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Abstract— We consider a continuous-time form of repeated
matrix games in which player strategies evolve in reaction to
opponent actions. Players observe each other’s actions, but do
not have access to other player utilities. Strategy evolution
may be of the best response sort, as in fictitious play, or a
gradient update. Such mechanisms are known to not necessarily
converge. We introduce a form of “dynamic” fictitious and
gradient play strategy update mechanisms. These mechanisms
use derivative action in processing opponent actions and, in some
cases, can lead to behavior converging to Nash equilibria in
previously nonconvergent situations. We analyze convergence in
the case of exact and approximate derivative measurements of the
dynamic update mechanisms. In the ideal case of exact derivative
measurements, we show that convergence to Nash equilibrium
can always be achieved. In the case of approximate derivative
measurements, we derive a characterization of local convergence
that shows how the dynamic update mechanisms can converge if
the traditional static counterparts do not. We primarily discuss
two player games, but also outline extensions to multiplayer
games. We illustrate these methods with convergent simulations
of the well known Shapley and Jordan counterexamples.

I. OVERVIEW

This paper considers a continuous-time form of a re-
peated game in which players continually update strategies
in response to observations of opponent actions but without
knowledge of opponent intentions. The primary objective is to
understand how interacting players could converge to a Nash
equilibrium, i.e., a set of strategies for which no player has a
unilateral incentive to change.

The motivational setup is as follows. There are two players,
each with a finite set of possible actions. Every time the
game is played, each player selects an action according to
a probability distribution that represents that player’sstrategy.
The reward to each player, called the player’sutility, depends
on the actions taken by both players. While each player knows
its own utility, these utilities arenot shared between players.

Suppose that one player always used the same probability
distribution to generate its action, i.e., the player maintained
a constant strategy. Then the other player could, over time,
via repeated play, learn this distribution by keeping a running
average of opponent actions. Such running averages are called
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empirical frequencies. By playing the optimized best response
to the observed empirical frequencies, the optimizing player
will eventually converge to its own optimal response to the
fixed strategy opponent.

Now if bothplayers presumed that the other player is using
a constant strategy, their strategy update mechanisms become
intertwined. One such process is calledfictitious play (FP).
In this setting, players play the optimized best response to an
opponent’s empirical frequencies presuming (incorrectly) that
the empirical frequency is representative of a constant proba-
bility distribution. The repeated game would be in equilibrium
if the empirical frequencies converged. Since each player is
employing the best response to observed behaviors, the game
being in equilibrium would coincide with the players using
strategies that are at a Nash equilibrium.

The procedure of FP was introduced in 1951 [9], [37] as a
mechanism to compute Nash equilibria. There is a substantial
body of literature on the topic. Related lines of research are
discussed in the monographs [21], [?], [43] and the recent
overview of [24].

Of particular concern is whether repeated play will in-
deed converge to a Nash equilibrium. A brief timeline of
results that establish convergence of FP is as follows: 1951,
two-player/zero-sum games [37]; 1961, two-player/two-move
games [35]; 1993, noisy two-player/two-move games with a
unique Nash equilibrium [20]; 1996, multiplayer games with
identical player utilities [36]; 1999, noisy two-player/two-
move games with countable Nash equilibria [6]; and 2003,
two-player games where one player has only two moves [8].

It turns out that empirical frequencies neednot converge. A
counterexample due to Shapley in 1964 has two players with
three moves each [40]. A 1993 counterexample due to Jordan
has three players with two moves each [28].

In both the Shapley and Jordan counterexamples, the game
under consideration admits a unique Nash equilibrium that is
completely mixed, i.e., all moves have a positive probability
of being played.

The concept of mixed Nash equilibria has received some
scrutiny regarding its justification. The paper [38] raises vari-
ous questions regarding finding an appropriate interpretation.
Another concern is how a completely mixed Nash equilibrium
could emerge as the outcome of a dynamic learning process
among interacting players. The text [23, p. 22] states “game
theory lacks a general and convincing argument that a Nash
outcome will occur”.

Indeed, there is a collection of negative results concerning
the possibility of completely mixed equilibria emerging as a
result of interactive behavior. The paper [11] shows that a
broad class of strategy adjustment mechanisms (different from
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FP) cannot converge to a mixed equilibrium. The paper [31]
shows that “almost all” games in which players have more than
two moves cannot converge to completely mixed equilibria in
best response FP. Nonconvergence issues are also discussed in
[12], [19], [26], [42].

In particular, the paper [26] shows that a generalized version
of the Jordan game will not exhibit convergence forany
strategy adjustment mechanism—not just a best response
mechanism—provided that players do not share their utility
functions and update mechanisms are static functions of em-
pirical frequencies.

There are methods akin to parallel random search that are
able to find a neighborhood of a Nash equilibrium. Relevant
works are [17], [18], [27]. These methods conceptually differ
from FP in that the driving mechanism is distributed ran-
domized search in the strategy space as opposed to gradual
strategic adjustment.

Contrary to the case of Nash equilibria, there are methods
[16], [22], [25] that are guaranteed for all games to converge
to the larger set of so-calledcorrelated equilibria, which is
a convex set that contains the set of Nash equilibria. These
are “regret based” algorithms that revisit past decisions in an
effort to evaluate what could have been a more fruitful course
of action. See [24] for an extensive discussion.

An important assumption in [26] is that update mechanisms
employstatic functions of empirical frequencies. In this paper,
we explore the possibility ofdynamicfunctions of opponent
actions in the spirit of dynamic compensation for feedback
stabilization. It is well known that static output feedback need
not be stabilizing, while dynamic output feedback generally
can be stabilizing. We wish to explore this possibility in the
context of repeated games.

The present approach is to view the problem as one of feed-
back stabilization. Contrary to standard feedback stabilization
scenarios, one seeks to stabilize to an equilibrium point that
is unknown, but must emerge through the non-cooperative
interaction of repeated play. One paper that takes a similar
feedback stabilization viewpoint is [14], in which an integral
term is employed in the strategy update mechanism and a
sufficient condition for convergence is derived.

In this paper, we focus on the use ofderivative action.
Derivative action, standard in classical control systems, is also
a key component of biological motor control system models
[34].

We will employ a strategy update mechanism that closely
resembles traditional mechanisms but use both the empirical
frequencies and their (approximate) derivatives. As such, the
new approach differs conceptually from both aforementioned
approaches of randomized search and no-regret methods.

We will establish convergence to Nash equilibrium in the
ideal case of exact derivative measurements and near conver-
gence in case of approximate derivative measurements. We
will show how the use of approximate differentiators may
or may not allow one to recover the ideal case. In addition
to “best response” FP, we will also consider gradient-like
“better response” strategy update mechanisms (e.g., [13]). We
will illustrate all of these methods on the Shapley game. We
outline the framework for multiplayer games, and illustrate

convergence on the Jordan game.
Two papers that are closely related are [4], [10]. Reference

[4] considers two dynamic processes. The first is that players
use a strategy that is the best response to the previous action
of the opponent. The second is a “relaxation” in which players
use this best response only to adjust its current strategy,
thereby introducing some inertia. This relaxation, which may
be viewed as a sort of dynamic compensation, may have im-
proved convergence properties. Reference [10] considers zero-
sum games played in intervals. Players adjust their strategy
based on an approximate forecast of the opponents strategy,
which is reminiscent of the use of derivative action as a myopic
predictor.

Other related papers with positive convergence results are
[29], [33]. In [29], all players make a “calibrated” [16] forecast
of their joint action and use this to derive a forecasted best
response. This results in near convergence to the convex hull of
Nash equilibria. In [33], all players use different time-scales to
adjust their strategies. The authors show that such multiscale
dynamics can enable convergence to a Nash equilibrium in
certain cases, including the Shapley and Jordan games.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews standard fictitious play. Section 3 introduces
the notion of “derivative action” fictitious play and analyzes
the both the ideal case of exact derivative measurements and
the non-ideal case of approximate differentiators. Section 4
introduces gradient play and analyzes exact and approximate
implementations of derivative action. Section 5 discusses ex-
tensions to multi-player games. Finally, Section 6 presents
concluding remarks.

Notation

— For i ∈ {1, 2, . . . , n}, −i denotes the complementary set
{1, . . . , i− 1, i + 1, . . . , n}.

— Boldface1 denotes the vector

(
1
...
1

)
∈ Rn.

— For x ∈ Rn, |x| denotes the usual 2-norm, i.e.,
√

xT x.
— For x ∈ Rn, diag(x) denotes the diagonaln× n matrix

with elements taken fromx.
— ∆(n) denotes the simplex inRn, i.e.,{

s ∈ Rn|s ≥ 0 componentwise, and1T s = 1
}

.

— Int(∆(n)) denotes the set of interior points of a simplex,
i.e., s > 0 componentwise.

— Π∆ : Rn → ∆(n) denotes the projection to the simplex,

Π∆[x] = arg min
s∈∆(n)

|x− s| .

— vi ∈ ∆(n) denotes theith vertex of the simplex∆(n),
i.e., the vector whoseith term equals 1 and remaining
terms equal 0.

— H : Int(∆(n)) → R denotes the entropy function

H(s) = −sT log(s).

— σ : Rn → Int(∆(n)) denotes the “logit” or “soft-max”
function

(σ(x))i =
exi

ex1 + · · ·+ exn
.
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This function is continuously differentiable. The Jacobian
matrix of partial derivatives, denoted∇σ(·), is

∇σ(x) = diag(σ(x))− σ(x)σT (x).

II. FP SETUP

A. Static Game

We consider a two-player game with playersP1 and P2.
Each player,Pi, selects a strategy,pi ∈ ∆(mi), for given pos-
itive integersmi, and receives a real-valued reward according
to the utility functionUi(pi, p−i). These utility functions take
the form

U1(p1, p2) = pT
1 M1p2 + τH(p1)

U2(p2, p1) = pT
2 M2p1 + τH(p2),

characterized by matricesMi of appropriate dimension and
τ ≥ 0.

The standard interpretation is that thepi represent proba-
bilistic strategies. Each player selects an integer actionai ∈
{1, . . . ,mi} according to the probability distributionpi. The
reward to playerPi is

vT
ai

Miva−i
+ τH(pi),

i.e., the reward to playerPi is the element ofMi in the ath
i

row andath
−i column, plus the weighted entropy of its strategy.

For a given strategy pair,(p1, p2), the utilities represent the
expected rewards

Ui(pi, p−i) = E
[
vT

ai
Miva−i

]
+ τH(pi).

Define thebest responsemappings

βi : ∆(m−i) → ∆(mi)

by

βi(p−i) = arg max
pi∈∆(mi)

Ui(pi, p−i).

For τ > 0, the best response turns out to be the logit or soft-
max function (see Notation section)

βi(p−i) = σ(Mip−i/τ).

For τ = 0, the best response mapping can be set-valued.
A Nash equilibrium is a pair(p∗1, p

∗
2) ∈ ∆(m1) × ∆(m2)

such that for allpi ∈ ∆(mi),

Ui(pi, p
∗
−i) ≤ Ui(p∗i , p

∗
−i), (1)

i.e., each player has no incentive to deviate from an equi-
librium strategy provided that the other player maintains an
equilibrium strategy. In terms of the best response mappings,
a Nash equilibrium is a pair(p∗1, p

∗
2) such that

p∗i = βi(p∗−i).

A Nash equilibrium iscompletely mixedif each component
is strictly positive, i.e.,p∗i ∈ Int(∆(mi)). This distinction
becomes relevant only in the case whereτ = 0.

B. Discrete-time FP

Now suppose that the game is repeated at every time
k ∈ {0, 1, 2, . . . }. In particular, we are interested in an
“evolutionary” version of the game in which the strategies
at time k, denoted bypi(k), are selected in response to the
entire prior history of an opponent’s actions.

Towards this end, letai(k) denote the action of playerPi at
time k, chosen according to the probability distributionpi(k),
and let vai(k) ∈ ∆(mi) denote the corresponding simplex
vertex. Theempirical frequency, qi(k), of playerPi is defined
as the running average of the actions of playerPi, which can
be computed by the recursion

qi(k + 1) = qi(k) +
1

k + 1
(vai(k) − qi(k)).

In discrete-time FP, the strategy of playerPi at time k is
the optimal response to the running average of the opponent’s
actions, i.e.,

pi(k) = βi(q−i(k)).

The case withτ = 0 corresponds to classical FP. Set-
ting τ positive rewards randomization, thereby forcing mixed
strategies. Asτ approaches zero, the best response mappings
approximate selecting the maximal element since the prob-
ability of selecting a maximal element approaches one. The
case withτ positive, often referred to as stochastic FP, can
be viewed as a smoothed version of the matrix game [20],
in which rewards are subject to random perturbations. Other
interpretations, including connections to information theory,
are discussed in [44].

C. Continuous-time FP

Now consider the continuous-time dynamics,

q̇1(t) = β1(q2(t))− q1(t)
q̇2(t) = β2(q1(t))− q2(t). (2)

We will call these equationscontinuous-time FP. These are the
dynamics obtained by viewing discrete-time FP as stochastic
approximation iterations and applying associated ordinary
differential equation (ODE) analysis methods [5], [7], [32].

III. D YNAMIC FP

Standard discrete-time and continuous-time FP assume that
the empirical frequencies,qi(·), are available to all players,
and the strategy of each player is the best response to the op-
ponent’s empirical frequency. This strategy is astatic function
of the empirical frequencies.

We wish to explore the possibility ofdynamicprocessing
of empirical frequencies. In standard control terminology, the
analogous statement is that we wish to investigate the possible
advantage of dynamic output feedback versus static output
feedback. Clearly dynamic feedback is superior in a general
setting, but our question is focused on the specific issue of FP
and convergence of empirical frequencies.

In the entire discussion of dynamic FP, we will only
considerτ > 0.
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A. Derivative Action

In continuous-time FP, the empirical frequencies are avail-
able to all players, and the strategy of each player is the best
response to the opponent’s empirical frequency, i.e.,

pi(t) = βi(q−i(t)),

wherepi(t) denotes the strategy of playerPi at time t.
Suppose now that in addition to empirical frequencies being

available to all players, empirical frequencyderivatives, q̇i(t),
are also available. Now consider

pi(t) = βi(q−i(t) + γq̇−i(t)),

i.e., each player’s strategy is a best response to a combination
of empirical frequenciesand a weighted derivative of empiri-
cal frequencies.

This modification is very much in the spirit of standard
PID controllers in engineered systems as well as motor con-
trol models [34] in biological systems. The classical control
interpretation is that the derivative term serves as a short term
prediction of the opponent’s strategy, since

q−i(t) + γq̇−i(t) ≈ q−i(t + γ).

In this regard, the use of derivative action may be interpreted
as using the best response to a forecasted opponent strategy.

This modification leads to the following (implicit) differen-
tial equation

q̇1 = β1(q2 + γq̇2)− q1

q̇2 = β2(q1 + γq̇1)− q2, (3)

which we will refer to as “exact”derivative action FP(DAFP).
In actuality, the derivative is not directly measurable, but

must be reconstructed from empirical frequency measure-
ments. Towards this end, consider

q̇1 = β1(q2 + γλ(q2 − r2))− q1

q̇2 = β2(q1 + γλ(q1 − r1))− q2

ṙ1 = λ(q1 − r1)
ṙ2 = λ(q2 − r2), (4)

with λ > 0. An alternative expression is

q̇1 = β1(q2 + γṙ2)− q1

q̇2 = β2(q1 + γṙ1)− q2,

which we will refer to as “approximate” DAFP. The variables,
ri, are “filtered” versions of the empirical frequencies. The
intention is that asλ increases,̇ri closely tracksq̇i.

In the following sections, we will examine both exact and
approximate DAFP. We will first focus on the case of unity
derivative gain, i.e.,γ = 1, which has a special interpretation.
We will show that the positive results of exact DAFP need
not be recovered through approximate DAFP. Accordingly, we
will present a separate local analysis of approximate DAFP for
general derivative gain values.

B. Exact DAFP with Unity Derivative Gain (γ = 1)

The particular case of derivative gainγ = 1 has the special
interpretation of “system inversion”, as illustrated in the block
diagram of Figure 1. In words, the case ofγ = 1 seeks to
play a best response against thecurrent strategy, as opposed
to the empirical frequencies which reflect low-passed filtered
strategies.

In caseγ = 1, the equations of exact DAFP (3) become

q̇1 = β1(q2 + q̇2)− q1

q̇2 = β2(q1 + q̇1)− q2.

As previously noted, these form implicit differential equa-
tions, for which we will assumeexistence of solutions. Ul-
timately, exact DAFP will be replaced by the well posed
approximate DAFP, so this assumption is not critical. Rather,
exact DAFP will reveal an underlying structure that will enable
the forthcoming convergence analysis.

Towards this end, introduce the variables

z1 = q1 + q̇1

z2 = q2 + q̇2,

and let
T : Rm1 ×Rm2 → ∆(m1)×∆(m2)

be the mapping (
z1

z2

)
7→
(

β1(z2)
β2(z1)

)
. (5)

Let z =
(

z1

z2

)
. Then we can restate exact DAFP dynamics

(3) as
z = T (z),

i.e., exact DAFP must evolve over fixed points ofT .
It turns out that these fixed points are Nash equilibria of the

original game.
Proposition 3.1: The following are equivalent:
• (z1, z2) ∈ Rm1 ×Rm2 is a fixed point of T in (5).
• (z1, z2) ∈ ∆(m1)×∆(m2) is a Nash equilibrium satisfy-

ing (1).
Let

Q∗ ⊂ ∆(m1)×∆(m2)

denote the set of Nash equilibria satisfying (1).
The following is an immediate consequences of Proposi-

tion 3.1.
Theorem 3.1:Any solution of exact DAFP dynamics (3)

satisfies the differential inclusion(
q̇1

q̇2

)
∈
(
−q1

−q2

)
+ Q∗.

In the case of a unique Nash equilibrium Q∗ = {(q∗1 , q∗2)}, the
unique solution to exact DAFP (3) is

q̇1 = −q1 + q∗1

q̇2 = −q2 + q∗2 ,

which converges (exponentially) to the unique Nash equilib-
rium.
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In the multiple Nash equilibrium case, Theorem 3.1 does
not, in itself, guarantee convergence of empirical frequencies.
This is because only a subset of the entirety of solutions of the
associated differential inclusion do converge to a Nash equilib-
rium (e.g., those solutions with continuous time-derivatives).

C. Noisy Derivative Measurements with Unity Derivative
Gain (γ = 1)

Suppose we can make noisy measurements of the empirical
frequency derivatives. Then exact DAFP can be written as

q̇1 = β1(q2 + q̇2 + e2)− q1

q̇2 = β2(q1 + q̇1 + e1)− q2. (6)

The new variables,ei(t), denote the derivative measurement
errors.

Let us assume that there exist unique solutions to (6) without
specifying at this point how theei would be generated.

We will show that under certain conditions, the empirical
frequencies converge to a neighborhood of the set of Nash
equilibria, where the size of the neighborhood depends on the
accuracy of the derivative approximation.

Introduce the following extension,Te, of the mappingT ,
defined in (5),

Te : Rm1+m2 ×Rm1+m2 → ∆(m1)×∆(m2),

where
Te(z, e) = T (z + e).

Then we can write approximate derivative action FP (6) as

z = Te(z, e),

where, as before,
zi = q̇i + qi.

Lemma 3.1:Let (q∗1 , q∗2) ∈ Q∗ be a Nash equilibrium.
Assume that the matrix(

−I 1
τ∇σ(M1q

∗
2/τ)M1

1
τ∇σ(M2q

∗
1/τ)M2 −I

)
is nonsingular. Then there exists a δ > 0 and unique contin-
uously differentiable function, φ : Rm1 × Rm

2 → ∆(m1) ×
∆(m2) defined on an δ–neighborhood of the origin such that

φ(e) = Te(φ(e), e).

Proof: At a Nash equilibrium,q∗ =
(

q∗1
q∗2

)
, the extended

mapping satisfies

0 = Te(q∗, 0)− q∗.

Under the assumed nonsingularity, the functionTe(z, e) − z
satisfies the conditions of the implicit function theorem [15].

Theorem 3.2:Assume that Q∗ is a finite set of Nash equi-
libria, each of which satisfies the nonsingularity assumption of
Proposition 3.1. Suppose (q1, q2, e1, e2) satisfy noisy derivative
measurement DAFP (6) with q̇i(·) continuous. For any ε > 0,
there exists a δ > 0 such that if (e1(t), e2(t)) eventually re-
main within a δ-neighborhood of the origin, then (q1(t), q2(t))

eventually remain within an ε-neighborhood of a single Nash
equilibrium, i.e.,

lim sup
t≥0

|e(t)| < δ

implies
lim sup

t≥0
|(q1(t), q2(t))− (q∗1 , q∗2)| < ε

for some q∗ ∈ Q∗.
Proof: Enumerate the set of Nash equilibrium points,

Q∗ =
{
(q∗1 , q∗2)j : j = 1, 2, . . . , N

}
.

Let δj and φj(·) denote the corresponding parameters and
functions in Lemma 3.1. Pick

δ < min
j

δj

so that|e| < δ implies that for allj,∣∣φj(e)− (q∗1 , q∗2)j
∣∣ < ε.

Since theφj are continuous and the Nash equilibrium points
are isolated, we can assume that the aboveε-neighborhoods
of equilibrium points do not overlap.

Now suppose that at some timeT > 0,

sup
t≥T

|e(t)| < δ

Then necessarily for anyt ≥ T ,

z(t) = Te(z(t), e(t)) =⇒ z(t) = φj(t)(e(t))

for somej(t). Since the assumed continuity ofq̇i(·) in turn im-
plies the continuity ofz(·), the associatedj(t) cannot change.
Such a change would require a discontinuous evolution of
z(t) since theε-neighborhoods of the Nash equilibria do not
overlap.

Finally, from timeT onward,(
q̇1(t)
q̇2(t)

)
= −

(
q1(t)
q2(t)

)
+ φj(T )(e(t)).

Standard arguments then show that(q1(t), q2(t)) eventually
reach anε-neighborhood of the associated Nash equilibrium
(q∗1 , q∗2)j .

In case of a unique Nash equilibrium, the continuity as-
sumption on the derivativeṡqi(·) may be dropped.

As we will see, the premise of Theorem 3.2 is may be
prematurely optimistic. The reason is that the two-player
interactions may prevent reconstruction of the derivative up
to a small bounded error.

D. Approximate DAFP with Unity Derivative Gain (γ = 1)

Theorem 3.2 establishes a sort of continuity result for
approximate derivative action FP. Namely, it is possible to
converge to an arbitrary neighborhood of the set of Nash
equilibrium points provided that we can construct sufficiently
accurate approximations of empirical frequency derivatives.
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Towards this end, we now consider approximate DAFP given
by

q̇1 = β1(q2 + ṙ2)− q1

q̇2 = β2(q1 + ṙ1)− q2

ṙ1 = λ(q1 − r1)
ṙ2 = λ(q2 − r2) (7)

The construction oḟri depends on the empirical frequencies,
which are measured quantities.

The motivation of approximate DAFP is that for largeλ >
0, the quantityṙi serves as an estimate ofq̇i. Indeed, it is easy
to show that if

sup
t≥0

|q̈i(t)| ≤ q̈max

then
lim sup

t→∞
|q̇i − ṙi| ≤

1
λ

q̈max

Unfortunately, such intuition may or may not hold. The
problem is that the approximation error associated with re-
constructingq̇i is proportional to the magnitude of thesecond
derivative q̈i. These second derivatives, in turn, involve the
derivativesṙi, which of course involveλ. So asλ increases,
the second derivative magnitudesq̈i can also increase, thereby
cancelling the desired effect of superior tracking.

We will further investigate the obstacle of approximate dif-
ferentiators by considering solutions to (7) with progressively
larger values ofλ. First, we state the following theorem from
[3].

Theorem 3.3 ([3], Section 0.3, Theorem 4):Consider a se-
quence of absolutely continuous functions xk(·) from a com-
pact interval [T1, T2] of R to Rn such that the sets {xk(t)}
and {ẋk(t)} are uniformly bounded for all k > 0 and t ∈
[T1, T2]. Then there exists a subsequence, again denoted by
xk(·), converging to an absolutely continuous function x(·) in
the sense that

1) xk(·) converges uniformly to x(·) on [T1, T2].
2) ẋk(·) converges weakly to ẋ(·) in L1([T1, T2],Rn).

Theorem 3.4:Let (qλ
i , rλ

i ) denote the λ-dependent solutions
to (7). For any compact interval, [T1, T2] ⊂ R+, with T1 >
0, there exist an unbounded increasing sequence {λk} and
absolutely continuous functions qi with derivatives q̇i such that

1) qλk
i and rλk

i both converge to qi uniformly on [T1, T2].
2) q̇λk

i and ṙλk
i both converge weakly to q̇i in

L1([T1, T2],Rmi).
Proof: For anyλ, the functionqλ

i (t) is clearly uniformly
bounded overt ∈ R+ since it evolves in the simplex. Since
q̇λ
i is formed by the difference of two simplex elements, it

is similarly uniformly bounded. Standard Lyapunov analysis
shows that for anyλ∣∣qλ

i (t)− rλ
i (t)

∣∣ ≤ e−λt
∣∣qλ

i (0)− rλ
i (0)

∣∣+ 1
λ

sup
τ≥0

∣∣q̇λ
i (τ)

∣∣ ,
and sorλ

i and ṙλ
i are also uniformly bounded overt ∈ R+.

Here we naturally assume that initial conditions are restricted
to the simplex of appropriate dimension. As a result, for
any increasing unbounded sequence{λk}, the sequence of

functions (qλ
i , rλ

i ), over any [T1, T2] with T1 > 0, form a
bounded equicontinuous family and satisfy the hypotheses of
the Theorem 3.3. Therefore, there exists a subsequence, which
we relabelλk, and absolutely continuous functionsqi and ri

with derivativesq̇i and ṙi, respectively, such that

1) qλk
i converges toqi uniformly on [T1, T2].

2) q̇λk
i converges weakly tȯqi in L1([T1, T2],Rmi).

3) rλk
i converges tori uniformly on [T1, T2].

4) ṙλk
i converges weakly tȯri in L1([T1, T2],Rmi).

It follows that the sequence

1
λk

ṙλk
i = qλk

i − rλk
i

is converging uniformly on[T1, T2] to qi − ri. Since theλi

are unbounded, it must follow that

qi − ri = 0.

This, in turn, implies that

q̇i − ṙi = 0,

which completes the proof.

Theorem 3.5:In the context of Theorem 3.4, let qi and q̇i

be the respective limits of qλk
i and q̇λk

i on the compact interval
[T1, T2]. Define

bλ
i (t) = βi(qλ

−i(t) + ṙλ
−i(t))

and
bi = q̇i + qi.

Then the sequence bλk
i converges weakly to bi in

L1([T1, T2],Rmi). Furthermore, if

bi(t) = βi(q−i(t) + q̇−i(t)), (8)

then (q1, q2) are solutions to exact DAFP dynamics (3) on
[T1, T2].

Proof: The weak convergence of the sequencebλk
i follows

immediately from Theorem 3.4. Furthermore, on the interval
[T1, T2],

q̇i(t) = bi(t)− qi(t)

Under the assumed equality condition (8), it follows that

q̇i(t) = βi(q−i(t) + q̇−i(t))− qi(t),

as desired.

Theorem 3.5 establishes that using increasing values of
λ can converge to a solution of the derivative action FP
dynamics (3) under the equality assumption (8). This equality
assumption is essentially a requirement of weak continuity of
the functionβi viewed as an operator onL1([T1, T2],Rmi).
Even thoughβi is uniformly continuous as a function over the
simplex, this need not imply weak continuity as an operator.
Indeed, asymmetries due to nonlinearities can destroy the
desired weak continuity.

The convergence discussed in Theorems 3.4–3.5 refers to
functional convergence asλ increases. They need not imply,
for a fixed λ, convergence as time increases. Still, one may
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infer implications regarding such convergence in time. For
example, if the weak continuity condition (8) holds, and if
there is unique Nash equilibrium, then the limiting functional
behavior is indeed exponential convergence to the Nash equi-
librium.

E. Simulations: Derivative Action FP on the Shapley game

A counterexample of empirical frequency convergence in
FP due to Shapley [40] is

M1 = M2 =
(

0 1 0
0 0 1
1 0 0

)
.

Figure 2 shows the discrete-time and continuous-time evolu-
tion of the empirical frequencies of playerP1 with the above
matrices andτ = 0.01. In discrete-time FP, the empirical
frequencies exhibit an oscillatory behavior with an ever in-
creasing period. In continuous-time, the oscillatory behavior
is still present, but with a regular period.

Figure 3 shows the empirical frequency response of player
P1 for the Shapley game withτ = 0.01 under derivative action
FP using approximate differentiators withλ = 1, 10, 100. The
empirical frequencies approach to the (unique) Nash equi-
librium (1/3, 1/3, 1/3), and asλ increases, the oscillations
associated with standard FP are progressively reduced. This
behavior is mirrored in discrete-time as well. The plots are
omitted here for the sake of brevity.

Two comments are in order regarding the simulations. First,
the linearized dynamics near the Nash equilibrium arenot
exponentially stable in the continuous-time simulations. This
underscores that the apparent “convergence” is to the limiting
behavior of exact DAFP for increasingλ, but not convergence
in time for increasingt. Second, a histogram of thejoint
actions of the two players in the discrete-time simulations
reveals that the players are following a particularcorrelated
equilibrium [23] of the Shapley example. The average payoff
for each player is not consistent with the expected payoff
from the associated Nash equilibrium. In this case, the average
payoff is greater. The issue of consistency as related to learning
in games is discussed further in [21].

Now consider a modified Shapley game

M1 =
(

0 3 0
0 0 1
1 0 0

)
, M2 =

(
0 1 0
0 0 1
1 0 0

)
.

Note that this modification destroys a symmetry between
players so that(1/3, 1/3, 1/3) is no longer a Nash equilibrium.
Rather, the new Nash equilibrium is (approximately)

q∗1 =
(

1/3
1/3
1/3

)
, q∗2 =

(
3/7
1/7
3/7

)
.

Figure 4 shows the empirical frequency responses under
derivative action FP with approximate differentiators with
λ = 100. The constant dashed lines are the desired steady
state values of the Nash equilibrium. Although the empirical
frequencies apparently converge in time, they are converging
to the wrong values

q1(5) ≈
(

0.3988
0.3627
0.2385

)
, q2(5) ≈

(
0.3650
0.1853
0.4497

)
.

Here we see the effects of the lack of weak continuity in
Theorem 3.5. Although the derivative is apparently converging

weakly to the zero function, the empirical frequencies are not
evolving towards a Nash equilibrium. Increasingλ did not
improve this error in simulations.

It is possible to reduce, but not eliminate, this error by
using a modified approximate differentiator. This is discussed
in [39]. The following section shows that it is possible to
eliminate this error using other than unity derivative gain.

F. Approximate DAFP with General Derivative Gain,γ > 0

We continue the analysis of approximate DAFP (4), but with
arbitrary γ > 0. We will give a complete characterization of
the values ofγ that result inlocal asymptotic stability of a
Nash equilibrium for large values ofλ > 0. In the process,
we will characterize when the introduction of derivative action
in FP can enable the local asymptotic stability of a Nash
equilibrium when standard FP is unstable. Interestingly, we
will show that the case of unity gain,γ = 1, never leads to
asymptotic stability. This was evident in the original Shapley
game in that the apparent “convergence” to Nash equilibria
was actually low amplitude oscillations.

DefineN to be an orthonormal matrix whose columns span
the null space of the row vector1T ∈ Rm, i.e.,

1T N = 0 and NT N = I. (9)

For notational simplicity, we will not denote the dimension of
N explicitly. Rather, it will be apparent from context.

A Nash equilibrium of(q∗1 , q∗2) leads to an equilibrium point
(q∗1 , q∗2 , q∗1 , q∗2) of approximate DAFP (4). Sinceqi evolves in
the unit simplex, we can write

qi(t) = q∗i + Nδxi(t)

for some uniquely specifiedδxi(t). Similar statements hold
for ri. Accordingly, we can write1

q1(t)
q2(t)
r1(t)
r2(t)

 =


q∗1
q∗2
q∗1
q∗2

+
(
N

N

)
δx(t),

where

N =
(

N 0
0 N

)
(10)

Equivalently, we can define

δx(t) =
(
N T

N T

)


q1(t)
q2(t)
r1(t)
r2(t)

−


q∗1
q∗2
q∗1
q∗2


 . (11)

Linearizing (4) around(q∗1 , q∗2 , q∗1 , q∗2) results in

d

dt
δx =

(
−I (1+γλ)D1 0 −γλD1

(1+γλ)D2 −I −γλD2 0
λI 0 −λI 0
0 λI 0 −λI

)
δx, (12)

with

Di =
1
τ

NT∇σ(Miq
∗
−i/τ)MiN.

1We will repeatedly useδx to designate deviation from an equilibrium. In
each case, the appropriate dimension should be reinterpreted accordingly.
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Define

D =
(

0 D1

D2 0

)
. (13)

Then we can rewrite the linearization (12) as

d

dt
δx =

(
−I + (1 + γλ)D −γλD

λI −λI

)
δx.

The following theorem characterizes local asymptotic stabil-
ity of approximate DAFP and establishes that derivative action
FP can be locally convergent with a suitable derivative gain
when standard FP is not convergent.

Theorem 3.6:Consider a two-player game under approx-
imate DAFP (4) with a Nash equilibrium (q∗1 , q∗2). Assume
that −I + D in (13) is non-singular. Let ai + jbi denote the
eigenvalues of −I + D. The linearization (12) with γ > 0 is
asymptotically stable for large λ > 0 if and only if

max
i

ai <
1− γ

γ
, if max

i
ai < 0;

max
i

ai

a2
i + b2

i

<
γ

1− γ
<

1
maxi ai

, if max
i

ai ≥ 0.

Proof: The proof follows arguments similar to the proof
of the forthcoming Theorem 4.2 and is omitted.

Since−I + D is the Jacobian matrix of the linearization
of standard FP, Theorem 3.6 relates the potential stability
of approximate DAFP to the eigenvalues of standard FP.
In particular, Theorem 3.6 implies that the linearization of
approximate DAFP is stable whenever the linearization of
standard FP is asymptotically stable. Theorem 3.6 further
implies that approximate DAFP may have a stable linearization
in situations where standard FP does not.

If we apply Theorem 3.6 to the Shapley example, we obtain
as a condition for local stability

0.0413 <
γ

1− γ
< 0.0638.

In particular, usingγ = 0.05 leads to local asymptotic
stability of derivative action FP. Simulations also result in
convergent behavior. Using Theorem 3.6 with the modified
Shapley example leads to convergence in simulations without
the previously observed bias (not shown).

IV. DYNAMIC GRADIENT PLAY

In this section, we will consider an alternative form of
continuous-time strategy evolution called gradient play (GP).
GP may be viewed as a “better response” strategy, as opposed
to a “best response” strategy. In FP, a player jumps to the
best response to the empirical frequencies of the opponent. In
GP, a player adjusts a current strategy in a gradient direction
suggested by the empirical frequencies of the opponent.

We will first define standard GP and then introduce a
dynamic version that uses derivative action. As before, we
will analyze convergence for both exact and approximate
implementations of the derivative term.

In the entire discussion of dynamic GP, we will consider
τ = 0, i.e., the non-smoothed game.

A. Standard GP

Recall that each player seeks to maximize its own utility in
response to observations of an opponent’s actions according
to the utility function (withτ = 0)

Ui(pi, p−i) = pT
i Mip−i

In this case, the utility function gradient is

∇pi
Ui(pi, p−i) = Mip−i.

In continuous-time GP, the strategy of each player is

pi(t) = Π∆[qi(t) + Miq−i(t)],

i.e., a combination of a player’s own empirical frequency
and a (projected) gradient-step using the opponents empirical
frequency.

The resulting empirical frequency dynamics are then

q̇1(t) = Π∆[q1(t) + M1q2(t)]− q1(t)
q̇2(t) = Π∆[q2(t) + M2q1(t)]− q2(t), (14)

which we will call continuous-time GP. It is straightforward
to show that the equilibrium points of continuous-time GP are
precisely Nash equilibria.

As opposed to FP, gradient based evolution cannot converge
to acompletely mixedNash equilibrium. To show this, we will
use the following lemma.

Lemma 4.1:Suppose v, w ∈ Rn satisfy,
• v ∈ Int(∆(n)) and
• Π∆[v + w] = v.

Then
1) NNT w = 0, and
2) For sufficiently small y ∈ Rn,

Π∆[v + w + y] = v + NNT y,

where N is the orthonormal matrix defined in (9).
Proof: The proof of statement 1) uses the following

property of convex projections [3, Section 0.6, Corollary 1].
For all x ∈ Rn and alls ∈ ∆(n),

(Π∆(x)− x)T (Π∆(x)− s) ≤ 0. (15)

Accordingly,

(Π∆(v + w)− (v + w))T (Π∆(v + w)− s) ≤ 0
⇒

−wT (v − s) ≤ 0

for all s ∈ ∆(n). Sincev is in the simplex interior, we can set
s = v + ρNNT w with ρ > 0 sufficiently small. This results
in

wT NNT w ≤ 0,

and soNNT w = 0. As for statement 2), consider projecting
v + w + y to the affine set of vectors whose elements sum
to unity. This set includes the simplex, and hence includesv.
The resulting projection is

v + NNT w + NNT y = v + NNT y,



9

where we used thatNNT w = 0. For y sufficiently small,
v + NNT y lies in the simplex.

Now suppose that(q1(t), q2(t)) are in the vicinity of a
completely mixed Nash equilibrium(q∗1 , q∗2). As before, we
can set

δx(t) = N T

((
q1(t)
q2(t)

)
−
(

q∗1
q∗2

))
,

whereN is defined in (10). Lemma 4.1 implies that forδx
sufficiently small, the resulting (linear!) dynamics are

d

dt
δx =

(
0 NT M1N

NT M2N 0

)
δx.

Since the dynamics matrix has zero trace, the corresponding
equilibrium cannot be asymptotically stable.

B. Exact Derivative Action GP

We will consider a modification of gradient evolution in the
spirit of the prior modification of FP. Introducing a derivative
term in same manner as DAFP leads to the implicit differential
equation

q̇1 = Π∆[q1 + M1(q2 + γq̇2)]− q1

q̇2 = Π∆[q2 + M2(q1 + γq̇1)]− q2, (16)

which we will refer to as “exact”derivative action GP
(DAGP).

We will show that in the idealized case of exact DAGP, there
always exists a derivative gain,γ, such that a completely mixed
Nash equilibrium is locally asymptotically stable. As in the
case of DAFP, the introduction of approximate differentiators
may or may not allow one to recover the ideal case (as
analyzed in the forthcoming section).

Recall the matrixN defined in (10), and define

M =
(

0 M1

M2 0

)
. (17)

It is straightforward to show that a completely mixed Nash
equilibrium is isolated if and only if N TMN is nonsingular.

Theorem 4.1:Assume that N TMN is nonsingular. Let
(q∗1 , q∗2) be a (isolated) completely mixed Nash equilibrium.
Then for sufficiently large γ > 0 and for initial conditions
(q1(0), q2(0)) sufficiently close to (q∗1 , q∗2), there exists a so-
lution to exact DAGP (16) that exponentially converges to
(q∗1 , q∗2).

Proof: Chooseγ > 0 sufficiently large so that

(I − γN TMN )−1N TMN
+((I − γN TMN )−1N TMN ) < 0. (18)

This is always possible given the assumed nonsingularity of
N TMN .

Any solution to (16) can be written in terms of the new
variables,δx, where(

q1

q2

)
=
(

q∗1
q∗2

)
+N δx(t). (19)

A straightforward calculation shows that for sufficiently small
δx,(

q̇1

q̇2

)
= N d

dt
δx = N (I − γN TMN )−1N TMN δx (20)

is an algebraic solution for the derivatives in (16). This can be
seen by substituting (19) and (20) into the right-hand-side of
(16) and exploiting Lemma 4.1. Accordingly, sinceN TN =
I, we have that for sufficiently smallδx, exact DAGP becomes

d

dt
δx = (I − γN TMN )−1N TMN δx. (21)

Using the negative definiteness in (18), we have that

V (q(t)) = (q(t)− q∗)T (q(t)− q∗) = δx(t)T δx(t)

is a Lyapunov function for (21), and soδx(t) remains
sufficiently small, which in turn implies that (21) continues
to hold true and thatδx decays exponentially to zero.

C. Approximate DAGP

We now consider “approximate” DAGP, given by

q̇1 = Π∆ [q1 + M1(q2 + γṙ2)]− q1

q̇2 = Π∆ [q2 + M2(q1 + γṙ1)]− q2

ṙ1 = λ(q1 − r1)
ṙ2 = λ(q2 − r2), (22)

As in approximate DAFP, the derivative terms in the right hand
side are replaced by approximate differentiators.

In the following sections, we will show that the local asymp-
totic stability of exact DAGP may or may not be achieved
under approximate DAGP. These results parallel those of
approximate DAFP. Unlike DAFP, since we are dealing with
a non-smoothed game, we require a separate analysis between
completely mixed equilibrium and strict equilibrium.

1) Completely Mixed Nash Equilibria:The following the-
orem gives a complete characterization of when a completely
mixed Nash equilibrium is locally asymptotically stable under
approximate DAGP. As noted previously, a mixed equilibrium
under standard GP is never asymptotically stable, clearly
indicating that the introduction of derivative action can enable
convergence. Unlike exact DAGP, the asymptotic stability is
not always achievable.

A Nash equilibrium of(q∗1 , q∗2) leads to an equilibrium point
(q∗1 , q∗2 , q∗1 , q∗2) of approximate DAGP (22). As before, we can
write 

q1(t)
q2(t)
r1(t)
r2(t)

 =


q∗1
q∗2
q∗1
q∗2

+
(
N

N

)
δx(t).

For a completely mixed equilibrium, it is straightforward to
show thatδx will (locally) evolve according to

d

dt
δx =

(
(1 + γλ)N TMN −γλN TMN

λI −λI

)
δx (23)

Theorem 4.2:Consider a two-player game under approx-
imate DAGP with a completely mixed Nash equilibrium
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(q∗1 , q∗2), and assume that N TMN is nonsingular. Let ai + jbi

be the eigenvalues of N TMN . The linear dynamics (23) are
asymptotically stable for large λ > 0 if and only if

max
i

ai

a2
i + b2

i

< γ <
1

maxi{ai}
.

Proof: It will be convenient to examine the eigenvalues
of a related matrix,J , defined as follows. We can scale the
dynamics matrix in (23) byγ > 0 and perform the change of
variablesλ 7→ 1

γ λ to produce the matrix

J =
(

(1 + λ)γN TMN −γλN TMN
λI −λI

)
.

SinceJ is just a rescaled version of the dynamics matrix of
(23), we have thatJ is a stability matrix for sufficiently large
λ if and only if (23) is asymptotically stable for sufficiently
largeλ.

Let λJ be any eigenvalue ofJ and vJ =
(

v1
J

v2
J

)
be the

corresponding eigenvector. By definition, we have

(i) λv1
J − λv2

J = λJv2
J ⇔ v2

J =
λ

λ + λJ
v1

J , and

(ii) (1 + λ)γN TMN v1
J − λγN TMN v2

J = λJv1
J ,

which is equivalent to

(i) λv1
J − λv2

J = λJv2
J ⇔ v2

J =
λ

λ + λJ
v1

J , and

(iii)

[
(1 + λ)γ − λ2γ

λ + λJ

]
N TMN v1

J = λJv1
J ,

where we used the assumption thatN TMN is nonsingular,
in which caseλ + λJ 6= 0. Therefore, the eigenvalues ofJ
andN TMN are related through[

(1 + λ)γ − λ2γ

λ + λJ

]
µ = λJ

⇔
λ2

J + λJ [λ− γ(1 + λ)µ]− γλµ = 0,

whereµ is an eigenvalue ofN TMN . Note that the stability
of the above polynomial forµ = a + jb is equivalent to
(i) (λ− γ(1 + λ)a) > 0,

(ii) −λγa[λ− γ(1 + λ)a]2

−λγb
(
[λ− γ(1 + λ)a][−γ(1 + λ)b] + γλb

)
> 0,

by the (complex) Routh-Hurwitz criterion (e.g., [1], [41]). For
largeλ > 0, these stability conditions reduce to

1/γ > a, andγ > a/(a2 + b2).

Note that matrixN TMN has zero trace. SinceN TMN must
be unstable, the resulting stability conditions for the matrixJ
for largeλ become

1/ max
i
{ai} > γ > max

i
{ai/(a2

i + b2
i )}.

Both the Shapley and modified Shapley games satisfy the
stability condition of Theorem 4.2 withγ = 1.

It is also possible to find examples where the mixed Nash
equilibrium is unstable under the dynamics (23), for example

a two-player/two-move identical interest game withM1 =
M2 = I. In fact, it is straightforward to show for this specific
case that all values ofλ > 0 andγ > 0 result in instability of
the mixed equilibrium.

2) Strict Nash Equilibria:We now show that approximate
DAGP always results in locally stable behavior nearstrict
Nash equilibria.

The pair(q∗1 , q∗2) forms astrict Nash equilibrium (e.g., [23])
if for all s ∈ ∆(m), with s 6= q∗i ,

sT Miq
∗
−i < (q∗i )T Miq

∗
−i,

i.e., the best responseq∗i to the strategyq∗−i is strictly superior
to other responses. Consequences of being a strict equilibrium
are 1) bothq∗i lie on a vertex of the simplex∆(m) (i.e., the
q∗i are pure strategies) and 2) there exists aρ > 0 such that
for all s ∈ ∆(m) and allx ∈ Rm with |x| < ρ,

sT Mi(q∗−i + x) < (q∗i )T Mi(q∗−i + x). (24)

In other words,q∗i is the best response toq∗−i and vectors near
q∗−i.

Theorem 4.3:Consider a two-player game under approxi-
mate DAGP with a strict Nash equilibrium (q∗1 , q∗2). The associ-
ated equilibrium (q∗1 , q∗2 , q∗1 , q∗2) of approximate DAGP (22) is
locally asymptotically stable for any γ > 0 and λ > 0.

Proof: Define the Lyapunov function

V(q1, q2, r1, r2) = V1(q1)+V2(q2)+W1(r1, q1)+W2(r2, q2),

where

V1(q1) =
1
2
(q1 − q∗1)T (q1 − q∗1)

V2(q2) =
1
2
(q2 − q∗2)T (q2 − q∗2)

W1(r1, q1) =
λ

2
(r1 − q1)T (r1 − q1)

W2(r2, q2) =
λ

2
(r2 − q2)T (r2 − q2)

Then using the strict equilibrium property (24) and convex
projection property (15), one can show that there exists aδ > 0
such that

V(q1(t), q2(t), r1(t), r2(t)) < δ

implies

d

dt
V(q1(t), q2(t), r1(t), r2(t))

≤−
(
|q̇1(t)|2 + |q̇2(t)|2 .

+ λ2 |r1(t)− q1(t)|2 + λ2 |r2(t)− q2(t)|2
)

+ λ |r1(t)− q1(t)| |q̇1(t)|+ λ |r2(t)− q2(t)| |q̇2(t)|

≤ − 1

2

(
|q̇1(t)|2 + |q̇2(t)|2

+ λ2 |r1(t)− q1(t)|2 + λ2 |r2(t)− q2(t)|2
)
.

The remainder of the proof follows standard Lyapunov
arguments.
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D. Simulations: Approximate DAGP on the Shapley game

Approximate DAGP (22) exhibited convergence on the
standard Shapley example (not shown). Figures 5 shows the
empirical frequencies of the two players in the modified
Shapley example usingγ = 1 and λ = 100. The empirical
frequencies converge to the completely mixed Nash equilib-
rium as anticipated.

E. Local Stabilizability

If one allows even broader classes of strategic update
mechanisms, it is possible to stabilize any mixed equilibrium.
We can rewrite (23) as a feedback law with “control”,u, and
“measurement”,y,

d

dt
δx =

(
N TMN 0

λI −λI

)
δx +

(
N TMN

0

)
u

y =
(
λI −λI

)
δx

u = γy,

whereN is defined in (25).
Proposition 4.1: Assume thatN TMN is nonsingular. Then[(

N TMN 0
λI −λI

)
,

(
N TMN

0

)]
form a controllable pair, and[(

λI −λI
)
,

(
N TMN 0

λI −λI

)]
form an observable pair.

Proof: Standard rank tests prove the desired result.

Proposition 4.1 implies that it is always possible to design
a dynamic compensator that renders a completely mixed equi-
librium stable. Note that such a compensator wouldnot require
knowledge of the Nash equilibrium since the measurement,y,
can be expressed as in terms ofq − r. This result is limited
to a conceptual existence interpretation. One challenge is to
compute the state space parameters of such a compensator
without shared knowledge of utility matrices. Furthermore,
the concept of “individual rationality” becomes less clear with
general compensator dynamics. The present paper’s approach
finds sufficient conditions for local stability for the special
structure of approximate derivative action, which is readily
interpreted in the context of individual rationality.

V. M ULTIPLAYER GAMES

A. Multiplayer DAFP and DAGP

We now consider the case withnP players, each with a
utility function Ui(pi, p−i). We will impose structural assump-
tions on theUi as needed.

It turns out that all of the previous results hold in the
multiplayer case with only notational changes.

First, consider multiplayer fictitious play. If we assume
that each player has a differentiable best response function,
βi(p−i), then we can write exact DAFP as

q̇1 = β1(q−1 + γq̇−1)− q1

...

q̇nP = βnP(q−nP + γq̇−nP)− qnP .

The ensuing analysis of approximate derivative measurements,
weak convergence, and approximate differentiator implemen-
tation remains the same. In particular, a suitably modified
version of Theorem 3.6 regarding local asymptotic stability
still holds.

In the case of gradient play, we will impose the following
“pairwise” structure on the player utilities,

Ui(pi, p−i) = pT
i (
∑
j 6=i

Mijpj),

characterized by matricesMij . Once again, all of the ensuing
analysis holds. In particular, the local stability of complete
mixed equilibria in Theorem 4.2 holds with a simple notational
change. Namely, redefine the matrixN from (10) to

N =

(
N

...
N

)
, (25)

and redefine the matrixM as the block matrix whoseijth

block is Mij , and whoseiith block is 0.
We comment that in the multiplayer case, both DAFP and

DAGP automatically respect any underlying “graph” structure
in that a player only monitors the empirical frequencies of
opponent players that enter into the utility function, e.g., [30]

B. Simulations: Derivative Action FP and GP on the Jordan
game

We will illustrate the multiplayer case on a version of the
Jordan anti-coordination game [28]. It is known that standard
FP does not converge for this game. Reference [26] goes on
to show that there is no algorithm that assures convergence to
equilibrium in which player strategies are static functions of
opponent empirical frequencies and players do not have access
to opponent utilities. In this game, there are three players with
two possible actions. The utilities reflect that playerP1 wants
to differ from playerP2, playerP2 wants to differ from player
P3, and playerP3 wants to differ from playerP1. Following
[26], an extension of the Jordan game can be written as

U1(p1, p2) = pT
1

(
0 a1

1 0

)
p2 + τH(p1)

U2(p2, p3) = pT
2

(
0 a2

1 0

)
p3 + τH(p2)

U3(p3, p1) = pT
3

(
0 a3

1 0

)
p1 + τH(p3),

where theai > 0 are utility parameters. The case whereai = 1
is the standard Jordan game. In caseτ = 0, the unique Nash
equilibrium is

q∗1 =

(
a3

a3+1
1

a3+1

)
, q∗2 =

(
a1

a1+1
1

a1+1

)
, q∗3 =

(
a2

a2+1
1

a2+1

)
.
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Note that game satisfies the pairwise utility structure of the
previous section.

Figure 6 shows the oscillatory behavior of the three players’
empirical frequencies under standard GP withai = 1. Figure 7
shows convergent behavior under approximate DAGP with
standard approximate differentiators (λ = 50) and the sameai

parameters. Figure 8 shows convergent behavior fora1 = 2,
a2 = 1, anda3 = 1/3.

In all cases, multiplayer versions of Theorems 3.6 and 4.2
confirm the convergence of derivative action although standard
methods are non-convergent.

VI. CONCLUDING REMARKS

We have introduced a notion of dynamic fictitious play and
dynamic gradient play through the use of derivative action in a
continuous-time form of repeated games. We have shown that
in the ideal case of exact derivative measurements, derivative
action can guarantee convergence to Nash equilibria. In the
non-ideal case, we discussed how approximate differentiators
in certain cases can recover the ideal case of exact derivative
measurements.

These dynamics satisfy the “uncoupled” restriction of [26],
but are able to bypass the uncoupled obstacle to convergence
through the introduction of higher order dynamics, namely
derivative action. Unlike randomized search approaches that
also achieve convergence [27], the present approach is more
akin to myopic local search.

One open question is how to better characterize the class
of games for which derivative action, or more generally
other types of dynamic compensation, can enable convergence.
Since the present analysis is local, another concern is de-
termining whether convergence is actually global for special
classes of games.

In this paper, we did not formally establish any ties to
discrete time. The dynamics under consideration are of the
simpler sort to apply stochastic approximation results, i.e.,
continuous dynamics over compact sets, so issues associated
with boundedness of iterations do not arise. Texts such as
[32] or papers such as [5] provide tools to establish this
connection. In particular, the results of [6], [7] combined
with the local analysis of Theorems 3.6 and 4.2 establish
that there is a positive probability of convergence to a mixed
Nash equilibrium in discrete-time play given local stability
of the continuous-time version. These issues are discussed
in [2]. Reference [2] also discusses the “payoff based” case,
where empirical frequencies of other players are not measured.
Rather, each player only observes the private reward at each
stage.
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Fig. 1. Inversion schematic withγ = 1
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Fig. 2. Shapley game empirical frequencies: Discrete-time (top) &
continuous-time (bottom)
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Fig. 3. Shapley game continuous time,qλ
1 (t): Approximate differentiator

λ = 1 (top), 10 (middle),100 (bottom)
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Fig. 4. Modified Shapley game,q1(t) (top) andq2(t) (bottom): Approximate
differentiatorλ = 100
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Fig. 5. Approximate DAGP on modified Shapley game
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Fig. 6. Jordan game: Standard GP
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Fig. 7. Jordan game: Approximate DAGP
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Fig. 8. Modified Jordan game: Approximate DAGP


