a probabilistic event, then its probability is indicated as P(E)

• we write log2(.) simply as log(.)

• if x ∈ R
∞, then ‖x‖1 =

∑∞
i=0 |x(i)| and ‖x‖∞ = supi∈N |x(i)|
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Definition 1.1: Let � ∈ N+

⋃{∞} be an upper-bound for the memory horizon of an operator.

If Gf : R
∞ → R

∞ is a causal operator then we define ‖Gf‖∞(�) as:

‖Gf‖∞(�) = sup
k≥0,x �=0

|Gf(x)(k)|
maxj∈{k−�+1,...,k} |x(j)| (1)

Note that, since Gf is causal, ‖Gf‖∞(∞) is the infinity induced norm ‖Gf‖∞ = supx �=0
‖Gf (x)‖∞

‖x‖∞ .

II. PROBLEM FORMULATION

We study the stabilizability of uncertain stochastic systems under communication constraints.

Motivated by the type of constraints that arise in most computer networks, we consider the

following class of stochastic links:

Definition 2.1: (Stochastic Link) Consider a link that, at every instant k, transmits r(k) bits.

We define it to be a stochastic link, provided that r(k) ∈ {0, . . . , r̄} is an independent and

identically distributed (i.i.d.) random process satisfying:

r(k) = C − rδ(k) (2)

where E [rδ(k)] = 0 and C ≥ 0. The term rδ(k) represents a fluctuation in the transfer rate of the

link. More specifically, the link is a stochastic truncation operator F l
k : {0, 1}r̄ → ⋃r̄

i=0{0, 1}i
defined as:

F l
k (b1, . . . , br̄) = (b1, . . . , br(k)), bi ∈ {0, 1} (3)

Given x(0) ∈ [−1
2
, 1

2
] and d̄ ≥ 0, we consider nominal systems of the form:

x(k + 1) = a(k)x(k) + u(k) + d(k) (4)

with |d(k)| ≤ d̄ and x(i) = 0 for i < 0.

A. Description of Uncertainty in the Plant

Let � ∈ N+

⋃{∞}, z̄f ∈ [0, 1) and z̄a ∈ [0, 1) be given constants, along with the stochastic

process za and the operator Gf : R
∞ → R

∞ satisfying:

|za(k)| ≤ z̄a (5)

Gf causal and ‖Gf‖∞(�) ≤ z̄f (6)
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Fig. 1. Structure of the Feedback Interconnection

Given x(0) ∈ [−1
2
, 1

2
] and d̄ ≥ 0, we study the existence of stabilizing feedback schemes for

the following perturbed plant:

x(k + 1) = a(k) (1 + za(k))x(k) + u(k) +Gf(x)(k) + d(k) (7)

where the perturbation processes za and Gf(x) satisfy (5)-(6). Notice that za(k) may represent

uncertainty in the knowledge of a(k), while Gf(x)(k) may portray the output of a feedback

uncertainty block Gf . We chose this structure because it allows the representation of a wide

class of model uncertainty. It is also allows the construction of a suitable stabilizing scheme.

Example 2.1: If Gf(x)(k) =
∑n−1

i=0 µix(k − i) then ‖Gf‖∞(�) =



∑n−1

i=0 |µi| if � ≥ n

∞ otherwise
.

In general, the operator Gf may be nonlinear and time-varying.

B. Statistical Description of a(k)

The process a(k) is i.i.d. and independent of r(k), meaning that it carries no information

about the link nor the initial state. In addition, for convenience, we use the same representation

as in (2) and write:

log(|a(k)|) = R + lδa(k) (8)

where E [lδa(k)] = 0. Notice that lδa(k) is responsible for the stochastic behavior, if any, of the plant.

Since a(k) is ergodic, we also assume that P (a(k) = 0) = 0, otherwise the system is trivially

stable. Such assumption is also realistic if we assume that (7) comes from the discretization of

a continuous-time system.
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C. Functional Structure of the Feedback Interconnection

We assume that the feedback loop has the structure depicted in Fig 1, also referred to as the

information pattern [25]. The blocks denoted as encoder and controller are stochastic operators

whose domain and image are uniquely determined by the diagram. At any given time k, we

assume that both the encoder and the controller have access to a(0), . . . , a(k) and r(k − 1) as

well as the constants �, z̄f , z̄a and d̄. The encoder and the controller are described as:

• The encoder is a function F e
k : R

k+1 → {0, 1}r̄ that has the following dependence on

observations:

F e
k(x(0),x(1), . . . ,x(k)) = (b1, . . . ,br̄) (9)

• The control action results from a map, not necessarily memoryless, F c
k :
⋃r̄

i=0{0, 1}i → R

exhibiting the following functional dependence:

u(k) = F c
k(
�b(k)) (10)

where �b(k) are the bits successfully transmitted through the link, i.e.:

�b(k) = F l
k (b1, . . . ,br̄) =

(
b1, . . . ,br(k)

)
(11)

As such, u(k) can be equivalently expressed as u(k) = (F c
k ◦F l

k ◦F e
k)(x(0),x(1), . . . ,x(k))

Definition 2.2: ( Feedback Scheme) We define a feedback scheme as the collection of a

controller F c
k and an encoder F e

k .

D. Problem Statement and M-th Moment Stability

Definition 2.3: (Worst Case Envelope) Let x(k) be the solution to (7) under a given feedback

scheme. Given any realization of the random variables r(k), a(k), Gf (x)(k), za(k) and d(k),

the worst case envelope x̄(k) is the random variable whose realization is defined by:

x̄(k) = sup
x(0)∈[− 1

2
, 1
2
]

|x(k)| (12)

Consequently, x̄(k) is the smallest envelope that contains every trajectory generated by an initial

condition in the interval x(0) ∈ [− 1
2
, 1

2
]. We adopted the interval [− 1

2
, 1

2
] to make the paper more

readable. All results are valid if it is replaced by any other symmetric bounded interval.

Our problem is to determine necessary and sufficient conditions that guarantee the existence

of a stabilizing feedback scheme. The results are derived for the following notion of stability.
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Definition 2.4: (m-th Moment Robust Stability) Let m > 0, � ∈ N+

⋃{∞}, z̄f ∈ [0, 1),

z̄a ∈ [0, 1) and d̄ ≥ 0 be given. The system (7), under a given feedback scheme, is m-th moment

(robustly) stable provided that the following holds:


limk→∞ E [x̄(k)m] = 0 if z̄f = d̄ = 0

∃b ∈ R+ s.t. lim supk→∞ E [x̄(k)m] < b otherwise
(13)

The first limit in (13) is an internal stability condition while the second is an external stability

condition. The constant b must be such that lim supk→∞ E [x̄(k)m] < b holds for all allowable

perturbations za and Gf(x) satisfying (5)-(6).

E. Digression over the main results and Conclusions

The main results of the paper are the sufficiency theorems 3.2 and 3.4 proven in section III

as well as the extension to the multi-state case given in section VI. The sufficiency conditions

are proven constructively by means of the stabilizing feedback scheme of definition 3.3. The

necessary and sufficient conditions can be expressed as inequalities involving C and R plus a

few auxiliary quantities that depend on the statistical behavior of the plant and the link as well as

the descriptions of uncertainty. The intuition behind, the auxiliary quantities, is given in section

V. In order to preserve stability, the presence of randomness must be offset by an increase of

the average transmission rate C. In addition, we find that the higher C the larger the tolerance

to uncertainty in the plant. Our results extend to a class of multi-state systems.

III. SUFFICIENCY CONDITIONS FOR THE ROBUST STABILIZATION OF FIRST ORDER LINEAR

SYSTEMS

In this section, we derive constructive sufficient conditions for the existence of a stabilizing

feedback scheme. We start with the deterministic case in subsection III-A, while III-B deals with

random r and a. We stress that our proofs hold under the framework of section II. The strength

of our assumptions can be accessed from the discussion in section . The following definition

introduces the main idea behind the construction of a stabilizing feedback scheme.

Definition 3.1: (Upper-bound Sequence) Let z̄f ∈ [0, 1), z̄a ∈ [0, 1), d̄ ≥ 0 and � ∈
N+

⋃{∞} be given. Define the upper-bound sequence as:

v(k + 1) = |a(k)|2−re(k)v(k) + z̄f max{v(k − � + 1), . . . ,v(k)} + d̄, (14)
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where v(i) = 0 for i < 0, v(0) = 1
2

and re(k) is an effective rate given by:

re(k) = − log(2−r(k) + z̄a) (15)

Definition 3.2: Following the definition of r(k) we also define Ce and rδe(k) such that:

re(k) = Ce − rδe(k) (16)

where E [rδe(k)] = 0.

We adopt v(0) = 1
2

to guarantee that |x(0)| ≤ v(0). If x(0) = 0 then we can select v(0) = 0.

Notice that the multiplicative uncertainty z̄a acts by reducing the effective rate re(k). After

inspecting (15), we find that re(k) ≤ min{r(k),− log(z̄a)}. Also, notice that:

z̄a = 0 =⇒ re(k) = r(k), rδe(k) = rδ(k) and C = Ce (17)

We make use of the sequence specified in definition 3.1. Notice that v(k) can be constructed at

the controller and the encoder because both have access to �, z̄f , z̄a, d̄, r(k − 1) and a(k − 1).

Definition 3.3: (Stabilizing feedback scheme) The feedback scheme is defined as:

• Encoder: Measures x(k) and computes bi ∈ {0, 1} such that:

(b1, . . . , br̄) = arg max
Pr̄

i=1 bi
1

2i ≤( x(k)
2v(k)

+ 1
2)

r̄∑
i=1

bi
1

2i
(18)

Place (b1, . . . , br̄) for transmission. For any r(k) ∈ {0, . . . , r̄}, the above construction

provides the following centroid approximation x̂(k) for x(k) ∈ [−v(k), v(k)]:

x̂(k) = 2v(k)(

r(k)∑
i=1

bi
1

2i
+

1

2r(k)+1
− 1

2
) (19)

which satisfies |x(k) − x̂(k)| ≤ 2−r(k)v(k).

• Controller: From the r̄ bits placed for transmission in the stochastic link, only r(k) bits

go through. Compute u(k) as:

u(k) = −a(k)x̂(k) (20)

As expected, the transmission of state information through a finite capacity medium requires

quantization. The encoding scheme of definition 3.3 is not an exception and is structurally

identical to the ones used by [2], [20], where sequences were already used to upper-bound the

state of the plant.

The following lemma suggests that, in the construction of stabilizing controllers, we may

choose to focus on the dynamics of the sequence v(k). That simplifies the analysis in the
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presence of uncertainty because the dynamics of v(k) is described by a first-order difference

equation.

Lemma 3.1: Let z̄f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be given. If x(k) is the solution of (7)

under the feedback scheme of definition 3.3, then the following holds:

x̄(k) ≤ v(k)

for all � ∈ N+

⋃{∞}, every choice Gf ∈ ∆f,� and |za(k)| ≤ z̄a, where

∆f,� = {Gf : R
∞ → R

∞ : ‖Gf‖∞(�) ≤ z̄f} (21)

Proof: We proceed by induction, assuming that x̄(i) ≤ v(i) for i ∈ {0, . . . , k} and proving that

x̄(k + 1) ≤ v(k + 1). From (7), we get:

|x(k + 1)| ≤ |a(k)||x(k) +
u(k)

a(k)
| + |za(k)||a(k)||x(k)| + |Gf(x)(k)| + |d(k)| (22)

The way the encoder constructs the binary expansion of the state, as well as (20), allow us

to conclude that |x(k) + u(k)
a(k)

| ≤ 2−r(k)v(k). Now we recall that |za(k)| ≤ z̄a, |Gf(x)(k)| ≤
z̄f max{v(k − � + 1), . . . , v(k)} and that |d(k)| ≤ d̄, so that (22) implies:

|x(k + 1)| ≤ |a(k)|(2−r(k) + z̄a)v(k) + z̄f max{v(k − �+ 1), . . . ,v(k)} + d̄ (23)

The proof is concluded once we realize that |x(0)| ≤ v(0). �

A. The Deterministic Case

We start by deriving a sufficient condition for the existence of a stabilizing feedback scheme

in the deterministic case, i.e., r(k) = C and log(|a(k)|) = R. Subsequently, we move for the

stochastic case where we derive a sufficient condition for stabilizability.

Theorem 3.2: (Sufficiency conditions for Robust Stability) Let � ∈ N+

⋃{∞}, z̄f ∈ [0, 1),

z̄a ∈ [0, 1) and d̄ ≥ 0 be given and h(k) be defined as

h(k) = 2k(R−Ce), k ≥ 0

where Ce = re = − log(2−C + z̄a).

Consider that x(k) is the solution of (7) under the feedback scheme of definition 3.3 as well

as the following conditions:

• (C 1) Ce > R
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• (C 2) z̄f‖h‖1 < 1

If conditions (C 1) and (C 2) are satisfied then the following holds for all |d(t)| ≤ d̄, Gf ∈ ∆f,�

and |za(k)| ≤ z̄a:

x̄(k) ≤ ‖h‖1

(
z̄f

‖h‖1d̄ + 1
2

1 − ‖h‖1z̄f
+ d̄

)
+ h(k)

1

2
(24)

where ∆f,� is given by ∆f,� = {Gf : R
∞ → R

∞ : ‖Gf‖∞(�) ≤ z̄f}.

Proof: From definition 3.1, we know that, for arbitrary � ∈ N+

⋃{∞}, the following is true:

v(k + 1) = 2R−Cev(k) + z̄f max{v(k − � + 1), . . . , v(k)} + d̄ (25)

Solving the difference equation gives:

v(k) = 2k(R−Ce)v(0) +

k−1∑
i=0

2(k−i−1)(R−Ce)
(
z̄f max{v(i− � + 1), . . . , v(i)} + d̄

)
, k ≥ 1 (26)

which, using ‖Πkv‖∞ = max{v(0), . . . , v(k)}, leads to:

v(k) ≤ ‖h‖1(z̄f‖Πkv‖∞ + d̄) + 2k(R−Ce)v(0) (27)

But we also know that 2k(R−Ce) is a decreasing function of k, so that:

‖Πkv‖∞ ≤ ‖h‖1(z̄f‖Πkv‖∞ + d̄) + v(0) (28)

which implies:

‖Πkv‖∞ ≤ ‖h‖1d̄ + v(0)

1 − ‖h‖1z̄f
(29)

Direct substitution of (29) in (27) leads to v(k) ≤ ‖h‖1

(
z̄f

‖h‖1d̄+v(0)
1−‖h‖1z̄f

+ d̄
)

+ 2k(R−Ce)v(0). The

proof is complete once we make v(0) = 1
2

and use lemma 3.1 to conclude that x̄(k) ≤ v(k). �

B. Sufficient Condition for the Stochastic Case

The following lemma provides a sequence, denoted by vm(k), which is an upper-bound for

the m-th moment of x̄(k). We show that vm is propagated according to a first-order difference

equation that is suitable for the analysis in the presence of uncertainty.

Lemma 3.3: (M-th moment boundedness) Let � ∈ N+, z̄f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be

given along with the following set:

∆f,� = {Gf : R
∞ → R

∞ : ‖Gf‖∞(�) ≤ z̄f} (30)
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Given m, consider the following sequence:

vm(k) = hm(k)vm(0) +
k−1∑
i=0

hm(k − i− 1)
(
�

1
m z̄f max{vm(i− �+ 1), . . . , vm(i)} + d̄

)
, k ≥ 1

(31)

where vm(i) = 0 for i < 0, vm(0) = 1
2
, hm(k) is the impulse response given by:

hm(k) =
(E [2m(log(|a(k)|)−re(k))]

) k
m , k ≥ 0 (32)

and re(k) = − log
(
2−r(k) + z̄a

)
. If x(k) is the solution of (7) under the feedback scheme of

definition 3.3, then the following holds

E [x̄(k)m] ≤ vm(k)m

for all |d(t)| ≤ d̄, Gf ∈ ∆f,� and |za(k)| ≤ z̄a.

Proof: Since lemma 3.1 guarantees that x̄(k + 1) ≤ v(k + 1), we only need to show that

E [v(k + 1)m]
1
m ≤ vm(k + 1). Again, we proceed by induction by noticing that v(0) = vm(0)

and by assuming that E [v(i)m]
1
m ≤ vm(i) for i ∈ {1, . . . , k}. The induction hypothesis is proven

once we establish that E [v(k + 1)m]
1
m ≤ vm(k + 1). From definition 3.1, we know that:

E [v(k + 1)m]
1
m = E [

(
2log(|a(k)|)−re(k)v(k) + z̄f max{v(k − �+ 1), . . . ,v(k)} + d̄

)m
]

1
m (33)

Using Minkowsky’s inequality [7] as well as the fact that v(i) is independent of a(j) and re(j)

for j ≥ i, we get:

E [v(k+1)m]
1
m ≤ E [2m(log(|a(k)|)−re(k))]

1
mE [v(k)m]

1
m + z̄fE [max{v(k−�+1), . . . ,v(k)}m]

1
m + d̄

(34)

which, using the inductive assumption, implies the following inequality:

E [v(k+1)m]
1
m ≤ E [2m(log(|a(k)|)−re(k))]

1
m vm(k)+�

1
m z̄f max{vm(k−�+1), . . . , vm(k)}+ d̄ (35)

where we used the fact that, for arbitrary random variables s1, . . . , sn, the following holds:

E [max{|s1|, . . . , |sn|}m] ≤ E [

n∑
i=1

|si|m] ≤ nmax{E [|s1|m], . . . , E [|sn|m]}

The proof follows once we notice that the right hand side of (35) is just vm(k + 1). �
Theorem 3.4: (Sufficient Condition) Let m , � ∈ N+, z̄f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be

given along with the quantities bellow:

β(m) =
1

m
log E

[
2mlδa(k)

]

November 8, 2004 DRAFT



12

αe(m) =
1

m
log E

[
2mrδ

e(k)
]

hm(k) = 2k(R+β(m)+αe(m)−C̄e), k ≥ 0

where rδe comes from (16). Consider that x(k) is the solution of (7) under the feedback scheme

of definition 3.3 as well as the following conditions:

• (C 3) Ce > R + β(m) + αe(m)

• (C 4) �
1
m z̄f‖hm‖1 < 1

If conditions (C 3) and (C 4) are satisfied, then the following holds for all |d(t)| ≤ d̄,

Gf ∈ ∆f,� and |za(k)| ≤ z̄a:

E [x̄(k)m]
1
m ≤ ‖hm‖1

(
�

1
m z̄f

‖hm‖1d̄ + 1
2

1 − �
1
m z̄f‖hm‖1

+ d̄

)
+ hm(k)

1

2
(36)

where ∆f,� = {Gf : R
∞ → R

∞ : ‖Gf‖∞(�) ≤ z̄f}.

Proof: Using vm from lemma 3.3, we arrive at:

vm(k) ≤ hm(k)vm(0) + ‖hm‖1

(
�

1
m z̄f‖Πkvm‖∞ + d̄

)
(37)

where we use ‖Πkvm‖∞ = max{vm(0), . . . , vm(k)}. But from (37), we conclude that:

‖Πkvm‖∞ ≤ vm(0) + ‖hm‖1

(
�

1
m z̄f‖Πkvm‖∞ + d̄

)
(38)

or equivalently:

‖Πkvm‖∞ ≤ vm(0) + ‖hm‖1d̄

1 − ‖hm‖1�
1
m z̄f

(39)

Substituting (39) in (37), gives:

vm(k) ≤ hm(k)vm(0) + ‖hm‖1

(
�

1
m z̄f

vm(0) + ‖hm‖1d̄

1 − ‖hm‖1�
1
m z̄f

+ d̄

)
(40)

The proof follows from lemma 3.3 and by noticing that hm(k) can be rewritten as:

hm(k) =
(E [2m(log(|a(k)|)−re(k))

) k
m = 2k(R+β(m)+αe(m)−Ce), k ≥ 0

�
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IV. NECESSARY CONDITIONS FOR THE EXISTENCE OF STABILIZING FEEDBACK SCHEMES

Consider that z̄a = z̄f = d̄ = 0. We derive necessary conditions for the existence of an

internally stabilizing feedback scheme. We emphasize that the proofs in this section use the m-th

moment stability as a stability criteria and that they are valid regardless of the encoding/decoding

scheme. They follow from a counting argument1 which is identical to the one used by [21].

Necessary conditions for stability were also studied for the Gaussian channel in [22] and for

other stochastic channels in [18], [19]. A necessary condition for the almost sure stability of

general stochastic channels is given by [20]. We include our treatment, because it provides

necessary conditions for m-th moment stability, which are inequalities involving directly the

defined quantities α(m) and β(m). Such quantities are an important aid on the derivation of the

conclusions presented in section V. In section VI-H, we show that the necessary condition of

Theorem 4.1 is not conservative.

We derive the necessary condition for the following class of state-space representations:

x(k) = U(k)x(k) +Bu(k) (41)

where x(k) ∈ R
n, u(k) ∈ R

nb , B ∈ R
n×nb and U(k) is a block upper-triangular matrix of the

form:

U(k) =




a(k)Rot(k) · · · · · ·
0 a(k)Rot(k)

. . .
...

. . .
...

0 · · · 0 a(k)Rot(k)




(42)

and Rot is a sequence of random rotation matrices satisfying det(Rot(k)) = 1. We also assume

that Rot is independent of r.

Theorem 4.1: Let x(k) be the solution of the state-space equation (41) along with α(m) and

β(m) given by:

α(m) =
1

m
log(E[2mrδ(k)]) (43)

β(m) =
1

m
log(E[2mlδa(k)]) (44)

1We also emphasize that this proof is different from what we had originally. The present argument was suggested by a reviewer

of one of our publications
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and the norm on the vector x(k) be represented as:

‖x(k)‖∞ = max
i

|[x(k)]i|, (45)

where [x(k)]i are components of the vectors x(k).

If the state satisfies the following:

sup
k
E[ sup

x(0)∈[−1/2,1/2]n
‖x(k)‖m∞] < ∞ (46)

then the following must hold:

C − α(
m

n
) > nβ(m) + nR (47)

Proof: Consider a specific realization of Rot, r and a along with the following sets:

Ω̄k = {Πk−1
i=0U(i)x(0) : x(0) ∈ [−1/2, 1/2]n} (48)

Ωk({u(i)}k−1
i=0 ) = {x(k) : x(0) ∈ [−1/2, 1/2]n, {u(i)}k−1

i=0 = F(x(0), k)} (49)

where u(k) is obtained through a fixed feedback law F(x(0), k). Since x(k) is given by (41)

and {u(i)}k−1
i=0 can take, at most, 2

Pk−1
i=0 r(i) values, we find that:

V ol(Ω̄k)

max{u(i)}k−1
i=0

V ol(Ωk({u(i)}k−1
i=0 ))

≤ 2
Pk−1

i=0 r(i) (50)

Computing bounds for the volumes, we get:

V ol(Ω̄k) = 2
Pk−1

i=0 log |det(U(i))| (51)

V ol(Ωk({u(i)}k−1
i=0 )) ≤ vn(k) (52)

where v(k) = 2 supx(0)∈[−1/2,1/2]n ‖x(k)‖∞. Consequently, using (50) we infer that:

2
Pk−1

i=0 log |det(U(i))|2−
Pk−1

i=0 r(i) ≤ 2nvn(k) (53)

By taking expectations, the m-th moment stability assumption leads to:

lim sup
k→∞

(E [2
m
n

log |det(U(k))|]E [2−
m
n

r(k)])k ≤ 2m lim sup
k→∞

E [vm(k)] < ∞ (54)

which implies that:

C > α(
m

n
) + nβ(m) + nR (55)

where we used the fact that E [2
m
n

log |det(U(k))|]E [2−
m
n

r(k)] < 1 must hold and that log |det(U(k))| =

n log |a(k)|. �
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Corollary 4.2: Let x(k) be the solution of the following linear and time-invariant system:

x(k + 1) = Ax(k) +Bu(k) (56)

If the state satisfies the following:

sup
k
E[ sup

x(0)∈[−1/2,1/2]n
‖x(k)‖m∞] < ∞ (57)

then the following must hold:

C − α(
m

nunstable
) >

n∑
i=1

max{log |λi(A)|, 0} (58)

where nunstable is the number of unstable eigenvalues.

Proof: The proof is a direct adaptation of the proof of Theorem 4.1. �

V. PROPERTIES OF THE MEASURES α(m) AND β(m)

Consider that a and r are stochastic processes, that there is no uncertainty in the plant and

no external disturbances, i.e., z̄f = z̄a = d̄ = 0. In such situation, (7) can be written as:

x(k + 1) = a(k)x(k) + u(k) (59)

For a given m, the stability condition of definition 2.4 becomes:

limk→∞E [x̄(k)m] = 0 (60)

If v is a real random variable then Jensen’s inequality [4] implies:

E [2v] ≥ 2E[v]

where equality is attained if and only if v is a deterministic constant. As such, log(E [2v]2−E[v]) ≥
0 can be used as a measure of “randomness” which can be taken as an alternative to variance.

Notice that such quantity may be more informative than variance because it depends on higher

moments of v. We use this concept to interpret our results and express our conditions in a way

that is amenable to a direct comparison with other publications. Along these lines, the following

are randomness measures for log(|a(k)|) and r(k) :

β(m) =
1

m
log(E [2mlδa(k)]) (61)
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α(m) =
1

m
log(E [2mrδ(k)]) (62)

where lδa(k) and rδ(k) are given by (repeated here for convenience):

log(|a(k)|) = E [log(|a(k)|)] + lδa(k) = R + lδa(k) (63)

r(k) = E [r(k)] − rδ(k) = C − rδ(k) (64)

The following equivalence is a direct consequence of the necessary and sufficient conditions

proved in theorems 4.1 and 3.4:

∃ feedback scheme s.t. lim
k→∞

E [x̄(k)m] = 0 ⇐⇒ C > R + α(m) + β(m) (65)

After examining (65), we infer that α(m) and β(m) encompass the influence of m on the

stability condition, while C and R are independent of m. The condition (65) suggests that α(m)

is the right intuitive measure of quality, of a stochastic link, for the class considered in this

paper. The following are properties of α(m) and β(m):

• note that Jensen’s inequality implies that α(m) ≥ 0 and β(m) ≥ 0, where equality is

achieved only if the corresponding random variable is deterministic. Accordingly, (65) shows

that randomness in r(k) implies that C > R+ α(m) is necessary for stabilization. The fact

that randomness in the channel creates the need for capacity larger than R, was already

established, but quantified differently, in [18]. In addition, we find that randomness in the

system adds yet another factor β(m).

• by means of a Taylor expansion and taking limits, we get

lim
m↘0

α(m) = lim
m↘0

β(m) = 0 (66)

Under the above limit, the necessary and sufficient condition (65) becomes C > R. That

is the weakest condition of stability and coincides with the one derived by [20] for almost

sure stability. By means of (65) and (66) we can also conclude that if C > R, i.e. the

feedback scheme is almost surely stabilizable [20], then it is m-th moment stabilizable for

some m > 0.

• the opposite limiting case, gives

lim
m→∞

α(m) = C − rmin (67)
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lim
m→∞

β(m) = log(asup) −R (68)

where

rmin = min{r ∈ {0, . . . , r̄} : P(r(k) = r) �= 0}

asup = sup{ã : P(|a(k)| ≥ ã) �= 0}

• α(m) and β(m) are non-decreasing functions of m

From the previous properties of α(m) and β(m) we find that

• a feedback scheme is stabilizing for all moments, i.e., ∀m, supk E [x̄(k)m] < ∞ if and only

if rmin > log(asup).

• if rmin = 0 then there exists m0 such that ∀m ≥ m0, supk E [x̄(k)m] = ∞. This is the case

of the erasure channel suggested by [18]. This conclusion was already reported in [18] (see

Example 5.2).

• similarly, if log(asup) = ∞ then there exists m0 such that ∀m ≥ m0, supk E [x̄(k)m] = ∞
(see example 5.1). Notice that asup can be larger than one and still E [a(k)m] < 1 for some

m. Even more, in example 5.1, we have asup = ∞ and E [|a(k)|m] < ∞ for all m.

Example 5.1: Consider that |a| is log-normally distributed, i.e., log |a(k)| is normally dis-

tributed. An example where a(k) is log-normally distributed is given by [3]. If V ar(|a(k)|) is

the variance of |a(k)| then β(m) is given by:

β(m) =
m

2
log

(
1 +

V ar(|a(k)|)
(E [|a(k)|])2

)
(69)

where the expression is obtained by direct integration. Note that β(m) grows linearly with m.

It illustrates a situation where, given V ar(|a(k)|) > 0, C and α(m), there always exist m large

enough such that the necessary and sufficient condition C > R + β(m) + α(m) is violated.

The above analysis stresses the fact that feedback, using a stochastic link, acts by increasing

mmax for which ∀m ≤ mmax, supk E [x̄(k)m] < ∞ is satisfied. In some cases one may get

mmax = ∞.

1) The Exponential Statistic: Directly from (61) and (62), we derive the equivalence below:

C > R + α(m) + β(m) ⇐⇒ E [|a(k)|m]E [2−mr(k)] < 1 (70)

The equivalences expressed in (65) and (70) show that all the information we need to know

about the link is α(m) and C or, equivalently, E [2−mr(k)].
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Example 5.2: (From [18] ) The binary erasure channel is a particular case of the class of

stochastic links considered. It can be described by taking r(k) = 1 with probability 1 − pe and

r(k) = 0 with probability of erasure pe. In that case, E [2−mr(k)] = 2−m(1 − pe) + pe. After

working through the formulas, one may use (70) and (65) to get the same result as in [18]. In

particular, the necessary and sufficient condition for the existence of a stabilizing feedback, for

the time-invariant system with a(k) = a, is given by

0 ≤ pe < 1 − |a|m − 1

|a|m(1 − 2−m)

A. Determining the decay of the probability distribution function of x̄

In this subsection, we explore (65) as a way to infer the decay of the probability distribution

of x̄(k). From Markov’s inequality (pp. 80 of [1]), we have that:

∀m > 0, ∀k,P(x̄(k) > ϑ) ≤ ϑ−mE [x̄(k)m] (71)

On the other hand, for any given m, if x̄(k) has a probability density function then:

∃ε, δ > 0, ∀k ≥ 0, ∀ϑ > 0,P(x̄(k) > ϑ) < εϑ−(m+δ+1) =⇒ lim sup
k→∞

E [x̄(k)m] < ∞ (72)

As such, we infer that (65) and (71)-(72) lead to:

C > R + α(m) + β(m) =⇒ ∃ε > 0, ∀k, ∀ϑ,P(x̄(k) > ϑ) ≤ εϑ−m (73)

C < R + α(m) + β(m) =⇒ ∀ε, δ > 0, ∃k, ∃ϑ,P(x̄(k) > ϑ) ≥ εϑ−(m+δ+1) (74)

B. Uncertainty Interpretation of the Statistical Description of the Stochastic Link

We suggest that α(m) can be viewed not only as a measure of the quality of the link, in the

sense of how r(k) is expected to fluctuate over time, but it can also be modified to encapsulate

a description of uncertainty. To be more precise, consider that ∆l is an uncertainty set of

stochastic links and that the “nominal” link has a deterministic data-rate ro(k) = C. The elements

of ∆l are the following probability mass functions:

∆l ⊂ {pl : {0, . . . , r̄} → [0, 1] :

r̄∑
i=0

pl(i) = 1,

r̄∑
i=0

i× pl(i) = C}
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where pl ∈ ∆l represents a stochastic link by specifying its statistics, i.e., P(r(k) = i) = p l(i).

The following is a measure of uncertainty in the link:

ᾱ(m) = sup
pl∈∆l

1

m
log(E [2mrδ(k)]) (75)

In this situation, (65) implies that the following is a necessary and sufficient condition for the

existence of a feedback scheme that is stabilizing for all stochastic links in the uncertainty set

∆l:

C −R− β(m) > ᾱ(m)

The authors suggest that C − R − β(m) > ᾱ(m) should be viewed as a stability margin

condition well adapted to this type of uncertainty. If the plant and the link are time-invariant

then C − R > 0 is necessary and sufficient for stabilizability. Stability is preserved for any

stochastic link in ∆l characterized by ᾱ(m) < C −R. This shows that the results by [20], [21]

are robust to stochastic links with average transmission rate C and α(m) > 0 sufficiently small.

C. Issues on the Stabilization of Linearizable Non-Linear Systems

In this section, we prove that a minimum rate must be guaranteed at all times in order to achieve

stabilization in the sense of Lyapunov2. The fact that the classical erasure channel cannot be

used to achieve stability in the sense of Lyapunov could already be inferred from [19]. Consider

that the following is a state-space representation which corresponds to the linearization of a

non-linear system around an equilibrium point:

x(k + 1) = Ax(k) +Bu(k) , y(k) = Cx(k) (76)

If the linearized system is stable in the sense of Lyapunov then (76) must also be stable in

the sense of Lyapunov. Consequently, stability in the sense of Lyapunov implies that:

sup
k

sup
x(0)∈[−1/2,1/2]n

‖x(k)‖∞ < ∞ (77)

where ‖x(k)‖∞ = maxi|[x(k)]i| and [x(k)]i are the components of x(k). But (77) implies that

x(k) is stable for all moments, so Corollary 4.2 leads to:

∀m,C − α(
m

nunstable

) >
∑
i

max{log |λi(A)|, 0} (78)

2Also denoted as ε − δ stability
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which also implies that:

rmin >
∑
i

max{log |λi(A)|, 0} (79)

where we have used (67). As a consequence, local stabilization imposes a minimum rate which

has to be guaranteed at all times. The classical packet-erasure channel is characterized by rmin =

0 and, as such, it cannot be used for stabilization in the sense of Lyapunov. This is an important

issue in the control of non-linear systems because, frequently, it is necessary to keep the state

in a bounded set. That may arise from a physical limitation or as a way to stay in a region of

model validity. The stabilization of non-linear systems in this framework was studied in [14],

for deterministic channels. Consequently, we conclude that, in the study of stabilization in the

sense of Lyapunov, it is sufficiently general to consider deterministic links with rate rmin.

VI. SUFFICIENT CONDITIONS FOR A CLASS OF MULTI-STATE SYSTEMS

The results, derived in section III, can be extended, in specific cases, to systems of order

higher than one. In the subsequent analysis, we outline how and suggest one case when such

extension can be attained. Our results do not generalize to arbitrary stochastic systems of order

n > 1. We emphasize that the proofs in this section are brief as they follow the same structure

of the proofs of section III 3.

A. Notation

We use n as the order of a linear system whose state is indicated by x(k) ∈ R
n. The following

is a list of the adaptations, of the notation and definitions of section I, to the multi-state case: If

x ∈ R
n then we indicate its components by [x]i, with i ∈ {1, . . . , n}. In a similar way, if M is a

matrix then we represent the element located in the i-th row and j-th column as [M ]ij . We also

use |M | to indicate the matrix whose elements are obtained as [|M |]ij = |[M ]ij |. R
n×∞ is used to

represent the set of sequences of n-dimensional vectors, i.e., x ∈ R
n×∞ =⇒ x(k) ∈ R

n, k ∈ N.

The infinity norm in R
n×∞ is defined as ‖x‖∞ = supi maxj |[x(i)]j |. It follows that if x ∈ R

n then

‖x‖∞ = maxj∈{1,...,n} |[x]j |. Accordingly, if x ∈ R
n×∞ we use ‖x(k)‖∞ = maxj∈{1,...,n} |[x(k)]j|

to indicate the norm of a single vector, at time k, in contrast with ‖x‖∞ = supi maxj |[x(i)]j |.
The convention for random variables remains unchanged, e.g., [x(k)]j is the jth component of a

3The authors suggest the reading of section III first
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n-dimensional random sequence whose realizations lie on R
n×∞. If H is a sequence of matrices,

with H(k) ∈ R
n×n, then ‖H‖1 = maxi

∑∞
k=0

∑n
j=1 |[H(k)]ij|. For a particular matrix H(k), we

also use ‖H(k)‖1 = maxi

∑n
j=1 |[H(k)]ij|. We use �1 ∈ R

n to indicate a vector of ones, i.e.,

[�1]j = 1 for j ∈ {1, . . . , n}.

B. Description of uncertainty and robust stability

Let � ∈ N+

⋃{∞}, d̄ ≥ 0, z̄xf , z̄
u
f ∈ [0, 1) and z̄a > 0 be given constants then we study the

stabilizability of the following uncertain system:

x(k + 1) = A(I + Za(k))x(k) + u(k) + d(k) +Gf(x,u)(k) (80)

where A is upper triangular, with identical real diagonal elements denoted as a:

A =



a · · ·
0

. . .
...

0 0 a


 (81)

In addition, we assume that ‖d‖∞ ≤ d̄, |[Za(k)]ij| ≤ z̄a and that Gf (x,u)(k) satisfies:

‖Gf(x,u)(k)‖∞ ≤ z̄xf max{‖x(k − �+ 1)‖∞, . . . , ‖x(k)‖∞}+
z̄uf max{‖u(k − � + 1)‖∞, . . . , ‖u(k)‖∞} (82)

We refer to Chapter 2 of [15], where we use a modification of the rotation operator, defined by

[20], to characterize a class of stochastic state-space representations, which can be re-written in

a form similar to (80)-(81). In particular, the results in this section hold for stochastic, linear

second order systems for which A(k) is a i.i.d. sequence of random matrices with complex

eigenvalues [15]. If the dynamic matrix is a time-invariant real Jordan form or block upper

triangular, as in (42), then the state-space representation can be written in the form (80)-(81)

[15]. We emphasize that, in (80), we incorporate u in the description of the feedback uncertainty.

As it will be evident from the subsequent discussion, such generalization can be treated with

the same techniques used in section III. We decide for including u in Gf because that allows

for a richer description of uncertainty.

A given feedback scheme is robustly stabilizing if it satisfies the following definition.
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Definition 6.1: (m-th Moment Robust Stability) Let m > 0, � ∈ N+

⋃{∞}, z̄xf , z̄
u
f ∈ [0, 1),

z̄a ∈ [0, 1) and d̄ ≥ 0 be given. The system (80), under a given feedback scheme, is m-th moment

(robustly) stable provided that the following holds:


limk→∞ E [‖x̄(k)‖m∞] = 0 if z̄xf = z̄uf = d̄ = 0

∃b ∈ R+ s.t. lim supk→∞ E [‖x̄(k)‖m∞] < b otherwise
(83)

where x̄(k) is given by [x̄(k)]i = supx(0)∈[−1/2,1/2]n |[x(k)]i|.

C. Feedback structure and channel usage assumptions

In order to study the stabilization of systems of order n, higher than one, we assume the

existence of a channel allocation �r(k) ∈ {0, . . . , r̄}n, satisfying:
n∑

j=1

[�r(k)]j = r(k) (84)

where r(k) is the instantaneous rate sequence. We also assume that �r(k) is i.i.d..

Using the same notation of section I, we define Cj and [�rδ(k)]j as:

[�r(k)]j = Cj − [�rδ(k)]j (85)

Similarly, we also define αi(m) = 1
m

log E [2m[!rδ(k)]i ].

In the general case, the allocation problem is difficult because it also entails a change of

the encoding process described in the Appendix. The encoding must be such that each [�rδ(k)]i

corresponds to the instantaneous rate of a truncation operator. In section VI-H we solve the

allocation problem for the class of systems described by (80)-(81).

As in the one dimensional case, we assume that both the encoder and the controller have access

to �r(k−1) as well as the constants �, z̄xf , z̄uf , z̄a and d̄. The encoder is a function F e
k : R

n×(k+1) →
{0, 1}n×r̄ that has the following dependence on observations: F e

k(x(0), . . . ,x(k)) = (b1, . . . ,br̄),

where bi ∈ {0, 1}n. The control action results from a map, not necessarily memoryless, F c
k :⋃r̄

i=0{0, 1}n×i → R exhibiting the following functional dependence: u(k) = F c
k(
�b(k)), where

�b(k) is the vector for which, each component [�b(k)]j , comprises a string of [�r(k)]j bits success-

fully transmitted through the link, i.e., [�b(k)]j = [F l
k (b1, . . . ,br̄)]j =

(
[b1]j, . . . , [b[!r(k)]j ]j

)
. As

such, u(k) can be equivalently expressed as u(k) = (F c
k ◦ F l

k ◦ F e
k)(x(0),x(1), . . . ,x(k)).
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D. Construction of a stabilizing feedback scheme

The construction of a stabilizing scheme follows the same steps used in section III. The

following is the definition of a multidimensional upper-bound sequence.

Definition 6.2: (Upper-bound Sequence) Let z̄xf , z̄
u
f ∈ [0, 1), z̄a ∈ [0, 1), d̄ ≥ 0 and � ∈

N+

⋃{∞} be given. Define the upper-bound sequence v(k), with v(k) ∈ R
n, as:

v(k + 1) = Acl(k)v(k) + (z̄xf + z̄uf ‖A‖1) max{‖v(k − �+ 1)‖∞, . . . , ‖v(k)‖∞}�1 + d̄�1, (86)

where [|A|]ij = |[A]ij|, v(i) = 0 for i < 0, [v(0)]j = 1
2

and Acl(k) is given by:

Acl(k) = |A|
(
diag(2−[!r(k)]1 , . . . , 2−[!r(k)]n) + z̄a�1�1

T
)

(87)

Adopt the feedback scheme of definition 3.3, mutatis mutandis, for the multi-dimensional

case. By measuring the state x(k) and using [�r(k)]j bits (at time k) to encode each component

[x(k)]j , we construct [x̂(k)]j such that

|[x(k)]j − [x̂(k)]j| ≤ 2−[!r(k)]j [v(k)]j (88)

Accordingly, u(k) is defined as:

u(k) = −Ax̂(k) (89)

The following lemma establishes that the stabilization of v(k) is sufficient for the stabilization

of x(k).

Lemma 6.1: Let z̄xf , z̄
u
f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be given. If x(k) is the solution of (80)

under the feedback scheme given by (88)-(89), then the following holds:

[x̄(k)]j ≤ [v(k)]j

for all � ∈ N+

⋃{∞}, ‖d(k)‖∞ ≤ d̄, every choice |[Za]ij | ≤ z̄a and Gf satisfying:

‖Gf(x,u)(k)‖∞ ≤ z̄xf max{‖x(k − �+ 1)‖∞, . . . , ‖x(k)‖∞}

+ z̄uf max{‖u(k − � + 1)‖∞, . . . , ‖u(k)‖∞} (90)

Proof: The proof follows the same steps as in lemma 3.1. We start by assuming that [x̄(i)]j ≤
[v(i)]j for i ∈ {0, . . . , k} and proceed to prove that [x̄(k+1)]j ≤ [v(k+1)]j . From (80) and the
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feedback scheme (88)-(89), we find that:

|[x(k + 1)]1|

...

|[x(k + 1)]n|


 ≤

element−wise
|A|



|[v(k)]1|2−!r1(k)

...

|[v(k)]n|2−!rn(k)


+ |A| |Za(k)|



|[v(k)]1|

...

|[v(k)]n|


+ d̄�1+

z̄xf�1 max{‖v(k − � + 1)‖∞, . . . , ‖v(k)‖∞} + z̄uf�1 max{‖u(k − � + 1)‖∞, . . . , ‖u(k)‖∞} (91)

In order to address the dependence on u, we notice that (89) implies that |[u(k)]j | ≤ [|A| |v(k)|]j,
which by substituting in (91) leads to the conclusion of the proof. �

E. Sufficiency for the stochastic case

We derive the multi-dimensional version of the sufficiency results in section III-B. The results

presented below are the direct generalizations of lemma 3.3 and theorem 3.4.

Definition 6.3: (Upper-bound sequence for the stochastic case) Let � ∈ N+, z̄xf , z̄
u
f ∈ [0, 1),

z̄a ∈ [0, 1) and d̄ ≥ 0 be given. Given m, consider the following sequence:

vm(k + 1) = Acl,mvm(k) +
(
(n�)

1
m (z̄xf + z̄uf ā1) max{‖vm(k − � + 1)‖∞, . . . , ‖vm(k)‖∞} + d̄

)
�1

(92)

where vm(i) = 0 for i < 0, vm(0) = 1
2
�1, ā1 = ‖A‖1 and Acl,m is defined as

Acl,m = |A|
(
diag(2−C1+α1(m), . . . , 2−Cn+αn(m)) + z̄a�1�1

T
)

Lemma 6.2: (M-th moment boundedness)

If x(k) is the solution of (80) under the feedback scheme of (88)-(89), then the following

holds

E [[x̄(k)]mi ]
1
m ≤ [vm(k)]i

Proof: We start by showing that E [[v(k)]mi ]
1
m ≤ [vm(k)]i. We proceed by induction, by assuming

that E [[v(j)]mi ]
1
m ≤ [vm(j)]i holds for j ∈ {0, . . . , k} and proving that E [[v(k + 1)]mi ]

1
m ≤

[vm(k + 1)]i. Let z, s and g be random variables with z independent of s. By means of the

Minkovsky inequality, we know that E [|zs+g|m]
1
m ≤ E [|z|m]

1
mE [|s|m]

1
m +E [|g|m]

1
m . Using such
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property, the following inequality is a consequence of (86):

E [[v(k + 1)]m1 ]

1
m

...

E [[v(k + 1)]mn ]
1
m


 ≤

element−wise
Acl,m



E [[v(k)]m1 ]

1
m

...

E [[v(k)]mn ]
1
m


+

(z̄xf + z̄uf ‖A‖1)E [max{‖v(k − � + 1)‖∞, . . . , ‖v(k)‖∞}m]
1
m�1 + d̄�1 (93)

But using the inductive assumption that E [[v(j)]mi ]
1
m ≤ [vm(j)]i holds for j ∈ {0, . . . , k} and

that:

E [max{‖v(k − �+ 1)‖∞, . . . , ‖v(k)‖∞}m]
1
m ≤ (n�)

1
m max

j∈[k−�+1,k]
max
i∈[1,n]

E [[v(j)]mi ]
1
m (94)

we can rewrite (93) as:

E [[v(k + 1)]m1 ]

1
m

...

E [[v(k + 1)]mn ]
1
m


 ≤

element−wise
Acl,mvm(k)+

(
(n�)

1
m (z̄xf + z̄uf ‖A‖1) max{‖vm(k − � + 1)‖∞, . . . , ‖vm(k)‖∞} + d̄

)
�1 (95)

Since the induction hypothesis is verified, we can use lemma 6.1 to finalize the proof. �
Theorem 6.3: (Sufficiency conditions for Robust m-th moment Stability) Let A be the

dynamic matrix of (80), � ∈ N+, z̄xf , z̄
u
f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be given and Hm(k) be

defined as

Hm(k) = Ak
cl,m, k ≥ 0

where Acl,m = |A|
(
diag(2−C1+α1(m), . . . , 2−Cn+αn(m)) + z̄a�1�1

T
)

and [|A|]ij = |[A]ij|. Consider

that x(k) is the solution of (80) under the feedback scheme of (88)-(89) as well as the following

conditions:

• (C 1) maxi λi(Acl,m) < 1

• (C 2) (n�)
1
m (z̄xf + ‖A‖1z̄

u
f )‖Hm‖1 < 1

If conditions (C 1) and (C 2) are satisfied then the following holds:

E [[x̄(k)]mi ]
1
m ≤ ‖Hm‖1

(
(n�)

1
m (z̄xf + ‖A‖1z̄

u
f )

‖Hm‖1d̄ + ‖g̃m‖∞ 1
2

1 − (n�)
1
m (z̄xf + ‖A‖1z̄uf )‖Hm‖1

+ d̄

)
+

‖g̃m(k)‖∞1

2
(96)
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where g̃m(k) = Ak
cl,m

�1.

Proof: We start by noticing that the condition (C1) is necessary and sufficient to guarantee that

‖Hm‖1 is finite. From definition 6.3, we have that:

vm(k) = Ak
cl,mv(0)+

k−1∑
i=0

Ak−i−1
cl,m

(
(n�)

1
m (z̄xf + z̄uf ‖A‖1) max{‖vm(i− �+ 1)‖∞, . . . , ‖vm(i)‖∞} + d̄

)
�1 (97)

‖πkvm‖∞ ≤ ‖g̃m‖∞1

2
+ ‖Hm‖1

(
(n�)

1
m (z̄xf + z̄uf ‖A‖1)‖πkvm‖∞ + d̄

)
(98)

where we use ‖πkvm‖∞ = max{‖vm(0)‖∞, . . . , ‖vm(k)‖∞} and g̃m(k) = Ak
cl,m

�1. By means of

lemma 6.2, the formula (96) is obtained by isolating ‖πkvm‖∞ in (98) and substituting it back

in (97).�

F. Sufficiency for the case z̄a = 0

If z̄a = 0 then Acl,m of Theorem 6.3 can be expressed as:

Acl,m =




2log |a|2−C1+α1(m) · · ·
0

. . .
...

0 0 2log |a|2−Cn+αn(m)


 (99)

Accordingly, condition (C1) of Theorem 6.3 can be written as Ci > R+αi(m), with R = log |a|.
Also, from condition (C2), we find that by increasing the difference Ci−(R+αi(m)) we reduce

‖Hm‖1 and that creates robustness to uncertainty as measured by (z̄xf + ‖A‖1z̄
u
f ).

G. Sufficiency for the deterministic/time-invariant case

Accordingly, the following theorem establishes the multi-dimensional analog to theorem 3.2.

We omit the proof as it is a direct adaptation of the proof of Theorem 6.3.

Theorem 6.4: (Sufficiency conditions for Robust Stability) Let A be the dynamic matrix of

(80), � ∈ N+

⋃{∞}, z̄xf , z̄
u
f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be given and H(k) be defined as

H(k) = Ak
cl, k ≥ 0

where Acl = |A|
(
diag(2−C1, . . . , 2−Cn) + z̄a�1�1

T
)

and [|A|]ij = |[A]ij|. Consider that x(k) is

the solution of (80) under the feedback scheme of (88)-(89) as well as the following conditions:
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• (C 1) maxi λi(Acl) < 1

• (C 2) (z̄xf + ‖A‖1z̄
u
f )‖H‖1 < 1

If conditions (C 1) and (C 2) are satisfied then the following holds:

‖x̄(k)‖∞ ≤ ‖H‖1

(
(z̄xf + ‖A‖1z̄

u
f )

‖H‖1d̄ + ‖g̃‖∞ 1
2

1 − (z̄xf + ‖A‖1z̄uf )‖H‖1
+ d̄

)
+ ‖g̃(k)‖∞1

2
(100)

where g̃(k) = Ak
cl
�1.

H. Solving the Allocation Problem

Take the scheme of section as a starting point. Assume also that r(l) is always a multiple of n,

i.e., r(l) ∈ {0, n, 2n, . . . , r̄}. In order to satisfy this assumption, we only need to adapt the scheme

described in the Appendix, by selecting packets whose size is a multiple of n. Consequently,

we can include, in every packet, an equal number of bits to encode each component [x(l)]i. By

including the most important bits in the highest priority packets, we guarantee that each [�r(l)]i

corresponds to the instantaneous rate of a truncation operator. As such, we adopt the following

allocation:

[�r(l)]i =
r(l)

n
(101)

where we also use Ci and define the zero mean i.i.d. random variable [�rδ(l)]i, satisfying:

[�r(l)]i = Ci − [�rδ(l)]i (102)

From the definition of αi(m) and α(m), the parameters characterizing the allocation (101)

and r(l) are related through:

Ci =
1

n
C and αi(m) =

1

m
log E [2−m[!rδ(l)]i ] =

1

n

n

m
log E [2−

m
n

rδ(l)] =
1

n
α(
m

n
) (103)

The following Proposition shows that, under the previous assumptions, the necessary condition

of Theorem 4.1 is not conservative.

Proposition 6.5: Let � ∈ N+ be a given constant. If C−α(m
n
) > nR then there exist constants

d̄ > 0 and z̄xf , z̄
u
f ∈ [0, 1) such that the state-space representation (80)-(81) can be robustly

stabilized in the m-th moment sense.

Proof: We can use Theorem 6.3 to guarantee that the following is a sufficient condition for the

existence of d̄ > 0 and z̄xf , z̄
u
f ∈ [0, 1) such that (80)-(81) is robustly stabilizable:

Ci > αi(m) +R (104)
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On the other hand, by means of (103), the assumption C−α(m
n
) > nR can be written as (104).

�

APPENDIX

The purpose of this section4 is to motivate the truncation operator of definition 2.1. In addition,

details of the synchronization between the encoder and the decoder are discussed.

Consider that we want to use a wireless medium to transmit information between nodes A

and B. In our formulation, node A represents a central station, which measures the state of the

plant. The goal of the transmission system is to send information, about the state, from node A

to node B, which represents a controller that has access to the plant. Notice that node A maybe a

communication center which may communicate to several other nodes, but we assume that node

B only communicates with node A. Accordingly, we will concentrate on the communication

problem between nodes A and B only, without loss of generality.

Definition 1.1: (Basic Communication Scheme) We assume the existence of an external time-

synchronization variable, denoted as k. The interval between k and k + 1 is of T seconds, of

which TT < T is reserved for transmission. We also denote the number of bits in each packet as

Π, excluding headers. In order to submit an ordered set of packets for transmission, we consider

the following basic communication protocol, at the media access control level:

(Initialization) A variable denoted by c(k) is used to count how many packets are sent in

the interval t ∈ [kT, kT + TT ]. We consider yet another counter p, which is used to count the

number of periods for which no packet is sent. The variables are initialized as k = 0, p = 0 and

c(0) = 0.

(For node A)

(Synchronization) If k changes to k := k + 1 then step 1 is activated.

• Step1 The packets to be submitted for transmission are numbered according to their priority;

0 is the highest priority. The order of each packet is included in the header of the packet.

The variable c(k) is initialized to c(k) = 0 and p is incremented to p := p + 1. The first

packet (packet number 0) has an extra header, comprising the pair (c(k − p− 1), p). Move

to step 2.

4This section is not essential for understanding the necessity and sufficiency theorems of sections III, IV and VI.
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• Step 2: Stands by until it can send packet number c(k). If such opportunity occurs, move

to step 3.

• Step 3: Node A sends packet number c(k) to node B and waits for an ACK signal from

node B. If node A receives an ACK signal then c(k) := c(k) + 1, p = 0 and move back to

step 2. If time-out then go back to Step 2.

The time-out decision may be derived from several events: a fixed waiting time; a random timer

or a new opportunity to send a packet.

(For node B)

• Step 1: Node B stands by until it receives a packet from node A. Once a packet is received,

check if it is a first packet: if so, extract (c(k − p − 1), p) and construct rdec(i), with

i ∈ {k − p− 1, . . . , k − 1}, according to:


rdec(k − p− 1) = c(k − p− 1)Π, rdec(i) = 0, i ∈ {k − p, . . . , k − 1} if p ≥ 1

rdec(k − 1) = c(k − 1)Π otherwise

where Π is the size of the packets, excluding the header. If the packet is not duplicated

then make the packet available to the controller. Move to step 2.

• Step 2: Wait until it can send an ACK signal to node A. Once ACK is sent, go to step 1.

The scheme of definition 1.1 is the simplest version of a class of media access control (MAC)

protocols, denoted as Carrier Sense Multiple Access (CSMA). A recent discussion and source of

references about CSMA is [8]. Such scheme also describes the MAC operation for a wireless

communication network between two nodes. Also, we adopt the following strong assumptions:

• Every time node A sends a packet to node B: either it is sent without error or it is lost.

This assumption means that we are not dealing with, what is commonly referred to as, a

noisy channel.

• Every ACK signal sent by node B will reach node A before k changes to k + 1. This

assumption is critical to guarantee that no packets are wasted. Notice that node B can use

the whole interval t ∈ (kT + TT , (k + 1)T ) to send the last ACK. During this period, the

controller is not expecting new packets. The controller will generate u(k) using the packets

that were sent in the interval t ∈ [kT, kT + TT ]. Consequently, such ACK is not important

in the generation of u(k). It will be critical only for u(i) for i > k.

November 8, 2004 DRAFT



30

We adopt k, the discrete-time unit, as a reference. According to the usual framework of digital

control, k will correspond to the discrete time unit obtained by partitioning the continuous-time

in periods of duration T . Denote by TT < T the period allocated for transmission. Now, consider

that the aim of a discrete-time controller is to control a continuous-time linear system, which

admits5 a discretization of the form xc((k + 1)T ) = A(k)xc(kT ) + u(k). The discretization is

such that u(k) represents the effect of the control action over t ∈ (kT+TT , (k+1)T ). Information

about x(k) = xc(kT ), the state of the plant at the sampling instant t = kT , is transmitted during

t ∈ [kT, kT + TT ]. Whenever k changes, we construct a new queue and assume that the cycle

of definition 1.1 is reset to step 1.

1) Synchronization between the encoder and the decoder: Denote by renc(k) the total number

of bits that the encoder has successfully sent between k and k + 1, i.e., the number of bits for

which the encoder has received an ACK. The variable renc(k) is used by the encoder to keep

track of how many bits were sent. The corresponding variable at the decoder is represented as

rdec(k). From definition 1.1, we infer that rdec(k − 1) may not be available at all times. On the

other hand, we emphasize that the following holds:

c(k) �= 0 =⇒ rdec(i) = renc(i) for i ∈ {0, . . . , k − 1} (105)

In section III, the stabilizing control is constructed in a way that: if no packet goes through

between k and k + 1, i.e., c(k) = 0 then u(k) = 0. That shows that rdec(k − 1) is not available

only when it is not needed. That motivated us to adopt the simplifying assumption that r(k −
1) = renc(k − 1) = rdec(k − 1). We denote by r(k) the random variable which represents

the total number of bits that are transmitted in the time interval t ∈ [kT, kT + TT ]. The r(k)

transmitted bits are used by the controller to generate u(k). Notice that our scheme does not

pressupose an extra delay, because the control action will act, in continuous time, in the interval

t ∈ (kT + TT , (k + 1)T ).

2) Encoding and Decoding for First Order Systems: Given the transmission scheme described

above, the only remaining degrees of freedom are how to encode the measurement of the state

and how to construct the queue. From the proofs of theorems 4.1, 3.2 and 3.4, we infer that a

necessary and sufficient condition for stabilization is the ability to transmit, between nodes A

5A controllable linear and time-invariant system admits a discretization of the required form. If the system is stochastic an

equivalent condition has to be imposed
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and B, an estimate of the state x̂(k) with an accuracy lower-bounded6 by E [|x̂(k) − x(k)|m] <

2−R, where R > 0 is a given constant that depends on the state-space representation of the

plant. Since the received packets preserve the original order of the queue, we infer that the

best way to construct the queues, at each k, is to compute the binary expansion of x(k) and

position the packets so that the bits corresponding to higher powers of 2 are sent first. The lost

packets will always7 be the less important. The abstraction of such procedure is given by the

truncation operator of definition 2.1. The random behavior of r(k) arises from random time-out,

the existence of collisions generated by other nodes trying to communicate with node A or

from the fading that occurs if node B is moving. The fading phenomena may also occur from

interference.

ACKNOWLEDGMENT

The authors would like to thank Prof. Sekhar Tatikonda (Yale University) for providing pre-

print papers comprising some of his most recent results. We also would like to thank Prof. Sanjoy

Mitter (M.I.T.) for giving valuable motivation. This work was sponsored by the University of

California - Los Angeles, MURI project title: “Cooperative Control of Distributed Autonomous

Vehicles in Adversarial Environments”, award: 0205-G-CB222. Nuno C. Martins was partially

supported by the Portuguese Foundation for Science and Technology and the European Social

Fund, PRAXIS BD19630/99. Nicola Elia has been supported by NSF under the Career Award

grant number ECS-0093950.

REFERENCES

[1] Billingsley, P. “Probability and Measure”, Third Edition, Wiley Series in Probability and Mathematical Statistics, 1995

[2] Brockett, R.W.;Liberzon, D. “Quantized Feedback Stabilization of Linear Systems”, IEEE Transactions on Automatic

Control, vol 45, pp. 1279-1289, July 2000

[3] Campbell, J. J.; Viceira, L. M. “Strategic Asset Allocation”, Oxford University Press, 2002

[4] Cover, T.M; Thomas, J. A.; “Elements of Information Theory”, Wiley-Iterscience Publication, 1991

[5] Elia, N., “Control-Oriented feedback communication schemes”, Proceedings of the IEEE Conference on Decision and

Control, 2003

6This observation was already reported in [21]

7The situation were the packets lost are in random positions is characteristic of large networks where packets travel through

different routers.

November 8, 2004 DRAFT



32

[6] Elia, N.,“Stabilization in the presence of fading channels”, Proc. of American Control Conference 2003.

[7] Halmos, P. R.; “ Measure Theory”, Springer Verlag, 1974

[8] Heusse, M.; Rousseau, F.;Berger-Sabbatel, G.; Duda, A. “Performance Anomaly of 802.11b”, IEEE Infocom, 2003

[9] Horn, R.; Johnson, C. “Matrix Analysis”, New York, NY: Cambridge University Press, 1985

[10] Jain, R., Simsek, T., Varayia P. “ Control under Communication Constraints”, IEEE CDC2002, Vol. 5, pp. 3209-15, 2002

[11] Li, K.; Baillieul, J., “Robust Quantization for Digital Finite Communication Bandwidth (DFCB) Control”, Proceedings of

the IEEE Conference on Decision and Control, 2003

[12] Li, X.; Wong, W. S., “ State Estimation with Communication Constraints”, Systems and Control Letters 28 (1996), pp.

49-54

[13] Liberzon, D.; “On Stabilization of Linear Systems With Limited Information”, IEEE Transactions on Automation and

Control, Vol 48(2), pp. 304-7, 2003

[14] Martins, N. C.; Dahleh, M. A.;Elia N., “Stabilization of Uncertain Systems in the Presence of Finite Data-Rate Feedback”,

IFAC-NOLCOS Conference Proceedings, Stuttgart Germany, 2004

[15] Martins, N. C., “Information Theoretic Aspects of the Control and Mode Estimation of Stochastic Systems”, MIT-Ph.D.

Thesis, 2004 (It can be downloaded from: web.mit.edu/˜nmartins/www/chap2.pdf)

[16] Nair, G.; Dey S.; Evans, R.J.; “Infimum Data Rates for Stabilizing Markov Jump Linear Systems”, Proc. IEEE Conference

on Decision and Control, 2003, pp. 1176-81

[17] Nair, G. N. and Evans, R. J., “Stabilization with Data-Rate-Limited Feedback: Tightest Attainable Bounds.” Systems and

Control Letters, Vol 41, pp. 49-76, 2000

[18] Sahai, A.; “Evaluating Channels for Control: Capacity Reconsidered”, Proc. ACC., pp. 2358 - 2362, 2000

[19] Sahai, A.; “Anytime Information Theory”, Ph.D. Thesis, M.I.T. 2001

[20] Tatikonda, S.; “Control under Communication Constraints”, IEEE Transactions on Automatic Control, Vol 49, Issue 7,

pp. 1056-1068, July 2004.

[21] Tatikonda, S.; “Control under Communication Constraints”, Ph.D. Thesis, M.I.T. 2000

[22] Tatikonda, S.; Sahai, A.; Mitter, S. K. “Control of LQG Systems under Communication Constraints”, Proc. IEEE Conference

on Decision and Control, 1998

[23] Wong, W.S.; Brockett, R.W.; “Systems with finite communication bandwidth constraints -I: State estimation problems”

IEEE Trans. Automat. Control, Vol 42, pp. 1294-1298, Sept 1997

[24] Wong, W.S.; Brockett, R.W.; “Systems with finite communication bandwidth constraints -II: Stabilization with Limited

Information Feedback” IEEE Trans. Automat. Control, Vol 44, No. 5 pp. 1049-1053, 1999

[25] Witsenhausen, H., “Separation of Estimation and Control for Discrete-Time Systems”, Proceeding of the IEEE, Volume

59, No 11, November 1971

November 8, 2004 DRAFT


