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Abstract—We consider a continuous-time form of repeated empirical frequenciesBy playing the optimized best response
matrix games in which player strategies evolve in reaction to to the observed empirical frequencies, the optimizing player

opponent actions. Players observe each other's actions, but doyyij eventually converge to its own optimal response to the
not have access to other player utilities. Strategy evolution .
fixed strategy opponent.

may be of the best response sort, as in fictitious play, or a . . )
gradient update. Such mechanisms are known to not necessarily ~Now if both players presumed that the other player is using
converge. We introduce a form of “dynamic” fictitious and a constant strategy, their strategy update mechanisms become

gradient play strategy update mechanisms. These mechanismsintertwined One such process is calldittitious play (FP).
use derivative action in processing opponent actions and, in some | this setting, players play the optimized best response to an

cases, can lead to behavior converging to Nash equilibria in " irical - . . tv) that
previously nonconvergent situations. We analyze convergence in opponent's empirical frequencies presuming (incorrectly) tha

the case of exact and approximate derivative measurements of the the empirical frequency is representative of a constant proba-
dynamic update mechanisms. In the ideal case of exact derivative bility distribution. The repeated game would be in equilibrium

measurements, we show that convergence to Nash equilibrium jf the empirical frequencies converged. Since each player is
can always be achieved. In the case of approximate derivative employing the best response to observed behaviors, the game

measurements, we derive a characterization of local convergenceb S ilibri Id coincid ith the ol .
that shows how the dynamic update mechanisms can converge if eing In equilibrium would coinciae wi € players using

the traditional static counterparts do not. We primarily discuss ~Strategies that are at a Nash equilibrium.
two player games, but also outline extensions to multiplayer  The procedure of FP was introduced in 1951 [9], [37] as a

games. We illustrate these methods with convergent simulations mechanism to compute Nash equilibria. There is a substantial
of the well known Shapley and Jordan counterexamples. body of literature on the topic. Related lines of research are
discussed in the monographs [21F],[[43] and the recent
overview of [24].
Of particular concern is whether repeated play will in-
This paper considers a continuous-time form of a remped converge to a Nash equilibrium. A brief timeline of
peated game in which players continually update strategisyits that establish convergence of FP is as follows: 1951,
in response to observations of opponent actions but WithQWo-pIayer/zero-sum games [37]; 1961, two-player/two-move
knowledge of opponent intentions. The primary objective is Wames [35]; 1993, noisy two-player/two-move games with a
understand how interacting players could converge to a Né\ﬁ*ﬂque Nash equilibrium [20]; 1996, multiplayer games with
equilibrium, i.e., a set of strategies for which no player hasjgentical player utilities [36]; 1999, noisy two-player/two-
unilateral incentive to change. move games with countable Nash equilibria [6]; and 2003,
The motivational Setup iS as fO”OWS. There are two playerﬁvo_p|ayer games Where one p|ayer has On|y two moves [8]
each with a finite set of possible actions. Every time the |t turns out that empirical frequencies nesat converge. A
game is played, each player selects an action accordingctunterexample due to Shapley in 1964 has two players with
a probability distribution that represents that playsti®itegy three moves each [40]. A 1993 counterexample due to Jordan
The reward to each player, called the playelt'ﬁlty, depends has three players W|th two moves each [28]
on the actions taken by both players. While each player knowsin poth the Shapley and Jordan counterexamples, the game
its own utility, these utilities ar@ot shared between players. ynder consideration admits a unique Nash equilibrium that is
Suppose that one player always used the same probabiimpletely mixedi.e., all moves have a positive probability
distribution to generate its action, i.e., the player maintainggd being played.
a constant strategy. Then the other player could, over time,;The concept of mixed Nash equilibria has received some
via repeated play, learn this distribution by keeping a runningrutiny regarding its justification. The paper [38] raises vari-
average of opponent actions. Such running averages are cagd questions regarding finding an appropriate interpretation.

o , . Another concern is how a completely mixed Nash equilibrium
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I. OVERVIEW



FP) cannot converge to a mixed equilibrium. The paper [3tpnvergence on the Jordan game.
shows that “almost all” games in which players have more thanTwo papers that are closely related are [4], [10]. Reference
two moves cannot converge to completely mixed equilibria {#] considers two dynamic processes. The first is that players
best response FP. Nonconvergence issues are also discussaddara strategy that is the best response to the previous action
[12], [19], [26], [42]. of the opponent. The second is a “relaxation” in which players
In particular, the paper [26] shows that a generalized versiase this best response only to adjust its current strategy,
of the Jordan game will not exhibit convergence famy thereby introducing some inertia. This relaxation, which may
strategy adjustment mechanism—not just a best respomseviewed as a sort of dynamic compensation, may have im-
mechanism—provided that players do not share their utiligfroved convergence properties. Reference [10] considers zero-
functions and update mechanisms are static functions of estin games played in intervals. Players adjust their strategy
pirical frequencies. based on an approximate forecast of the opponents strategy,
There are methods akin to parallel random search that avkich is reminiscent of the use of derivative action as a myopic
able to find a neighborhood of a Nash equilibrium. Relevaptedictor.
works are [17], [18], [27]. These methods conceptually differ Other related papers with positive convergence results are
from FP in that the driving mechanism is distributed rar29], [33]. In [29], all players make a “calibrated” [16] forecast
domized search in the strategy space as opposed to gradiiaheir joint action and use this to derive a forecasted best
strategic adjustment. response. This results in near convergence to the convex hull of
Contrary to the case of Nash equilibria, there are metholssh equilibria. In [33], all players use different time-scales to
[16], [22], [25] that are guaranteed for all games to convergaljust their strategies. The authors show that such multiscale
to the larger set of so-calledorrelated equilibria which is dynamics can enable convergence to a Nash equilibrium in
a convex set that contains the set of Nash equilibria. Thesgrtain cases, including the Shapley and Jordan games.
are “regret based” algorithms that revisit past decisions in anThe remainder of this paper is organized as follows. Sec-
effort to evaluate what could have been a more fruitful coursien 2 reviews standard fictitious play. Section 3 introduces
of action. See [24] for an extensive discussion. the notion of “derivative action” fictitious play and analyzes
An important assumption in [26] is that update mechanisntise both the ideal case of exact derivative measurements and
employstaticfunctions of empirical frequencies. In this paperthe non-ideal case of approximate differentiators. Section 4
we explore the possibility oflynamicfunctions of opponent introduces gradient play and analyzes exact and approximate
actions in the spirit of dynamic compensation for feedbadkiplementations of derivative action. Section 5 discusses ex-
stabilization. It is well known that static output feedback neegnsions to multi-player games. Finally, Section 6 presents
not be stabilizing, while dynamic output feedback generallyoncluding remarks.
can be stabilizing. We wish to explore this possibility in the
context of repeated games. Notation

The pre.s'ent.approach is to view the problem as one'o.f fe.ed_- Fori e {1,2,...,n}, —i denotes the complementary set
back stabilization. Contrary to standard feedback stabilization (1 i—1li41 n}

scenarios, one seeks to stabilize to an equilibrium point that
is unknown but must emerge through the non-cooperative—
interaction of repeated play. One paper that takes a similar
feedback stabilization viewpoint is [14], in which an integral—
term is employed in the strategy update mechanism and-&
sufficient condition for convergence is derived.

In this paper, we focus on the use dérivative action.
Derivative action, standard in classical control systems, is also
a key component of biological motor control system models
[34].

We will employ a strategy update mechanism that closely
resembles traditional mechanisms but use both the empiricat
frequencies and their (approximate) derivatives. As such, the
new approach differs conceptually from both aforementioned
approaches of randomized search and no-regret methods.

We will establish convergence to Nash equilibrium in the
ideal case of exact derivative measurements and near conver-
gence in case of approximate derivative measurements. We
will show how the use of approximate differentiators may
or may not allow one to recover the ideal case. In addition
to “best response” FP, we will also consider gradient-like
“better response” strategy update mechanisms (e.g., [13]). We
will illustrate all of these methods on the Shapley game. We
outline the framework for multiplayer games, and illustrate

1
Boldface1 denotes the vecto :> € R™.

1
Forz € R", |x| denotes the usual 2-norm, i.e/zTx.
Forx € R", diag(x) denotes the diagonal x n matrix
with elements taken from:.
A(n) denotes the simplex iR™, i.e.,

{s € R"|s > 0 componentwise, anti”s = 1} .

Int(A(n)) denotes the set of interior points of a simplex,
i.e., s > 0 componentwise.
IIA : R™ — A(n) denotes the projection to the simplex,

IIA[z] = arg min

|z — s|.
seA(n)

v; € A(n) denotes the'" vertex of the simplexA(n),
i.e., the vector whoseé'" term equals 1 and remaining
terms equal 0.

H : Int(A(n)) — R denotes the entropy function

H(s) = —sT log(s).

o : R"™ — Int(A(n)) denotes the “logit” or “soft-max”
function

Zq

€
e$1+...+e$n.

(o(2))i =



This function is continuously differentiable. The JacobiaB. Discrete-time FP

matrix of partial derivatives, denotedo(.), is Now suppose that the game is repeated at every time

_ k € {0,1,2,...}. In particular, we are interested in an
— d _ T . 9y Sy
Vo(z) iag(0(z)) — o(z)o” (x) “evolutionary” version of the game in which the strategies
at time k, denoted byp;(k), are selected in response to the
Il. FP SETUP entire prior history of an opponent’s actions.
A. Static Game _ Towards this end, Ie_tl-(lc) denote the eltc.:tion. of.playé?i at
) ] time &, chosen according to the probability distributipsik),
We consider a two-player game with playgs and Py gng Jet Vo, (k) € A(m;) denote the corresponding simplex
Each playerp;, selects a strategy, € A(m;), for given pos- yertex. Theempirical frequencyg: (k), of playerP; is defined

itive integersm;, and receives a real-valued reward accordings the running average of the actions of plagerwhich can
to the utility function/;(p;, p—;). These utility functions take g computed by the recursion

the form

1
i(k+1) = q(k) + —— Vo () — (k).
U1(P17P2):P1TM1P2 +7H(p1) ailk+1) =al )+k‘+1(v () ~ 4i(k))

Uz (p2,p1) = ps Map1 + TH(p2), In discrete-time FP, the strategy of play®y at time k is
the optimal response to the running average of the opponent’s

characterized by matriced/; of appropriate dimension andactions, ie.

7> 0.
- (k) = Bi(q—i(k)).
The standard interpretation is that tpe represent proba- pilk) = fila-i(k))

bilistic strategies. Each player selects an integer aciion The case witht = 0 corresponds to classical FP. Set-

{1,...,m;} according to the probability distributiop;. The ting r positive rewards randomization, thereby forcing mixed
reward to playerP; is strategies. As- approaches zero, the best response mappings
T approximate selecting the maximal element since the prob-

Vo, Miva_; +7H(pi), ability of selecting a maximal element approaches one. The

case withr positive, often referred to as stochastic FP, can
ybe viewed as a smoothed version of the matrix game [20],
in which rewards are subject to random perturbations. Other
interpretations, including connections to information theory,
are discussed in [44].

i.e., the reward to playeP; is the element of\/; in the at®
row anda'"; column, plus the weighted entropy of its strateg
For a given strategy paifp;,p2), the utilities represent the
expected rewards

Ui(pi,p—i) = E [VaTiMz'Va,J + TH(pi).
C. Continuous-time FP

Define thebest responsenappings
Now consider the continuous-time dynamics,

Bi : A(m_;) — A(my;
(m—i) — A(m;) G1(t) = r(ga(t)) — qu(t)

by da(t) = Ba(ar (1)) — aal(2). )
Bi(p—i) = arg max Ui(pi,p—i). _ _ _ _
Pi€A(m:) We will call these equationsontinuous-time FPThese are the
For 7 > 0, the best response turns out to be the logit or softynamics obtained by viewing discrete-time FP as stochastic
max function (see Notation section) approximation iterations and applying associated ordinary

differential equation (ODE) analysis methods [5], [7], [32].
Bi(p—i) = o(Mip—i/T).

For r = 0, the best response mapping can be set-valued. Il Dynamic FP

A Nash equilibrium is a paifp;,p3) € A(mq) x A(ms2) Standard discrete-time and continuous-time FP assume that
such that for allp; € A(m;), the empirical frequenciesy;(-), are available to all players,
and the strategy of each player is the best response to the op-
Ui(pi,pZ;) < Ui(p},pZ;), (1) ponent's empirical frequency. This strategy istatic function

: h ol h . iive to deviate f of the empirical frequencies.
€., €ach player nas no Incentve to deviate rom an equl-yye yish 1o explore the possibility adynamicprocessing
. empirical frequencies. In standard control terminology, the

advantage of dynamic output feedback versus static output
B (. feedback. Clearly dynamic feedback is superior in a general
pz 51(}371» . . . egr -
setting, but our question is focused on the specific issue of FP
A Nash equilibrium iscompletely mixedf each component and convergence of empirical frequencies.
is strictly positive, i.e.,p} € Int(A(m;)). This distinction In the entire discussion of dynamic FP, we will only
becomes relevant only in the case where: 0. considerr > 0.



A. Derivative Action B. Exact DAFP with Unity Derivative Gainy(= 1)

In continuous-time FP, the empirical frequencies are avail- The particular case of derivative gajn= 1 has the special
able to all players, and the strategy of each player is the b&¥erpretation of “system inversion”, as illustrated in the block

response to the opponent’s empirical frequency, i.e., diagram of Figure 1. In words, the case of= 1 seeks to

play a best response against tharent strategy, as opposed
pi(t) = Bi(g—i(t)), to the empirical frequencies which reflect low-passed filtered

strategies.

wherep;(t) denotes the strategy of play® at timet. In casey = 1, the equations of exact DAFP (3) become

Suppose now that in addition to empirical frequencies being ) )
available to all players, empirical frequendgrivatives g;(t), G = Pig2 +d2) —
are also available. Now consider G2 = Pa(q1 +q1) — g2
pit) = Bilas(t) + vi_i(t)), As previously noted, these form implicit differential equa-

tions, for which we will assumeexistence of solutions. Ul-

i.e., each player's strategy is a best response to a combinafigtgtely, exact DAFP will be replaced by the well posed

of empirical frequencieand a weighted derivative of empiri- @Pproximate DAFP, so this assumption is not critical. Rather,

cal frequencies. exact DAFP will reveal an underlying structure that will enable
This modification is very much in the spirit of standardhe forthcoming convergence analysis.

PID controllers in engineered systems as well as motor con-Towards this end, introduce the variables

trol models [34] in biological systems. The classical control

. - > n=q+q
interpretation is that the derivative term serves as a short term B .
prediction of the opponent’s strategy, since 2=+,
) and let
q-i(t) +vq-i(t) = q-i(t + 7). T:R™ x R™ — A(my) x A(my)
In this regard, the use of derivative action may be interpretéé the mapping
as using the best response to a forecasted opponent strategy. ; Bu(29)
This modification leads to the following (implicit) differen- <Zl) — (51(22)) . (5)
tial equation 2 2t
_ z1 .
i1 = Bi(gs + i) — @ Let z = o) Then we can restate exact DAFP dynamics
G2 = Pa(q1 +741) — q2, @) @as
2 =T(2),

which we will refer to as “exacttierivative action FRDAFP). i e., exact DAFP must evolve over fixed pointsf

In actuality, the derivative is not.(.j|rectly measurable, but It turns out that these fixed points are Nash equilibria of the
must be reconstructed from empirical frequency measure-

. ; original game.
ments. Towards this end, consider Proposition 3.1: The following are equivalent:

g1 = Bilge +Y\(g2 — 1)) — @1 o (21,22) € R™ x R™2 is a fixed point of T in (5).
o i — - e (21,22) € A(mq) x A(my) is a Nash equilibrium satisfy-
(?2 B2(q1 + A (g1 —71)) — q2 ing (1).
™ = /\((11 - 7"1) Let
Ty = )\((]2 — 7"2)7 (4) Q* C A(ml) X A(m2)
with A > 0. An alternative expression is denote the set of Nash equilibria satisfying (1).
The following is an immediate consequences of Proposi-
q1 = Pi(g2 +772) — @ tion 3.1.

Theorem 3.1:Any solution of exact DAFP dynamics (3)
satisfies the differential inclusion
which we will refer to as “approximate” DAFP. The variables, 0 —q1
r;, are “filtered” versions of the empirical frequencies. The (qQ) (QQ
intention is that as\ increasesy; closely tracksj;.

In the following sections, we will examine both exact an
approximate DAFP. We will first focus on the case of unit
derivative gain, i.e.;y = 1, which has a special interpretation. Gh=-q+q
We will show that the positive results of exact DAFP need . *
not be recovered through approximate DAFP. Accordingly, we Q=21 D
will present a separate local analysis of approximate DAFP fethich converges (exponentially) to the unique Nash equilib-
general derivative gain values. rium,

do = Ba(q1 +v71) — g2,

)ra

Jp the case of a unique Nash equilibrium Q" = {(¢7,43)}, the
ynique solution to exact DAFP (3) is



In the multiple Nash equilibrium case, Theorem 3.1 doesentually remain within an e-neighborhood of a single Nash
not, in itself, guarantee convergence of empirical frequencieguilibrium, i.e.,
This is because only a subset of the entirety of solutions of the lim sup |e(t)] < &
associated differential inclusion do converge to a Nash equilib- t>0

rium (e.g., those solutions with continuous time-derivatives)implies

. . . : _ limsup [(q1 (), g2(t)) — (q1, a2)| <€
C. Noisy Derivative Measurements with Unity Derivative t>0 e
Gain ¢y =1) _ _ for some q* € Q*.
Suppose we can make noisy measurements of the empirical proof: Enumerate the set of Nash equilibrium points,
frequency derivatives. Then exact DAFP can be written as 4
. . Q*: q*7q*]:j:1a27"'aN .
@1 =P1(2+d+e)—q (i a2) J

G2 = Bo(q1 + ¢1 +e1) — qa. (6) Let 67 and ¢/(-) denote the corresponding parameters and

. . functions in Lemma 3.1. Pick
The new variablesg;(t), denote the derivative measurement

errors. § < min ¢’

Let us assume that there exist unigue solutions to (6) without J
specifying at this point how the; would be generated. so thatle| < ¢ implies that for ally,

We will show that under certain conditions, the empirical , ,
frequencies converge to a neighborhood of the set of Nash |¢7(e) — (a1, 43)| <e.

equilibria, where the size of the neighborhood depends on tge , . A .
L S Ince theg’ are continuous and the Nash equilibrium points

accuracy of the derivative approximation. : .

Introduce the following extensiori,, of the mappingT’, 21[ee(|qsut?lliel;t§3r’nv§)irc1?sn disiléTg\,gﬁpthe aboweighborhoods
defined in (5), ) '

®) Now suppose that at some tinfié> 0,
T : R™FM2 5 RMIHM2 —y A(my) x A(mg), le(t)] < 8
sup |e <

where t>T

Te(z,e) =T(2 +e). Then necessarily for any> T,

Then we can write approximate derivative action FP (6) as 2(t) = Tu(2(), e(t)) —> 2(t) = ¢j(t)(e(t))

2z =Te(z,€),
for somej(t). Since the assumed continuity@f-) in turn im-

where, as before, ' plies the continuity ok(-), the associategl(t) cannot change.

Zi =4 + ¢- Such a change would require a discontinuous evolution of

Lemma 3.1:Let (¢f,q}) € Q* be a Nash equilibrium. z(t) since thee-neighborhoods of the Nash equilibria do not
Assume that the matrix overlap. .
7 Lo (Miqs/7)M Finally, from timeT onward,
- pl 142 1
(}_VO'(M2C]T/T)M2 —I ) <q’1(t)> _ <q1(t)) + 7D (e(1)),

is nonsingular. Then there exists a 6 > 0 and unique contin- G2(t) ¢2(t)

uously differentiable function, ¢ : R™ x R — A(my) X

: o Standard arguments then show that(¢), ¢2(¢)) eventually
A(my) defined on an §—neighborhood of the origin such that

reach ans-neighborhood of the associated Nash equilibrium

p(e) = Te(9(e), €). (a5, a3). [ |
- libriume* — (91
Proof: At a Nash equilibriumg” = q§>’ the extended In case of a unique Nash equilibrium, the continuity as-
mapping satisfies sumption on the derivativeg (-) may be dropped.

As we will see, the premise of Theorem 3.2 is may be
prematurely optimistic. The reason is that the two-player
Under the assumed nonsingularity, the functififz,e) — z interactions may prevent reconstruction of the derivative up
satisfies the conditions of the implicit function theorem [15f0 a small bounded error.

[ |

0="T.(¢",0) — ¢ .

Theorem 3.2:Assume that Q* is a finite set of Nash equi- D. Approximate DAFP with Unity Derivative Gairy & 1)

libria, each of which satisfies the nonsingularity assumption of Theorem 3.2 establishes a sort of continuity result for
Proposition 3.1. Suppose (q1, gz, €1, e2) satisfy noisy derivative ~approximate derivative action FP. Namely, it is possible to
measurement DAFP (6) with ¢;(-) continuous. For any ¢ > 0, converge to an arbitrary neighborhood of the set of Nash
there exists a 0 > 0 such that if (e1(t),e2(t)) eventually re- equilibrium points provided that we can construct sufficiently
main within a 0-neighborhood of the origin, then (¢1(t), g2(t)) accurate approximations of empirical frequency derivatives.



Towards this end, we now consider approximate DAFP givdanctions (¢}, ), over any[Ty,73] with T; > 0, form a
by bounded equicontinuous family and satisfy the hypotheses of
the Theorem 3.3. Therefore, there exists a subsequence, which
we relabel);, and absolutely continuous functions and7;
with derivativesg; and7;, respectively, such that

1) ¢* converges taj, uniformly on [Ty, T5).

2) ¢;* converges weakly tg@, in L'([T1, Ty], R™).

g1 =01+ 72) — ¢
g2 = B2(q1 +71) — g2
1= Aq1 —71)
T2 = A(g2 — 12) (7) i /

3) r;* converges ta7; uniformly on [Ty, T5].

Th(_a construction of; depends on the empirical frequencies, 4) ™ converges weakly t; in LY([Ty, To], R™).
which are measured quantities.

The motivation of approximate DAFP is that for large>

0, the quantityr; serves as an estimate @f Indeed, it is easy

to show that if
sup ‘QZ (t)| < Gmax
t>0

It follows that the sequence

1.
-9 VR q;\k M

Ak; K3 K]
is converging uniformly onT}, T3] to g, — 7;. Since the);

are unbounded, it must follow that
then 1
lim Sup |qz - rz| < 7q'max 67 —Ti= 0.
t—oo )\

Unfortunately, such intuition may or may not hold. The;rhls’ in turn, implies that

problem is that the approximation error associated with re- g, —7 =0,
constructingg; is proportional to the magnitude of tlsecond . 5
derivative §,. These second derivatives, in turn, involve th¥/Nich completes the proof.

derivativesr;, which of course involve\. So as\ increases, _ B .
the second derivative magnitudéscan also increase, therepy 1heorem 3.5:In the context of .T;Izeorem 3.4, let g, and g
cancelling the desired effect of superior tracking. be the respective limits of g;* and ¢;* on the compact interval
We will further investigate the obstacle of approximate diftl 1, T2]. Define
ferentiators by considering solutions to (7) with progressively
larger values of\. First, we state the following theorem from
[3]. and B
Theorem 3.3 ([3], Section 0.3, Theorem 4)onsider a se- bi =q; + ;-
quence of absolutely continuous :unctions 2k () from a com- Then the sequence b;\k converges weakly to b; in
pact 11?terval [Tl,T2] of R to R™ such that the sets {zy(t)} LY([T1, T], R™). Furthermore, if
and {zy(t)} are uniformly bounded for all k > 0 and t € 7 )
[Ty, T3]. Then there exists a subsequence, again denoted by bi(t) = Bi(g_;(t) +q_;(t)), (8)
x(+), converging to an absolutely continuous function x(-) in then (q,.q,) are solutions to exact DAFP dynamics (3) on
the sense that 12 Y
[Ty, T5).
Proof: The weak convergence of the sequebgbvafollows
immediately from Theorem 3.4. Furthermore, on the interval
[T1, T3],

b (t) = Bila2,(t) +72,(t))

1) zy(-) converges uniformly to x(-) on [T}, Ts].
2) @1(-) converges weakly to i(-) in L* ([T}, Tz], R™).

Theorem 3.4:Let (¢, 77) denote the A-dependent solutions
to (7). For any compact interval, [Ty, T5] C R™, with Ty >
0, there exist an unbounded increasing sequence {\} and

absolutely continuous functions g; with derivatives g; such that

@(t) = bi(t) — (1)
Under the assumed equality condition (8), it follows that
@) = Bi(@_i(t) + 7_i(1) — % (1),

1) ¢ andr}* both converge to g; uniformly on [T, Ty].
7 as desired. |

2) q'?‘k and rf"“ both converge weakly to q; in
LY([Ty, T3], R™).

Proof: For any ), the functiong(¢) is clearly uniformly ~ Theorem 3.5 establishes that using increasing values of
bounded over € R* since it evolves in the simplex. SinceA can converge to a solution of the derivative action FP
¢ is formed by the difference of two simplex elements, ilynamics (3) under the equality assumption (8). This equality
is similarly uniformly bounded. Standard Lyapunov analysigssumption is essentially a requirement of weak continuity of
shows that for any\ the function; viewed as an operator ob! ([T}, Tz], R™).

Even thoughg; is uniformly continuous as a function over the
simplex, this need not imply weak continuity as an operator.
Indeed, asymmetries due to nonlinearities can destroy the
and sor? and7? are also uniformly bounded oveérc R*. desired weak continuity.

Here we naturally assume that initial conditions are restrictedThe convergence discussed in Theorems 3.4-3.5 refers to
to the simplex of appropriate dimension. As a result, fdunctional convergence as increases. They need not imply,
any increasing unbounded sequer{ce;}, the sequence of for a fixed \, convergence as time increases. Still, one may

1
g} (t) — ()] < e g (0) — r20)| + 3 sup g (7)),



infer implications regarding such convergence in time. Faveakly to the zero function, the empirical frequencies are not

example, if the weak continuity condition (8) holds, and iévolving towards a Nash equilibrium. Increasingdid not

there is unique Nash equilibrium, then the limiting functionamprove this error in simulations.

behavior is indeed exponential convergence to the Nash equitt is possible to reduce, but not eliminate, this error by

librium. using a modified approximate differentiator. This is discussed
in [39]. The following section shows that it is possible to

E. Simulations: Derivative Action FP on the Shapley game€liminate this error using other than unity derivative gain.
A counterexample of empirical frequency convergence in

FP due to Shapley [40] is F. Approximate DAFP with General Derivative Gaif,> 0
My = M, = (8 5 (1)) . We continue the analysis of approximate DAFP (4), but with
arbitraryy > 0. We will give a complete characterization of

Figure 2 shows the discrete-time and continuous-time evolire values ofy that result inlocal asymptotic stability of a
tion of the empirical frequencies of play®y with the above Nash equilibrium for large values of > 0. In the process,
matrices andr = 0.01. In discrete-time FP, the empiricalwe will characterize when the introduction of derivative action
frequencies exhibit an oscillatory behavior with an ever inn FP can enable the local asymptotic stability of a Nash
creasing period. In continuous-time, the oscillatory behaviequilibrium when standard FP is unstable. Interestingly, we
is still present, but with a regular period. will show that the case of unity gain, = 1, never leads to
Figure 3 shows the empirical frequency response of playssymptotic stability. This was evident in the original Shapley
P, for the Shapley game with = 0.01 under derivative action game in that the apparent “convergence” to Nash equilibria
FP using approximate differentiators with= 1,10, 100. The was actually low amplitude oscillations.
empirical frequencies approach to the (unique) Nash equi-Define N to be an orthonormal matrix whose columns span
librium (1/3,1/3,1/3), and asX increases, the oscillationsthe null space of the row vectar’” € R™, i.e.,
associated with standard FP are progressively reduced. This
behavior is mirrored in discrete-time as well. The plots are

omitted here for the sake of brevity. _ _ _ For notational simplicity, we will not denote the dimension of
Two comments are in order regarding the simulations. Firs§; expiicitly. Rather, it will be apparent from context.
the linearized dynamics near the Nash equilibrium ao¢ A Nash equilibrium of(¢?, ¢3) leads to an equilibrium point

exponentially stable in the continuous-time simulations. Th'@f 4.4}, q;) of approximate DAFP (4). Sincg evolves in
underscores that the apparent “convergence” is to the limitiges it simplex, we can write

behavior of exact DAFP for increasing but not convergence
in time for increasingt. Second, a histogram of theint qi(t) = ¢ + Noz;(t)
actions of the two players in the discrete-time simulatio
reveals that the players are following a particutarrelated

equilibrium [23] of the Shapley example. The average payo

1N =0 and NTN =1. 9)

I}(S)r some uniquely specifiedx;(t). Similar statements hold
r r;. Accordingly, we can write

for each player is not consistent with the expected payoff q1(t) qi
from the associated Nash equilibrium. In this case, the average et _ |e N Sal(t
payoff is greater. The issue of consistency as related to learning )| |4 + N z(t),
in games is discussed further in [21]. ro(t) a
Now consider a modified Shapley game
030 010 where N 0
= (1) = (840). v=(5 %) 0
Note that this modification destroys a symmetry betwe . ,
players so thafl/3,1/3,1/3) is no longer a Nash equiIibrium.eé]qu'wlemly' we can define
Rather, the new Nash equilibrium is (approximately) q1(¢) ai
1/3 3/7 Sa(t) = NT )| |6 . (11)
(). a=(1r). Nt ) ) |~ o
1/3 3/7 ro(t) @

Figure 4 shows the empirical frequency responses under o ]

derivative action FP with approximate differentiators with Linearizing (4) aroundq, g3, ¢, ¢3) results in

A = 100. The constant dashed lines are the desired steady d —-I  (14+y\)D; 0 —vAD;

state values of the Nash equilibrium. Although the empirical —éz = (“JWA)D? - =D 0 > dr, (12)

. . A 0 —AI 0
frequencies apparently converge in time, they are converging 0 A 0 Y
to the wrong values with
1
~ (93988 ~ (93659 D; = =NTVa(M;q*,;/7)M;N.
@)~ (§F). =6~ (§15) T e

Here we see the effects of _the. Iac_k of weak continuity.in Iwe will repeatedly uséx to designate deviation from an equilibrium. In
Theorem 3.5. Although the derivative is apparently convergirgch case, the appropriate dimension should be reinterpreted accordingly.



Define A. Standard GP

D= (3 %) . (13) Recall that each player seeks to maximize its own utility in
2 response to observations of an opponent’s actions according

Then we can rewrite the linearization (12) as to the utility function (withT = 0)

i&x _ (I+ (1+~9M)D 7>\D> S Ui (pi, p—i) = pi Mip—;

dt Al -\l ’

In this case, the utility function gradient is
The following theorem characterizes local asymptotic stabil-

ity of approximate DAFP and establishes that derivative action V. Ui(pi,p—i) = Mip_;.

FP can be locally convergent with a suitable derivative gain
when standard FP is not convergent.

Theorem 3.6:Consider a two-player game under approx- pi(t) = Talgi(t) + M;q—;(t)],
imate DAFP (4) with a Nash equilibrium (g7, q3). Assume
that —I + D in (13) is non-singular. Let a; + jb; denote the
eigenvalues of —1 + D. The linearization (12) with v > 0 is

In continuous-time GP, the strategy of each player is

i.e., a combination of a player's own empirical frequency
and a (projected) gradient-step using the opponents empirical

asymptotically stable for large \ > 0 if and only if frequency. . . .
The resulting empirical frequency dynamics are then
maxa-<;7 if maxa; < 0; .
S pooe q1(t) = Halq1 (t) + Miga(t)] — qu(t)
) . Ga(t) = Malaa(t) + Maar (1)] - aa(t), (14)

max — 5 < < , if maxa; > 0. . . . . . .
ioas + b 1—~  max;a; i which we will call continuous-time GPIt is straightforward

Proof: The proof follows arguments similar to the prookg show that the equilibrium points of continuous-time GP are
of the forthcoming Theorem 4.2 and is omitted. | precisely Nash equilibria.
As opposed to FP, gradient based evolution cannot converge

Since —I + D is the Jacobian matrix of the linearizationg a completely mixedNash equilibrium. To show this, we will
of standard FP, Theorem 3.6 relates the potential stabilif¢e the following lemma.

of approximate DAFP to the eigenvalues of standard FP.| emma 4.1:Suppose v, w € R™ satisty,
In particular, Theorem 3.6 implies that the linearization of
: : : o e v € Int(A(n)) and

approximate DAFP is stable whenever the linearization of. Ao + w] = v
standard FP is asymptotically stable. Theorem 3.6 further ’
implies that approximate DAFP may have a stable linearizatidien
in situations where standard FP does not. 1) NNTw = 0, and

If we apply Theorem 3.6 to the Shapley example, we obtain2) For sufficiently small y € R",
as a condition for local stability

0.0413 < % < 0.0638.

Mafv+w+y] =v+ NNy,

where N is the orthonormal matrix defined in (9).
Proof: The proof of statement 1) uses the following

In_particular, usingy = 0.05 leads to local asymptotic ,.,hery of convex projections [3, Section 0.6, Corollary 1].
stability of derivative action FP. Simulations also result Bor allz € R™ and alls € A(n)

convergent behavior. Using Theorem 3.6 with the modified
Shapley example leads to convergence in simulations without (TTa(x) — )" (Ma(z) — 5) < 0. (15)
the previously observed bias (not shown).

Accordingly,
IV. DYNAMIC GRADIENT PLAY (Ma(v+w) — (v+w)T(Ta(v +w) —5) <0
In this section, we will consider an alternative form of =
continuous-time strategy evolution called gradient play (GP). —wl(v—35)<0

GP may be viewed as a “better response” strategy, as opposed ] o ] ] ]
to a “best response” strategy. In FP, a player jumps to iy all s € A(n). Sln'cev is in the _smplex interior, we can set
best response to the empirical frequencies of the opponentSIT v + pNNTw with p > 0 sufficiently small. This results
GP, a player adjusts a current strategy in a gradient directih
suggested by the empirical frequencies of the opponent. w'NNTw <0,

We will first define standard GP and then introduce

d . . h derivati . As bef d soNNTw = 0. As for statement 2), consider projecting
ynamic version that uses derivative action. As before, Wer w4 y to the affine set of vectors whose elements sum

W'" analyze_ convergence _for_ both exact and approximajg unity. This set includes the simplex, and hence includes
implementations of the derivative term. The resulting projection is

In the entire discussion of dynamic GP, we will consider
7 =0, i.e., the non-smoothed game. v+ NNTw+ NNTy=v4+ NNTy,



where we used thaNN7w = 0. For y sufficiently small, A straightforward calculation shows that for sufficiently small
v+ NNTy lies in the simplex. B oz,

: d -

Now suppose thatq;(t), () are in the vicinity of a (ql) = N6z = NI =y NTMN)'NTMNéz (20)
. N q2 dt

completely mixed Nash equilibriunig;, ¢3). As before, we

can set is an algebraic solution for the derivatives in (16). This can be
o {(a(t) qa seen by substituting (19) and (20) into the right-hand-side of
da(t) = N wt))  \a))’ (16) and exploiting Lemma 4.1. Accordingly, sindé” N =
_ _ . o 1, we have that for sufficiently smailk:, exact DAGP becomes
where NV is defined in (10). Lemma 4.1 implies that fé% d
sufficiently small, the resulting (linear!) dynamics are E(sx = (I —ANTMN)INTMN Sz (21)
igw — 0 NTMN Sz Using the negative definiteness in (18), we have that
dt NTMyN 0 :

_ _ _ _ V(a®) = (at) = a")"(a(t) — q") = dx(t)" o (t)
Since the dynamics matrix has zero trace, the corresponding ) )
equilibrium cannot be asymptotically stable. is a Lyapunov function for (21), and séz(t) remains
sufficiently small, which in turn implies that (21) continues

to hold true and thafz decays exponentially to zero. W
B. Exact Derivative Action GP

We will consider a modification of gradient evolution in the
spirit of the prior modification of FP. Introducing a derivativeC. Approximate DAGP
term ip same manner as DAFP leads to the implicit differential we now consider “approximate” DAGP, given by
equation
q1=Ua[q1 + Mi(g2 +772)] — @1

C?l = Halay + Mg + Wq:Q)} —a do = A [g2 + Ma(q1 +771)] — @2
G2 = Talg2 + Ma(q1 +741)] — g2, (16) 1= Mg — 1)
which we will refer to as “exact’derivative action GP 72 = Mqz2 — 72), (22)

(DAGP)_' . . . As in approximate DAFP, the derivative terms in the right hand
We will show that in the idealized case of exact DAGP, therﬁde are replaced by approximate differentiators.

always exists a derivative gaif, such that a completely mixed |, yhe following sections, we will show that the local asymp-

Nash equilibrium is locally asymptotically stable. As in th‘?otic stability of exact DAGP may or may not be achieved

case of DAFP, the introduction of approximate differentiator&nder approximate DAGP. These results parallel those of

may or may not allow one to recover the ideal case (@yproximate DAFP. Unlike DAFP, since we are dealing with
analyzed in the forthcoming section). _ a non-smoothed game, we require a separate analysis between
Recall the matrix\" defined in (10), and define completely mixed equilibrium and strict equilibrium.
0o M 1) Completely Mixed Nash EquilibriaThe following the-
1
M= <M2 0 > (17)  orem gives a complete characterization of when a completely
mixed Nash equilibrium is locally asymptotically stable under
It is straightforward to show that a completely mixed Nashpproximate DAGP. As noted previously, a mixed equilibrium
equilibrium isisolatedif and only if V" MA is nonsingular. under standard GP is never asymptotically stable, clearly
Theorem 4.1:Assume that NTMN is nonsingular. Let indicating that the introduction of derivative action can enable
(q1,q5) be a (isolated) completely mixed Nash equilibrium. convergence. Unlike exact DAGP, the asymptotic stability is
Then for sufficiently large v > 0 and for initial conditions not always achievable.

(¢1(0), ¢2(0)) sufficiently close to (qf,q3), there exists a so- A Nash equilibrium of(¢;, ¢3) leads to an equilibrium point
lution to exact DAGP (16) that exponentially converges to (qf,q5,q5,q5) of approximate DAGP (22). As before, we can
(q1,43)- write )
Proof: Choosey > 0 sufficiently large so that q1(t) @
) el (N Y s
(I = ANTMN) ' NT MN r1(t) i N '
+((I = ANTMN)INTMN) < 0. (18) ro(t) @
This is always possible given the assumed nonsingularity 5" @ completely mixed equilibrium, it is straightforward to
NTMN. show thatéx will (locally) evolve according to
Any solution to (16) can be written in terms of the new 4 S — 1+ Y NNTMN = INTMN 5 23
variables,jx, where P Vi Vi G

e\ _ (4 Noa(t 1 Theorem 4.2:Consider a two-player game under approx-
@) \4 +Noz(t). (19) imate DAGP with a completely mixed Nash equilibrium
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(q%,q3), and assume that NT MN is nonsingular. Let a; + jb; ~a two-player/two-move identical interest game witlf; =
be the eigenvalues of N¥ MN'. The linear dynamics (23) are M, = I. In fact, it is straightforward to show for this specific

asymptotically stable for large A\ > 0 if and only if case that all values of > 0 and~ > 0 result in instability of
i the mixed equilibrium.
max 2+ <7< maxi{ag} 2) Strict Nash Equilibria: We now show that approximate

Proof: It WI|| be’ convenient to examine the eigenvalue®AGP always results in locally stable behavior nesrict
of a related matrix,/, defined as follows. We can scale théNash equilibria.
dynamics matrix in (23) byy > 0 and perform the change of The pair(qj, ¢5) forms astrict Nash equilibrium (e.g., [23])

variables) — %A to produce the matrix if for all s € A(m), with s # ¢,
J= <<1 T+ NNTMN —VANTMN> STMiq"; < (q))" Mig”,
- by -\ '

dfe the best responsgg to the strategy* ; is strictly superior
to other responses. Consequences of bemg a strict equilibrium
are 1) bothg; lie on a vertex of the simplex\(m) (i.e., the

are pure strategies) and 2) there exists & 0 such that

Since J is just a rescaled version of the dynamics matrix
(23), we have that/ is a stability matrix for sufficiently large
A if and only if (23) is asymptotically stable for sufﬂuently
large \.

1 for all s € A(m) and allz € R™ with |z| < p,
Let A\; be any eigenvalue off andv; = QW be the
J TAT A % *\T A (%
corresponding eigenvector. By definition, we have 5" MifgZ; + @) < (g7)" Mi(aZ; + ). (24)
0] PYTLID V[ W I - )\,Ub’ and Ir]k 9ther wordsg; is the best response ¢ ; and vectors near
(i) (1 + VYNT MN 0L = MNT MNvE = A job, Theorem 4.3:Consider a two-player game under approxi-
hich i valent t mate DAGP with a strict Nash equilibrium (g7, ¢3 ). The associ-
which 1s equivaient to ated equilibrium (q*, @5, qt, ¢3) of approximate DAGP (22) is
Q) AL — 02 = A2 o 2 — »L and locally asymptotically stable for any v > 0 and A > 0.
d J AT TN+ Proof: Define the Lyapunov function
A2y 1 1
(il [(1+)‘)7_ >\+>\J]'MTMNUJ = AJvy, V(qi,q2,71,72) = Vi(q1) +Va(qe) +Wi(ri, q1) + Wa(rs, q2),

where we used the assumption thdf M is nonsingular, where
in which case\ + A; # 0. Therefore, the eigenvalues df

—_

and NT MN are related through Vilq1) = §(Q1 —a))" (1 — q})
Ly ]2 Valas) = 5(a2 — 43)" (a2 — g3)
(+)7—>\+)\J n=AJy 2(12—2/1\12 q2) (g2 — 4o
= W1(7"17Q1):§(T1—Q1)T(7’1—Q1)
AT+ A A= v(1+ M) —yAp =0, Watra.as) — 0 :
re,q2) = =(ra — ro —
wherey is an eigenvalue aV? M. Note that the stability 2\ 2 g2 & 2T
of the above polynomial for = a + jb is equivalent to Then using the strict equilibrium property (24) and convex
(D) A =~(1+N)a) >0, projection property (15), one can show that there exists-a)
(i) —Myalh — (1 + A)a]? such that
—Avb ([)\ —y(1+ /\)a} [—’7(1 + /\)b} + ’Y)\b) > 0, V(g (t), g2 (t),r1(t),ra(t)) < &
by the (complex) Routh-Hurwitz criterion (e.g., [1], [41]). For
large A > 0, these stability conditions reduce to implies
1/7>a, andy > af(® +b). DV(aa(1),a2(6),m1(0),72(0)

Note that matrix\'Z MA/ has zero trace. Sinc€” MAN must
be unstable, the resulting stability conditions for the madffix

= (1l + lda ().

for large \ become + N[ () = @O + N [ra(t) — ax (1))
1/ max{a;} > v > max{a;/(a? + b?)}. + Alra(t) — (@) [ga ()] + Ara2(t) — g2 ()] [G2(2)]
. <~ 5 (1a@PF +laoP?

+ N[ () = @O + X [ra(t) = ax ().

Both the Shapley and modified Shapley games satisfy the

stability condition of Theorem 4.2 with = 1. The remainder of the proof follows standard Lyapunov
It is also possible to find examples where the mixed Nasiiguments. [ |

equilibrium is unstable under the dynamics (23), for example
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D. Simulations: Approximate DAGP on the Shapley game  First, consider multiplayer fictitious play. If we assume
that each player has a differentiable best response function,

Approximate DAGP (22) exhibited convergence on th&ép ), then we can write exact DAFP as

standard Shapley example (not shown). Figures 5 shows
empirical frequencies of the two players in the modified i1 = (g1 +vi1) — @
Shapley example using = 1 and A = 100. The empirical

frequencies converge to the completely mixed Nash equilib-

rium as anticipated. np = Brp (G—np + Vi—np) — Gnp-
- The ensuing analysis of approximate derivative measurements,
E. Local Stabilizability weak convergence, and approximate differentiator implemen-

If one allows even broader classes of strategic upda{'?éio,n remains the same. In pgrticular, a S““ab'Y modifigd
mechanisms, it is possible to stabilize any mixed equilibriunf€'sion of Theorem 3.6 regarding local asymptotic stability

We can rewrite (23) as a feedback law with “contraf’,and Stll holds. . . _
“measurement”y In the case of gradient play, we will impose the following

“pairwise” structure on the player utilities,
d NTMN 0 NTMN
oz = ( ) 0z + ( ) u Ui(pi,p—i) = PiT(Z M;jpj),

a0 A 0
J#i
Y= ()\I —AI) ox characterized by matrice¥;;. Once again, all of the ensuing
analysis holds. In particular, the local stability of complete
U=y, mixed equilibria in Theorem 4.2 holds with a simple notational

change. Namely, redefine the mati% from (10) to
where is defined in (25).

Proposition 4.1: Assume that N M is nonsingular. Then N = <N ) ) (25)
‘N

K/\/TMN 0 ) <NTMN>}

Al =Al)” 0 and redefine the matrix\{ as the block matrix whose;™
block is M;;, and whosei" block is 0.

We comment that in the multiplayer case, both DAFP and
{(AI /\I) ( NTMN 0 ﬂ DAGP automatically respect any underlying “graph” structure

form a controllable pair, and

A Y in that a player only monitors the empirical frequencies of
opponent players that enter into the utility function, e.g., [30]
form an observable pair.
Proof: Standard rank tests prove the desired resulfll B. Simulations: Derivative Action FP and GP on the Jordan
Proposition 4.1 implies that it is always possible to desig(TJ’F‘me
a dynamic Compensator that renders a Comp|ete|y mixed equiwe will illustrate the mUltiplayer case on a version of the
librium stable. Note that such a Compensator W(n_ddrequire Jordan anti-coordination game [28] It is known that standard
knowledge of the Nash equilibrium since the measurement,FP does not converge for this game. Reference [26] goes on
can be expressed as in termsgof 7. This result is limited t0 show that there is no algorithm that assures convergence to
to a conceptual existence interpretation. One challenge is@@uilibrium in which player strategies are static functions of
compute the state space parameters of such a compensa@ponent empirical frequencies and players do not have access
without shared knowledge of utility matrices. Furthermord® opponent utilities. In this game, there are three players with
the concept of “individual rationality” becomes less clear witfvo possible actions. The utilities reflect that plagarwants
general compensator dynamics. The present paper's appro#cgiffer from playerPs, playerP, wants to differ from player
finds sufficient conditions for local stability for the specialPs, and playerP; wants to differ from playefP;. Following
structure of approximate derivative action, which is readill26], an extension of the Jordan game can be written as

interpreted in the context of individual rationality.

P y Ul(p17]92)ZP{(?%l)]b'i‘TH(M)
Us(p2,p3) =p3 (99) ps + TH(p2)
Us(ps,p1) =p3 (94 ) p1+ TH(ps),

A. Multiplayer DAFP and DAGP where thex’ > 0 are utility parameters. The case whete= 1
We now consider the case withp players, each with a is the standard Jordan game. In case 0, the unique Nash
utility function ¢, (p;, p—;). We will impose structural assump-equilibrium is

tions on thel4; as needed. . ) )
It turns out that all of the previous results hold in the - _ <a§f+1> g = <a{11+1> g = (aé}rl> .

V. MULTIPLAYER GAMES

. . . 1
multiplayer case with only notational changes. PER] PR
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Fig. 1. Inversion schematic with = 1
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Fig. 3. Shapley game continuous timg)(¢): Approximate differentiator Fig. 4. Modified Shapley game; (¢) (top) andgz (¢) (bottom): Approximate
A =1 (top), 10 (middle), 100 (bottom) differentiator A = 100
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