
The Effects of Learning on the Evolution of Saussurean
Communication

Edgar E. Vallejo1,2
and Charles E. Taylor2

1Tecnológico de Monterrey, Campus Estado de México, Atizapán de Zaragoza 52926, México
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Abstract

This paper presents a computational framework for
studying the influence of learning on the evolution
of communication. In our model, an evolving pop-
ulation of learning agents is engaged in pairwise
comunicative interactions. Simulation results show
the genetic assimilation of trasmission behaviors as
a consequence of saussurean learning.

Introduction

The evolution of communication is an excellent do-
main for studying fundamental questions of arti-
ficial life research. Previous work by Ackley and
Littman (2), Arita and Taylor (3), Di Paolo (5),
Hashimoto and Ikegami (8), and Steels (18), among
others, have shown that we are able to explore im-
portant issues such as emergence, self-organization
and cultural evolution within this framework.

The aim of this work is to study the influence of
learning on the evolution of communication. We
believe this is an instrumental aspect for under-
standing the origin and evolution of communication
systems with the complexity of human languages.

In nature, learning seem to influence both the as-
sociation of signaling behaviors to appropriate ex-
ternal referents and the development of responses
to different signal types (10). However, there are
several examples of innate underpinnings in trans-
mission behaviors. For example, young vervet mon-
keys seem predisposed to alarm calling, dividing up
the universe of predators into different ill-defined
categories, leaving social experience to sharpeb the
boundaries of exclusive predator categories and its
corresponding association to particular call types
(4). Moreover, there is indication of innate predis-
positions in human languages (16). On the other
hand, there is a growing conviction that learning
plays a substantial role in the development of how
a receiver responds on hearing a signal (10).

A fundamental question that arises in the context
of animal communication is whether a comunication
system is likely to be symbolic. According to Mar-
ler, for an animal communication system to qualify
as symbolic, information about external referents
has to be both encoded by signalers and decoded
by receivers (10). This definition is consistent with
the nature of the saussurean linguistic sign (17).

In his seminal paper, Hurford proposed a model
for studying the evolution of saussurean commu-
nication (9). In this model, an agent consists of
two probabilistic matrices that provide a framework
for semiotic interactions. Computational simula-
tions were conducted to investigate the evolutionary
potentials of different learning strategies. Further
studies by Oliphant (14), Oliphant and Batali (15)
and Nowak et al (13) have contributed to elucidate
the fundamental properties of this model.

These studies have been largely conducted within
the framework of Lamarkian evolution. In most
cases, learned communicative behaviors are written
back to the genetic description of agents and thus
transmitted to offspring during reproduction. We
believe that Darwinian evolution provides a more
convenient framework for studying the evolution of
communication. In their influential work, Hinton
and Nowlan proposed a computational framework
for conducting studies on the effects of learning on
evolution in Darwinian evolution (7) (1). This holds
much promise. For example, Turkel has shown that
this computational framework can be used for ex-
ploring how the capacity of human language could
have evolved via natural selection (19).

In this work, we conducted computational studies
about the influence of learning on the evolution of
communication. Experimental results show the ge-
netic assimilation of transmission behaviors. This
results are consistent with dominant theories on the
evolution of communication (6).



The model

Agent architecture

The formal definition of the agent architecture pre-
sented below is based on considerations of the mod-
els proposed by Hurford (9) and Oliphant (14).

Agent Let O = {o1, . . . , on} be a finite set of n

objects and S = {s1, . . . , sm} be a finite set of m

signals. A learning communicative agent is a triple
(δ, φ, σ), where

1. δ : O → S ∪ {s#} is the transmission function,
where s# is the undetermined signal,

2. φ : S → O∪{o#} is the reception function, where
o# is the undetermined object, and

3. σ is the learning strategy.

Communication An agent A1 = (δ1, φ1, σ1) co-
municates to an agent A2 = (δ2, φ2, σ2) as follows.
Initially, A1 perceives an object oi and produces
a signal sj according to the mapping described by
the transmission function δ1, such that δ1(oi) = sj .
Once A1 produces the signal sj , the agent A2 in-
terprets the signal sj as the object ok according to
the mapping described by the reception function
φ2, such that φ2(sj) = ok. A communication event
from A1 to A2 is successful if the following condi-
tions are satisfied

1. δ1(oi) = sj ,

2. φ2(sj) = ok, and

3. oi = ok

Homonymy An agent A = (δ, φ, σ) is said to
possess homonymy if there exist a signal sj 6= s#

and a pair of objects oi and ok that satisfy the fol-
lowing conditions

1. δ(oi) = sj ,

2. δ(ok) = sj , and

3. oi 6= ok

Synonymy An agent A = (δ, φ, σ) is said to pos-
sess synonymy if there exist an object oi 6= o# and
a pair of signals sj and sk that satisfy the following
conditions

1. φ(sj) = oi,

2. φ(sk) = oi, and

3. sj 6= sk

Innate transmission Let A = (δ, φ, σ) be an
agent. A transmission from A for a given object
oi is said to be innate if δ(oi) 6= s# and is said to
be subject to learning if δ(oi) = s#.

Innate reception Let A = (δ, φ, σ) be an agent.
A reception of A for a given signal sj is said to be
innate if φ(sj) 6= o# and is said to be subject to
learning if φ(sj) = o#.

Learning In our model, both transmission and
reception behaviors are partially learned. Before a
communication event from A1 to A2 takes place, A1

replaces the undetermined signals in δ1 with signals
in S using the learning strategy σ1. Similarly, A1

replaces the undetermined objects in φ1 using the
learning strategy σ1. Agent A2 proceeds similarly.

A fundamental aspect of our model is that learn-
ing is performed for communication purposes and
does not permanently modify the actual description
of an agent.

Learning strategies

We consider three different learning strategies: imi-
tator, calculator and saussurean, after (9). In addi-
tion, we introduce a fourth learning strategy: ran-
dom learner.

Imitator An imitator agent replaces the undeter-
mined signals in his transmission function by the
corresponding signals in the transmission function
of another agent. Similarly, he replaces the unde-
termined objects in his reception function by the
corresponding objects in the reception function of
another agent.

Formally, an agent A1 = (δ1, φ1, σ1) imitates an
agent A2 = (δ2, φ2, σ2) as follows.

1. δ1(oi) is set to δ2(oi) if δ1(oi) = s#, δ2(oi) 6= s#,
for i = 1, . . . , n, and

2. φ1(sj) is set to φ2(sj) if φ1(sj) = o#, φ2(sj) 6=
o#, for j = 1, . . . , m.

Calculator A calculator agent replaces the un-
determined signals in his transmission function in
such a way that a communication event to another
agent would be successful. Similarly, he replaces
the undetermined objects in his reception function
in such a way that the communication event from
another agent would be successful.

Formally, an agent A1 = (δ1, φ1, σ1) calculates an
agent A2 = (δ2, φ2, σ2) as follows.

1. δ1(oi) is set to sk if φ2(sk) = oi, δ1(oi) = s#, for
i = 1, . . . , n, and



strategy code

imitator 0
calculator 1
saussurean 2
random 3

Table 1: Codification of learning strategies

2. φ1(sj) is set to ok if δ2(ok) = sj , φ1(sj) = o#, for
j = 1, . . . , m.

Saussurean A saussurean agent replaces the un-
determined signals in his transmission function by
the corresponding signals in the transmission func-
tion of another agent. Similarly, he replaces the
undetermined objects in his reception function in
such a way that a communication event to himself
would be successful.

Formally, an agent A1 = (δ1, φ1, σ1) is saussurean
with respect to and agent A2 = (δ2, φ2, σ2) as fol-
lows.

1. δ1(oi) is set to δ2(oi) if δ1(oi) = s#, δ2(oi) 6= s#,
for i = 1, . . . , n, and

2. φ1(sj) is set to ok if δ1(ok) = sj , φ1(sj) = o#, for
j = 1, . . . , m.

Random A random agent can assume any of the
strategies described above. Before a communica-
tion event takes place, a random agent randomly
selects one of the following strategies: imitator, cal-
culator or saussurean.

For convenience, we consider a codification of
learning strategies as shown in table 1.

Evolution of communication

In our model, a population of learning communica-
tive agents are intended to evolve successful com-
munication at the population level. We use genetic
algorithms for this purpose. The design decisions
presented below are based on considerations of the
performance of genetic algorithms in practical ap-
plications (12).

Genome representation A learning commu-
nicative agent A = (δ, φ, σ) is represented linearly
as follows

A = (δ(o1), . . . , δ(on), φ(s1), . . . , φ(sm), σ)

For example, consider a set of objects O =
{1, 2, 3}, a set of signals S = {a, b, c} and a calcu-
lator agent A1 = (δ1, φ1, σ1). In addition, consider
the functions δ1 and φ2 described in table 2.

oi δ1(oi)
1 b

2 s#

3 a

sj φ1(sj)
a o#

b 3
c 2

Table 2: Transmission and reception functions

The linear representation of agent A1 is

(b, s#, a, o#, 3, 2, 1)

Genetic operators Agents produce a new off-
spring by means of genetic operators. Fitness pro-
portional selection, one-point recombination and
point mutation operate on the linear representation
of agents described above.

Fitness function Fitness was defined as the
communicative accuracy of learning communicative
agents. The communicative accuracy is the ability
of an agent to successfully communicate with a col-
lection of other agents.

Let P be a finite population of agents, A be an
agent in P , and Q ⊆ P be a non empty collection of
agents. The communicative accuracy of A with re-
spect to Q given the set of objects O = {o1, . . . , on}
and the set of signals S = {s1, . . . , sm}, C(A, Q, O),
is defined as

C(A, Q,O) =

∑
oi∈O

∑
Ak∈Q

c(A, Ak, oi) + c(Ak, A, oi)

|Q|

where c(A, Ak , oi) = 1 if the communication
event from A to Ak is successful given the object
oi, and 0 otherwise; |Q| is the cardinality of Q.
c(Ak, A, oi) is defined similarly.

Experiments and results

Experiments were conducted to investigate whether
a population of learning communicative agents is
likely to arrive to successful communication at the
population level. In addition, we validated the evo-
lutionary performance of competing learning strate-
gies. Most importantly, we were interested in ex-
ploring the effects of learning on the genetic de-
scription of an evolving population of learning com-
municative agents. The simulation procedure is de-
scribed in table 3.

Several simulations were conducted using differ-
ent combinations of parameter values as shown in
table 4. The following were the major results:



1. Create an initial random population P of agents

2. Do until number generations is met

(a) For each individual Ai = (δi, φi, σi) ∈ P do

i. Perform the learning process of Ai according to
the learning strategy σi with respect to a random
agent Ah ∈ P

ii. Select a random subpopulation of agents Q ⊆ P

iii. Perform the learning process for all Aj ∈ Q ac-
cording to the learning strategy of Aj with re-
spect to a random agent Ak ∈ P

iv. Measure the communicative accuracy of Ai with
respect to Q, C(Ai, Q,O), given the set of objects
O

End for

(b) Select two individuals Amother ∈ P and Afather ∈
P for reproduction using fitness proportional se-
lection

(c) Produce an offspring Anew from Amother and
Afather using one-point recombination and point
mutation

(d) Select a random individual Aold ∈ P

(e) Replace Aold by Anew

End do

Table 3: Simulation procedure

Parameter Value

generations 2000–3000
population P 128–512
subpopulation Q 4–16
signals 4–8
meanings 4–8
crossover probability 0.6–0.7
mutation probability 0.001–0.01

Table 4: Parameters for simulations

1. Agents arrived at highly successful communica-
tion at the population level. However, simula-
tions showed that there exists a threshold condi-
tion on the number of interactions (size of set Q)
required to achieve accuracy in communication.
Figure 1 shows the results of the simulations for
different number of interactions. Agents reached
local minima in communication accuracy as the
number of interactions is reduced.

2. Local minima were produced mostly by the pres-
ence of homonymy – i.e. when the same signal
is used to describe two or more different objects.
Synonymy – when two or more signals are inter-
preted as the same object, did not appear consis-
tently.

3. In pairwise strategy contests, populations of cal-
culators dominated a populations of imitators.
However, populations of saussureans outcom-
peted both calculators and imitators.

4. In all strategy contests: imitators, calculators,
saussureans and randoms, experimental results
showed the superiority of the saussurean learn-
ing strategy. In most cases, saussureans took over
the entire population. Only rarely, did imitators
or calculators dominate such populations. Ran-
dom learners never became dominant. Figure 2
shows the frequency of strategies in the popula-
tion for a typical simulation where all strategies
were initially present.

5. The undetermined signal trait disappeared in the
population. All the signals produced for ev-
ery object were genetically assimilated in the
transmission gene segment of the genome for all
agents. The frequency of undetermined signals in
the population as evolution proceeded is shown in
figure 3.

6. The undetermined objects trait prevailed in the
population. Objects interpreted for every signal
were not genetically assimilated in the reception
gene segment of the genome. The frequency of
undetermined objects in the population as evolu-
tion proceeded is shown in figure 3.

7. Most simulations considered a set of 4 objects
and a set of 4 signals. Both homonymy and syn-
onymy began to appear more consistently when
both the number of objects and signals was in-
creased. However, homonymy continued to be
more common.
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Discussion

The overall experimental results indicate that given
a sufficient number of interactions, a population of
learning communicative agents is capable of arriv-
ing at highly successful communication. Surpris-
ingly, transmission behaviors became innate as a
consequence of the evolution saussurean learning.
On the other hand, reception behaviors prevailed
as characteristics that are subject to learning. Our
results are consistent with several hypotheses for-
mulated for the evolution of communication (10).

Why transmission was genetically
assimilated

In general, experimental results showed that there
is an evolutionary preference for saussurean agents.
Saussurean learning implements a tight coupling
between transmission and reception behaviors.

Why did signaling behaviors become innate?
First, imitation of transmission in a static environ-
ment provides the opportunity for genetic assimila-
tion of signaling behaviors. Second, a tight coupling
between reception and innate transmission provide
the oportunity for successful learning in reception
behaviors.

Why saussureans prevailed

From the evolutionary perspective, how good is
saussurean learning for evolving communication?.
Could an alternative communicative strategy in-
vade a population of saussurean learners?.

Maynard-Smith(11) has demostrated that game
theory can be used as a framework to explain the
evolution of most phenotypic traits in situation in
which fitness of a trait depends on what others are
doing. He has also provided the notion of evolu-
tionary stable strategy (ESS). An ESS is a pheno-
type such that, if almost all individuals have that
phenotype, no alternative phenotype can invade the
population.

In our model, experimental results showed that
saussurean learning is likely to be an ESS. How-
ever, further studies are required to formally de-
mostrate what types of learning are evolutionary
stable strategies.

In this study, we did not consider the cost of pro-
ducing a signal. Previous studies suggest that hon-
esty of communication become an issue when cost
is considered (2).
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