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Abstract— We consider repeated matrix games in which player
strategies evolve in reaction to opponent actions, Players observe each
other’s actions, but do not have access to other player utilities. Strategy
evolution may be of the best response sort, as in fictitious play, or a gra-
dient update. Such mechanisms are known to not necessarily converge.
‘We show that the use of derivative action in processing opponent actions
can lead to behavior converging to Nash equilibria. We analyze the
use of approximate differentiators and reveal a potentially detrimental
biasing effect. We go on to provide alternative mechanisms to diminish
or eliminate this effect. We discuss two player games throughout and
outline extensions to multiplayer games. We also provide convergent
simulations throughout te standard counterexamples in the literature.

I. OVERVIEW

We consider a repeated game in which players continually update
strategies in response to observations of opponent actions. Our
particular set-up is as follows. There are two players, each with
a finite set of possible actions. Every time the game is played, each
player select an action according to a probability distribution that
represents that player’s strategy. The reward to each player, called
the player’s utility, depends on the actions taken by both players.
While each player knows its own utility, individual utilities are not
shared.

Now if both players presumed that the other player is using a
constant strategy, their strategy update mechanisms become inter-
twined. This mechanism is called “fictitious play”. In this setting,
players play the optimized best response to an opponent’s empirical
frequencies presuming (incorrectly) that the empirical frequency
is representative of a constant probability distribution. The re-
peated game would be in equilibrium if the empirical frequencies
converged. Since each player is employing the best response to
observed behaviors, the game being in equilibrium would coincide
with the players using a strategies that are at a Nash equilibrium,
i.e., neither player has an one-sided incentive to change strategy.

The procedure of fictitious play was introduced in 1951 [2], [11]
as a mechanism to compute Nash equilibria. There is a substantial
body of literature on the topic. Two overviews on parallel lines
of research are [5] and [15]. Of particular concern is whether
repeated play will indeed converge to a Nash equilibrium. It turns
out that players’ strategies may or may nhot converge. A convergence
counterexample due to Shapley in 1964 has two players with
three moves each [14). A 1993 counterexample due to Jordan has
three players with two moves each [9]. Regarding this lack of
convergence, the paper {8] builds on Jordan’s counterexample to
show that a generalized version will not exhibit convergence for
any strategy update mechanism (i.e., not just a best response mech-
anism), provided that players do not share their utility functions
and update mechanisms are static functions of observed opponent
actions.
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There are methods that are guaranteed to converge to the set of
correlated equilibria, which is larger than the set of Nash equilibria
[3], [6], [7]. The recent paper [4] uses hypothesis testing to derive -
a method under which empirical frequencies spend “most” of the
time in a neighborhood of Nash equilibria, but do not remain in
that neighborhood.

In this paper, we explore the possibility of dynamic functions
of opponent actions in the spirit of dynamic compensation for
feedback stabilization. We will focus on the use of derivative
action. We will employ a strategy update mechanism that resembles
traditional mechanisms but use both the empirical frequencies and
their derivatives. As opposed to revisiting past histories, the use of
derivative action may be viewed as a myopic predictor of opponen
actions. :

For the sake of brevity, many citations and all proofs have been
omitted from this presentation. A complete discussion may be found
in [13], [12].

Notation
— For i € {1,2,...,n}, —i denotes the complementary set
{1,...,i—1,i+1,...,n}

— Boldface 1 denotes the vector : ER™.
— A(n) denotes the simplex in R’ ,1 ie.,
{s ER"|s>0 componentwise, and 1Ts = 1}
— IIa : R™ — A(n) denotes the projection to the simplex,
' Malz] =argsénAigl)Iw*8|-
— vi € A(n) denotes the i*" vertex of the simplex A(n), i.e.,
the vector whose i*® term equals 1 and remaining terms equal

0.
— H :Int(A(n)) — R denotes the entropy function

H(s) = ~sT log(s)

— 0 : R™ — A(n) denotes the “logit” or “soft-max” function
e’

(o(x)): = i e

This function is continuously differentiable. The Jacobian
matrix of partial derivatives, denoted Vo (-), is

Vo(z) = diag(c(z)) — o(z)o” (z)

— For 6 > 0, dz(-,6) : R — R denotes the deadzone function

fx—46, fz>4é
dz(z,8) = ¢ 0, if -d<z<d
z+6, ifz<—6
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II. STANDARD FICTITIOUS PLAY FOR TWO PLAYER GAMES
A. Setup

We consider a two player game with players 7 and P-, each
with positive integer dimensions m; and mg, respectively. Each
player, P;, selects a strategy, p; € A(m;), and receives a real-
valued reward according to the utility function U; (p,, p—i). These
utility functions take the form

U (p1,p2) = pT Mipz + 7H(p1)
Us(p2, ;1) = p3 Mapy + TH(p2)

characterized by matrices M; of appropriate dimension and 7 > 0.
Define the best response mappings

Bi : A(m—;) — A(m)

by
Bi(p-i) = arg pemA?r)r(zi)Ui(pi’p-i)

The best response turns out to be the logit or soft-max function (see
Notation section)

Bi(p-:) = o(Mip-i/T)

A Nash equilibrium is a pair (pI,p3) € A(mi1) X A(mz) such
that

i.e., each player has no incentive to deviate from an equilibrium
strategy provided that the other player maintains an equilibrium
strategy. In terms of the best response mappings, a Nash equilibrium
is pair (pI,p3) such that

pi = ﬁi(p:i)

Now suppose that the game is repeated at every time k €
{0,1,2,...}. In particular, we are interested in an “evolutionary”
version of the game in which the strategies at time k, denoted by
pi(k), are selected in response to the entire prior history of an
opponent’s actions.

Towards this end, let a:(k) denote the action of player P; at
time k, chosen according to the probability distribution p;(k), and
let v, (x) € A(m;) denote the corresponding simplex vertex. The
empirical frequency, g;(k), of player P; is defined as the running
average of the actions of player P;, which can be computed by the
recursion

qi(k))

In standard discrete-time fictitious play (FP), the strategy of
player P; at time k is the optimal response to the running average
of the opponent’s actions, i.e.,

pi(k) = Bi(g-i(k))
Now consider the continuous-time dynamics,
d1(t) = Br(g2(t)) — q1(2)
G2(t) = B2(q1(t)) — q2(t)

We call these equations standard continuous-time FP. These are
the dynamics obtained by viewing standard discrete-time FP as
stochastic approximation iterations and applying associated ordinary
differential equation (ODE) analysis methods [10].

) 1
gi(k+ 1) = qi(k) + m(Vai(k) -

(22)
(2b)

B. Convergent Cases

There are known convergent cases of standard fictitious play [5],
in particular zero-sum games (M; = —MTY), identical interest
games (M; = M2T ), and two-player/two-move games. One can
derive a unified framework which establishes convergence in all of
the aforementioned special cases.

Define the function Vi : A(m1) x A(mz) — R* as

Vi{q1, ¢2) = L Ui (s, g2) — Us(g1.92)

= (B1(g2) — @1)" Magz + 7(H(B1(g2)) — H(a1))

Similarly define

max le(s q1) — Ua(q2, q1)

Va(gz, 1) = LRax

Each V; has the natural interpretation as the maximum possible
reward improvement to player P; by using the best response to q—;
rather than the specified g;.

The functions V3 and V- can be used to show that the continuous-
time empirical frequencies converge to a Nash equilibrium by
evaluating V1 and V; along trajectories of standard continuous-time
FP (2). The argument will either be to show that a weighted sum,
a1V1 + azVs, is a Lyapunov function, or show that the sum is
integrable [13].

II1. DYNAMIC FICTITIOUS PLAY
A. Ideal Case: Derivative Measurements

In standard continuous-time FP, the empirical frequencies are
available to all players, and the strategy of each player is the best
response to the opponent’s empirical frequency, i.e.,

pi(t) = Bi(g-i(t))

Suppose now that in addition to empirical frequencies being avail-
able to all players, empirical frequency derivatives, §;(t), are also
available. This modification is very much in the spirit of standard
PID controllers. Let p;(t) denote the strategy of player P; at time
t. Rather than use p; as a best response to g—;, consider

pi(t) = Bi(g-:(t) + ¢-:(t)

i.e., each player’s strategy is a best response to a combination of
empirical frequencies and the derivative of empirical frequencies.
The classical control interpretation is that the derivative term serves
as a short term prediction the opponent’s strategy.

This modification leads to the following differential equation

(3a)
(3b)

=0i(g2+ ¢2) ~ @1
G2 = P2(q1 +41) — 2

which we refer-to as derivative action FP.
Introduce the variables

n=q+q
z2=¢q2+ ¢

and let

T:R™ x R™ — A(m) x A(ma)

(2)-(GE) ©

be the mapping
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Let z = z]> Then we can restate derivative action FP dynamics
2 .

3) as

' z=T(z)

i.e., derivative action FP must evolve over fixed points of T'.
It turns out that these fixed points are Nash equilibria of the
original game. Let

Q" € A(ma) x A(ma)

denote the set of Nash equilibria satisfying (1).
Theorem 3.1: Any solution of derivative action FP dynamics (3)
satisfies the differential inclusion

Q1 -q "
.)€ +
| (5) e (Co)+e
Theorem 3.2: In the case of a unique Nash equilibrium Q" =
{(q%,q3)}, the unique solution to derivative action FP (3) is
Gg=-qa+aq
2=-0+a¢
‘which converges (exponentially) to the unique Nash equilibrium.
B. Approximate Derivative Measurements and Approximate Dif-
Jferentiators
Suppose we generate an approximation of the empirical frequency
derivatives based on available data. Then we can write derivative
action FP as
(5a)
(5b)

g1 =PF1(g2tq2+e2)— @
Ge=P(qr+Gr+e1)—q

which we call approximate derivative action FP. The new variables,
e;(t), denote the derivative approximation error.

One can show that under certain-technical conditions [12] that
for any € > 0, there exists a § > 0 such that if (e1(t),e2(t))
eventually remain within an §-neighborhood of the origin, then
(q1(t), g2(t)) eventually remain within an e-neighborhood of a
single Nash equilibrium, i.e.,

limsup je(t)] < &
20

implies
limsup |g(t) — (a1,¢2)| < €
>0

for some ¢* € Q*.

This establishes a sort of continuity result for approximate deriva-
tive action FP. Namely, it is possible to converge to an arbitrary
neighborhood of the set Nash equilibrium points provided that
we can construct sufficiently accurate approximations of empirical
frequency derivatives.

Towards this end, consider

@ =Bi(gz + Maz —m2)) — @

_(6a)
g2 = B2(q1 + Maq1 — 71)) — @2 (6b)
71= A(q1 —71) (6c)
2 =XMgz—712) (6d)

with A > 0. An alternative expression for the empirical frequency
evolution is

G =Pi(gz+72)—q1

G2 = B2(q1 +71) — @2

The variables, r;, are “filtered” versions of the empirical frequen-
cies. Intuitively, as A increases, r; closely tracks gi, and so r; is a
good approximation for ¢;. Unfortunately, such intuition does not
seem to hold. The problem is that the approximation error associated
with 7; —¢; is proportional to the magnitude of the second derivative
§;. These second derivatives, in turn, involve the derivatives 7,
which of course involve A. So as A increases, the second derivative
magnitudes §; can also increase, thereby cancelling the desired
effect of superior tracking.

We will further investigate the obstacle of approximate differ-
entiators by considering solutions to (6) with progressively larger
values of \. Towards this end, let (¢}, 73) denote the solutions to
(6) for the specified value of A.

Theorem 3.3: For any compact interval, [T1,T2] C R*, with
T > 0, there exist an unbounded increasing sequence {\x} and
absolutely continuous functions q; with derivatives ﬁ,. such that

1 ¢* and ri)‘ ¥ both converge to g, uniformly on [T1, T3]

2) ¢;* and )% both converge weakly to G, in

L'(|T1, T2), R™). _

Theorem 3.4: In the context of Theorem 3.3, let G; and q; be the
respective limits of q;\ k and q'? k on the compact interval [Ty, T3].
Define

b} (t) = Bi(g2:(t) + 72:(2))
and )
« bi=7;+7;
Then the sequence bi"“ converges weakly to b; in L*([T1, Tz), R™).
Furthermore, if

Bi(t) = Bi(q_,(t) +T_;(2) )

then (4, q,) are solutions to derivative action FP dynamics (3) on
T3, Tz).

Theorem 3.4 establishes that using increasing values of A can
converge to to a solution of the derivative action FP dynamics
(3) under the equality assumption (7). This equality assumption
is essentially a requirement of weak continuity of the function §;
viewed as an operator ‘on L'([T,T%], R™). Even though g; is
uniformly continuous as a function over the simplex, this need not
imply uniform continuity as an operator. Indeed, asymmetries due
to nonlinearities can destroy the desired weak continuity.

C. Simulation Examples

Figure 1 shows the empirical frequency response of player P
for the Shapley counterexample with 7 = .01 under derivative.
action FP using approximate differentiators with A = 1, 10, 100. In
standard fictitious play, empirical frequencies perpetually oscillate.
Note that even with derivative action oscillations do occur, but with
smaller magnitude. Indeed, a linearization analysis reveals that the
dynamics are not locally exponentially stable.

Now consider a modified Shapley example

0 30 010
Mi={0 o 1|, Mx={0 0 1
100 100

Note that this modification destroys a symmetry between players
so that (1/3,1/3,1/3) is no longer a Nash equilibrium. Rather,
the new Nash equilibrium is (approximately) g7 = (1/3,1/3,1/3)
and ¢35 = (3/7,1/7,3/7). Figure 2 shows the empirical fre-
quency responses under derivative action FP with approximate
differentiators with A = 1,10,100. Although the empirical fre-
quencies apparently converge, they are converging to ¢1(5) =
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Fig. 1.

Shapley counterexample continuous time: Approximate differentia-
tor A = 1,10, 100

1 T T ¥ - T T

o8} -

o2f o

PRI 4

i 4 L L

] 05 1 15 2 25 3 35 4 45 5

Fig. 2. Modified Shapley counterexample: Approximate differentiator A =
100

[0.3988, 0.3627, 0.2385]7, g2(5) =~ [0.3650, 0.1853, 0.4497]".
It is possible to reduce this error by using an alternative approximate
differentiatior, in particular

1 = Adz((qr — 71),2/X)
72 = Adz((g2 — 72),2/X)

The inclusion of a deadzone will shut off the derivative action
whenever ¢i(t) — r;(t) is smaller than 2/X. It is straightforward
to show that Theorem 3.4 also holds using the above deadzone
differentiator. Furthermore, the effect of the lack of weak conver-
gence is significantly reduced. Figure 3 shows a continuous-time
simulation using the deadzone differentiator with A = 200. Both
cases qualitatively resemble the standard differentiator simulation.
However the empirical frequencies are converging to qi1(5) =
[0.3391, 0.3359, 0.3250]7 ¢2(5) ~ [0.4362, 0.1522, 0.4115]%.

1V. DYNAMIC GRADIENT PLAY

A. Ideal Case: Derivative Measurements

In this section, we will consider an alternative form of continuous
time strategy evolution that is not directly related to fictitious play.

Fig. 3. Modified Shapley counterexample with deadzone differentiator and
A =200 :

We will still explore the evolution of probability distributions, g;(¢),
but these should be interpreted as a strategy update mechanism in an
effort to compute Nash equlibria. The “empirical frequency” inter-
pretation from fictitious play is no longer immediate (although we
will still use this term). The motivation is as follows. Theorem 3.4
suggests that the deficiency of approximate differentiators may be
due to the nonlinearity of the ¢; update mechanism which causes
a lack of weak continuity. Updating strategies in a “more linear”
fashion should alleviate this situation. One such possiblility is that
of gradient evolution. We will review standard gradient play and
propose a derivative action modification. As before, the inclusion of
derivative action will allow certain desirable convergence properties.

Since each player seeks to maximize its own utility in response
to observations of an opponent’s actions, we can write as a gradient
update mechanism

Gs(t) = NNT(Miq_s(t) - log(a:(2)))

where N is an orthonormal matrix whose columns span the null
space of the row vector 17 € R™.

As is the case with fictitious play, gradient based evolution need
not converge. Indeed, the above dynamics do not converge for the
Shapley counterexample.

We will consider a modification of gradient evolution in the
spirit of the prior modification of fictitious play, namely, the use
of derivative action. )

We first investigate the special case of 7 = 0.

Introducing a derivative term in same manner as derivative action
fictitious play leads to the implicit differential equation

Ma gy + e(Mi(q2 + @)l —

G = IEIIIOI (8a)

€
O (g2 +e(Ma(q1 + ¢1)] — @2
€

G2 = 1511151 (8b)
which we refer to as derivative action gradient play. As in derivative
action FP, the modification leads to an implicit differential equation.
This reflects the intention that player P;’s strategy update mecha-
nism involves processing g2 and ¢,. Similarly, player P2’s strategy
update mechanism involves processing ¢; and ¢i.
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Define the matrices
N 0
v=(3 %)
_ 0 M
E=NNT (M; 0 )

Assumption 4.1: The matrix (I — E) is invertible. Furthermore,

NT{I - E)'EN+ WT(I - E)'EM)T <0 9
Proposition 4.1: Suppose there exists a solution to the derivative
action gradient play (8). If for some t > 0,

:(t) € Int(A(m))
then )
§(t) = (I - E)"'Eq(t)
where q(t) = (g;g:g)

Theorem 4.1: Let ¢* = ( ) bea mlxed Nash equilibrium such
that

(10)

g; € Int(A(m))

Then for initial conditions q(0) sufficiently close to q*, the solution
to derivative action gradient play (8) satisfies the linear system (10)
for all t > 0 and exponentially converges to q*.

The main conclusion of Theorem 4.1 is that mixed Nash eqm-
libria are locally attractive under derivative action fictitious play. A
critical assumption was the negative definiteness of Assumption 4.1.
It turns out that one can “generically” satisfy this assumption with
suitable scaling of the utility matrices M;.

Proposition 4.2: Let

. Mi=qM, .Mz = yM>
and suppose that for i = 1,2,
NTM;N
is invertible. Deﬁr?er
(g, %)
There exists a v* > 0 such that if
I -~E)

. is invertible for ¥ >
tion 4.1 holds, re,

NT(I - ny) WEN + (Mf(z ~E)~ »yEN) <0
We now- consider denvauve action gradient play in the case of
nonzero 7. The natural extention of derivative action gradient play
(8) is

then the negative definiteness of Assump-

g1 = NNT (M (g2 + d2) — 7 log(q1))
= NNT(Ma(q + G1).— 7log(gz))

where we presume that the g;(t) lie in simplex interiors. The prob-
lem with these dynamics is that the log(-) terms may not perform
their intended “barrier” function of maintaining the evolution in
the simplex interior. The intuition is as follows. The ¢1 dynamics
contain a log(-) term, but also contain a ¢2 term, which in turn

involves a log(-) term. It is unclear whether one can guarantee a .

priori that these two terms will not somehow cancel each other.

We can avoid these issues by considering a slightly perturbed
form of these dynamics, namely

= NNT(Migz + Mi(g2 + TNNT log(gz)) — 7 log(a1))
(11a)

= NNT(Mag; + Ma(dr + TNNT log(q1)) — 7log(gz))
(11b)

which we will refer to as perturbed derivative action gradient
play. Note the “removal” of the log(-) terms in the processing
of the opponent’s derivative. This alternative form will be easier
to analyze, but has the side effect of having equilibria that are not
Nash equilibria. Fortunately, the size of the shift seems on the order
of the shift in equilibria associated with smoothing a matrix game.

A direct interpretation of the alternative dynamics (11) is to
introduce log(+) terms directly into the linear system (10) associated
with the 7 = 0 case, i.e.,

g=(I - E) 'Eq— NN log(q) (12)

It is easy to see that solutions to the above (12) are also solutions
to the perturbed derivative action gradient play (11).

Theorem 4.2: Consider perturbed derivative action gradient play
(11) under Assumption 4.1. For initial conditions g;(0) in simplex
interiors, there exists a solution for all t > O such that.

lim ¢(t) =
fimd(t) =0
B. Approximate Differentiator Implementation and Simulation
Examples

As in the case of derivative action fictitious play, we can im-
plement derivative action gradient play by employing approximate
differentiators. Through a suitable modification, such equations
can be written in a “fictitious play form that is equivalent near

equilibrium points.
We can write derivative action gradlent play with 7 = 0 as

G=q +NNT(M1(Q2 +7))—q
g2 = g2 + NNT(Ma(q1 + #1)) — g2

71 = A(q1 — 71)
= Xgz — 12)
Now introduce simplex projections to write .
=IIA [g1 + Ma(g2 + 72)] — @1 (13a)
G2 = I1A (g2 + M2(q1 + 71)] - (13b)
1= Agq1 —71) (13¢)
= Mgz —r2) (13d)

With this representation, each player uses the strategy
= [gi + M—i(g-1 + 7"‘-1')]

As before, simulations [12] show that empirical frequencies

. converge in the Shapley example. Furthermore, these converge

in the modified Shapley example without recourse to deadzone
differentiators.

V. MULTIPLAYER GAMES

Let us now consider the case with N players, each with a utility
function

U;i(pi, p-+)

We will impose structural assumptions on the U{; as needed.
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If we assume that each player has a differentiable best response
function
Bi(pi, p-1)
then we can write derivative action as

g1 =B1(g-1+¢-1) —q

gy = Bn(g-~ +d-~) —an

The ensuing analysis of approximate derivative measurements,
approximate differentiator implmentation, and weak convergence
issues remains the same. Indeed, the specific structure of the utility
functions other than differentiability of the best response map is not
of concern.

In the dynamic gradient play scenario, we need to impose the
following structure on the player utilities,

Ui(pi,p-i) = p¥ (Q_ Mijp;) + TH(p3)
J#i
characterized by matrices M;;. Let us assume for convenience
that each player has the same dimension. As before, let N be
an orthonormal matrix whose columns span the nullspace of 17.
Redefine the matrix

N
N:
N,

Define the matrix M as the a block matrix whose ij“‘ block is M;;,
and whose 5™ block is 0. Finally, redefine E as

E=NNTM
Then the underlying linear structure (analogous to (10)) is still
¢=(I~E)"Eq

and the sufficient condition for negative definiteness (analogous to
Proposition 4.2) is the invertibility of N7 MAN.

The full version [12] illustrates these methods on a smoothed
version of the Jordan anti-coordination game [9]. It is known that
standard FP does not converge for this game. Reference [8] goes
on to show that there is no algorithm that assures convergence
to equilibrium in which player strategies are static functions of
opponent empirical frequencies and players do not have access
to opponent utilities. In this game, there are three players with
two possible actions. The utilities reflect that player P; wants to
differ from player Pa, player P, wants to differ from player Ps,
and player P3; wants to differ from player P;. Following [8], an
extension of the Jordan game can be written as

r {0 at
Ui(pip2) =p1 (o P2+ 7H(m)
0 a?

Uz(p2,ps) = p3 (1 0)173 + TH(p2)

a3

0
Us(ps,p1) = p3 (1 0 ) P1+ TH(ps)

where the a* > 0 are utility parameters. The case where o’ =
1 is the standard Jordan game. In case 7 = 0, the unique Nash
equilibrium is

al al a?
* 2311 * ali1 * 2241
q1 = a1+1 ’ qz = 01+1 3 g3 = a1+1

a3+1 ai+1 a2+1

Simulations [12] show that both derivative action FP and gradient
play converge to the Nash equilibrium. As before, a non-symmetric
equilibrium can cause a bias in the convergence in derivative action
FP, but deadzone differentiators resolve the problem.

V1. CONCLUDING REMARKS

We have introduced the use of derivative action in repeated
games. We have shown that in the ideal case, derivative action can
guarantee convergence to Nash equilibria in repeated games with
best response dynamics. In the non-ideal case, we have shown that
approximate differentiators can recover the ideal behavior, but may
also exhibit detrimental biasing effects. We have illustrated how to
mitigate these effects through alternative approximate differentia-
tor mechanisms. We also considered derivative action in gradient
dynamics and illustrated that the detrimental effect approximate
differentiators is diminished.

Finally, we did not formally establish any ties to discrete time.
The dynamics under consideration are of the simplest sort to apply
stochastic approximation results, i.e., continuous dynamics over
compact sets, so issues associated with boundedness of iterations
do not arise. Texts such as [10] or papers such as [1] provide tools
to establish this connection.
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