
Probability Map Building of Uncertain Dynamic

Environments with Indistinguishable Obstacles∗

Myungsoo Jun† and Raffaello D’Andrea

Sibley School of Mechanical and Aerospace Engineering

Cornell University

Ithaca, NY 14853-7501, USA

Key Words: Autonomous vehicle, probability map building,

uncertain dynamic environments, data association

Abstract

This paper proposes a method to build a probability
map of the environment for navigation. It is assumed
that the environment has multiple indistinguishable
moving obstacles and the vehicle has limited sensor
range and, therefore, lacks global information. The
probability map is updated through the measurement
and the probabilistic model of the obstacles. The model
is obtained from a priori statistics of their movement.
Probabilistic data association method is used to track
multiple obstacles even after the vehicle loses tracking
of some obstacles. The error bound of the algorithm is
also analyzed.

1 Introduction

Unmanned aerial vehicles (UAV’s) are being used more
and more in a number of civilian and military applica-
tions, e.g., remote monitoring of traffic, search and res-
cue operations, surveillance, etc. This has intrigued the
control community and research on the control and de-
sign of UAV’s is being actively conducted. One of main
issues in the design of autonomous vehicles is putting
autonomy and intelligence to the vehicles. This in-
cludes autonomous navigation to the destination. For
such navigation, the vehicles should be able to prop-
erly represent the environment and to plan a path to
the destination.

The problems of building a map of the environment
and finding a collision-free path have been an active
research area in the robotics and artificial intelligence
communities. The robot path planning methods can
be categorized into three approaches: cell decomposi-
tion methods, roadmap methods and artificial potential
field methods [6]. It can be noticed from the classifi-
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cation that the methods for path planning are closely
related to the representation of the environment. Cell
decomposition methods rely on the discretization of the
configuration space. Roadmap methods represent the
environment by a network of graphs such as visibil-
ity graph and Voronoi graph. Artificial potential field
methods use a potential function for the representation
of the environment, which is defined to provide attrac-
tive forces toward the destination and repulsive forces
from obstacles.

When there exists uncertainty in the information, a
probabilistic approach is commonly used. The most
widespread method for building a probability map of an
uncertain environment is grid-based occupancy maps
(See [3, 7, 10] and references therein). Occupancy val-
ues for each grid cell are determined based on sensor
readings and by applying the conditional probability of
occupancy using Bayes’ rule. These values are deter-
mined by the sensor characteristics, the location of the
sensors and the measurement methods. The grid-based
occupancy map approach, however, is mostly applied to
static environments. Thrun [9] adopted a simple expo-
nential decay factor which puts more weight on recent
sensor readings in order to cope with dynamic environ-
ments. As the author acknowledges, this approach does
not fully model dynamic environments but just adapts
to changes. Cox et al. [1] used a Bayesian multiple
hypothesis framework to build and maintain a world
model of a dynamic environment. Their approach,
however, focused on modeling dynamic environments
by simple geometric primitives and extracting features
from multiple hypothesis and sensor readings. Jun et
al. [5] proposed a method to build a probability map of
uncertain dynamic environments by using a probabilis-
tic obstacle model. A probability distribution function
was used for state transition of obstacles, which can be
obtained from a priori information on the obstacles.
The results, however, did not specify a data associa-
tion problem.



The information on the location of previously detected
obstacles is important for planning a return path if the
mission requires the vehicle to return after it reaches
the target. Furthermore, it is necessary to interpret
measured data correctly so that the constructed map
can represent the environment properly. If the obsta-
cles are distinguishable from each other, association
can be determined uniquely by extracting features from
measurement (See [1, 8, 4]). However, most research of
the data association problems concerned distinguish-
able target tracking and did not consider the case when
the vehicle loses objects from its sensor range.

This paper presents how to update the probability map
of an environment when the vehicle loses tracking of
objects and proposes a method to associate measured
data with indistinguishable obstacles by using proba-
bilistic approach.

The paper is organized as follows: Section 2 briefly
explains the notation used in the paper. Section 3
presents a probability map building algorithm in uncer-
tain dynamic environment with multiple indistinguish-
able obstacles. Section 4 describes how to associate the
measured data with indistinguishable obstacles and er-
ror bound of it. Section 5 describes the simulation plat-
form and Section 5.2 discusses simulation results.

2 Definitions and Notation

Given that there are l moving obstacles. We assume
that obstacles are indistinguishable from each other.
Let R be the region of consideration with 2-dimension
and X = R×Θ where × means Cartesian product and
0 ≤ θ ≤ 2π, θ ∈ Θ be the state-space of obstacles. Let
D be the index set of detected obstacles until current
time. Let Dc denote the complement of the set D. We
denote sampling time by ∆t, the current time by T∆t,
measured data at k-th sampling time by mk, and se-
quence of measured data up to time T∆t by m(T ), viz.,
m(T ) = {m1,m2, · · · ,mT }. We define xi

T ∈ X to be
the state of the obstacle i at time T∆t. All probability
density functions (pdf) are represented by f(·).

3 Modeling of Dynamic Environments

This section describes a method to build a probability
map of the environment with multiple dynamic obsta-
cles. It is assumed that there are no static obstacles
in the environment, as is common for unmanned aerial
vehicles. It is also assumed that the vehicle has limited
sensor range.

It is assumed that the initial distribution of each ob-
stacle, f(xi

0 |m(0)), 1 ≤ i ≤ i, is uniform because the

vehicle does not have any information on the location of
obstacles before it starts to move. The vehicle gathers
information from sensor readings as it moves. Due to
the limited sensor range, the vehicle may not detect all
obstacles at each measurement. Whenever the vehicle
senses an obstacle, uncertainty on the location of the
obstacle greatly decreases. The uncertainty is not zero
due to sensor noise. The vehicle modifies the distri-
bution function of the detected obstacle based on this
location information. If the vehicle no longer detects an
obstacle, uncertainty of the obstacle’s location, which
was sensed at a previous time, increases since obstacles
are moving. In such a case, the vehicle should calcu-
late the distribution function of the obstacle based on
a priori statistics on obstacle movement and previous
information on the location of the obstacle from sensor
readings. The probability map building algorithm in
uncertain dynamic environments can be formulated by
using Bayesian estimation [5].

The recursive form of the pdf of the staten of each
obstacle given measured data m(T ) can be obtained as
follows:

f(xi
T |m(T ))

= f(xi
T |m1,m2, · · · ,mT )

=
f(mT |m1, · · · ,mT−1, xi

T )f(xi
T |m1, · · · ,mT−1)

f(mT |m1, · · · ,mT−1)

=
f(mT | xi

T )f(xi
T |m1, · · · ,mT−1)

f(mT |m1, · · · ,mT−1)

=
f(mT | xi

T )f(xi
T |m(T−1))

f(mT |m(T−1))

=
f(mT | xi

T )f(xi
T |m(T−1))∫

X f(mT | xi
T )f(xi

T |m(T−1)) dxi
T

(1)

Here, f(mT | xi
T ) is usually called measurement model

and denotes the pdf that describes how sensor measure-
ments mT are generated when the obstacle i has the
state xi

T at time T∆t, viz., the obstacle i is at position
(x, y) ∈ R with the direction θ ∈ Θ at time T∆t.

The term f(xi
T |m(T−1)) is called the prior pdf of the

state because it is the pdf of the obstacle i’s state at
time T∆t given the measurement up to time (T−1)∆t,
thus, it can be interpreted as a prediction step. It is
obtained from the Chapman-Kolmogorov Equation and
is given by

f(xi
T |m(T−1)) =

∫

X
f(xi

T |xi
T−1)f(xT−1|m(T−1)) dxi

T−1.

(2)
The term f(xi

T | xi
T−1) is usually called system model

or motion model and is related to state transition with
time and is the probability that the obstacle i will have
the state xi

T ∈ X at time T∆t when the obstacle i has
the state xi

T−1 ∈ X at time (T − 1)∆t. This can be
calculated if information is available on the velocity of
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Figure 1: Probability map (a) when the vehicle detects
an obstacle. (Measurement update), and (b)
when the vehicle loses tracking of the obstacle
after 0.5 second time propagation, (c) 1 sec-
ond time propagation and (d) 1.5 second time
propagation.

obstacles, statistics on changes of direction, and so on.
This prediction is corrected by the new measurement
mT by using the Eq. (1).

Based on the Eq. (1) and Eq. (2), a probability map of
the environment at time T∆t can be defined as follows∗

:

Map
T
(x, y)

4
= 1−

l∏

i=1

(
1−

∫

Θ

f(x, y, θ |m(T )) dθ

)

(3)
if f(xi

T |m(T )) = f(x, y, θ |m(T )), xi
T = (x, y, θ) ∈ X .

Notice that MapT (x, y) is not a pdf with respect to x
and y.

The Figure 1 shows an example of a probability map.
It can be noticed that the uncertainty in information
on the locations of obstacles increases once they are out
of the vehicle’s sensor range

4 Obstacle Association

It is not always required for the vehicle to calculate
the estimated the locations of obstacles after it loses
tracking of them. If the mission of the vehicle ends
after it reaches the target and obstacles are slower than
the vehicle, the vehicle does not have to estimate the
track of obstacles after it passes around them and leaves
them behind because it is less probable for the vehicle
to re-enter the area around where it had detected them.
However, the information on the location of previously
detected obstacles is important in planning a return

∗The product operation is performed for the pdf f(·) of each
obstacle even though the same symbol f(·) is used to denote each
pdf.

path if the mission requires the vehicle to return to its
origin after it reaches the target.

When the vehicle detects an obstacle on its return to
the origin, it should determine whether the currently
detected one is a new one or previously detected one.
If the currently detected one is presumed to be pre-
viously detected one, the vehicle also should estimate
which obstacle it is among previously detected ones in
order to properly update the corresponding pdf. If the
obstacles are distinguishable, association can be deter-
mined uniquely by extracting features from measure-
ment and comparing hypothesis. When obstacles are
indistinguishable, another data association is needed.
The method used in the paper is to associate measured
data with obstacles according to the probability distri-
bution function.

4.1 Obstacle Association Algorithm
Let us assume that the vehicle detects an obstacle at
time T∆t. We define xT ∈ X to be the state of the ob-
stacle at time T∆t. We assume that f(xT |m(T−1)) has
uniform distribution. Our objective is how to associate
f(xT |m(T )) with f(xi

T |m(T )), 1 ≤ i ≤ l.

From Bayes’ rule, f(xT |m(T )) can be expressed as

f(xT |m(T ))

=
f(mT | xT )f(xT |m(T−1))∫

X f(mT | xT )f(xT |m(T−1)) dxT−1
. (4)

Let g(x, y) and hi(x, y) to be the functions onR defined
by

g(x, y)
4
=

∫

Θ

f(xT |m(T )) dxT

4
=

∫

Θ

f(x, y, θ |m(T )) dθ (5)

hi(x, y)
4
=

∫

Θ

f(xi
T |m(T−1)) dxi

T

4
=

∫

Θ

f(x, y, θ |m(T−1)) dθ, (6)

respectively†. And let us define pi to be

pi
4
=

∫

R
g(x, y) · hi(x, y) dx dy, 1 ≤ i ≤ l. (7)

Then, the quantity pi is proportional to the proba-
bility that the detected obstacle is obstacle i. When
i ∈ Dc, we have pi = 1

2πR where R =
∫
R dx dy since

f(xi
T |m(T−1)) is uniform for i ∈ Dc. This value will be

used as a threshold to determine whether the detected
obstacle is a new one or previously detected one.

†Note that the pdf f(x, y, θ | m(T )) in the Eq. (5) and the
pdf f(x, y, θ |m(T−1)) in the Eq. (6) have different distribution
although they are expressed by same symbol f(·). The pdf f(·)
in the Eq. (5) is the posterior pdf of xT and the pdf f(·) in the
Eq. (6) is the prior pdf of xi

T .



Define k
4
= arg maxi∈D pi. First, let us consider the

case when pk > 1
2πR . In this case, the currently de-

tected obstacle will be considered to be one of the pre-
viously detected obstacles and will be associated with
the obstacle k, which has maximum value of pi. Since
the currently detected obstacle is considered to be the
obstacle k, the pdf f(xk

T |m(T )) should be updated in
accordance with the measured data m(T ) by Eq. (1).

Next, consider the case when pk < 1
2πR . In such case,

the currently detected obstacle will not be considered
to be the one of previously detected obstacles and will
be associated with arbitrary obstacle j which is in the
set Dc. After association, modify the set D and up-
date the pdf f(xj

T |m(T )) accordingly. The association
algorithm is summarized in Algorithm 1.

1. Set f(xT |m(T−1)) = 1
2πR ;

2. Get measurement mT and calculate f(xT |m(T ))
by the Eq. (4);

3. Calculate the functions g(x, y) and hi(x, y) by the
Eq. (5) and Eq. (6);

4. Calculate pi in the Eq. (7) and find
k = arg max

i∈D
pi;

5. If pk > 1
2πR , associate the currently detected ob-

stacle with the obstacle k and update the pdf
f(xk

T | m(T )); otherwise, associate the currently
detected obstacle with the obstacle j ∈ Dc and
update the pdf f(xj

T |m(T ));

6. Update the set D accordingly.

Algorithm 1: Algorithm for Obstacle Association

4.2 Obstacle Association Error
The section analyzes the probability that the currently
detected obstacle will be associated with a wrong ob-
stacle. We assume that m 6= 0 ≤ l obstacles were
previously detected, that is, the number of elements of
the set D is m. If we define i to be a random vari-
able denoting the index of the currently detected ob-
stacle, P (i = i |m(T )) denotes the probability that the
currently detected obstacle is the obstacle i given the
measurement m(T ) and it can be said that

P (i = i |m(T )) =
pi∑l

j=1 pj

.

Then, the probability that the currently detected ob-
stacle is not the obstacle i given the measurement m(T )

is

P (i 6= i|m(T )) = 1−P (i = i|m(T )) = 1− pi∑l
j=1 pj

. (8)

This is the probability that the currently detected ob-
stacle will be associated with a wrong obstacle when

the currently detected obstacle is associate with the
obstacle i.

Let P (error) be the probability that the currently de-
tected obstacle will be associated with a wrong obsta-
cle. The bound of P (error) when pk > 1

2πR can be
expressed as in the next proposition.

Proposition 1 If pk > 1
2πR , then

l − 1
2πR · pk + l − 1

≤ P (error) ≤ l − 1
l

(9)

where k = arg max
i∈D

pi.

Proof: Let us assume that m obstacles were previously
detected.

Since f(xi
T |m(T−1)) = 1

2πR if i ∈ Dc and the currently
detected obstacle is associated with the obstacle k if
pk > 1

2πR , it can be said that pi = 1
2πR for i ∈ Dc.

Therefore, we have

P (error) = 1− 2πR · pk

2πR
∑

i∈D
pi + (l −m)

. (10)

The maximum occurs when pi = pk for all i ∈ D and
m = l, thus,

P (error) ≤ 1− 2πR · pk

2πR · l · pk
=

l − 1
l

.

The minimum occurs when m = 1, thus,

P (error) ≥ 1− 2πR · pk

2πR · pk + l − 1
=

l − 1
2πR · pk + l − 1

.

From the above proposition, it can be said that the as-
sociation error is small when the number of previously
detected obstacles is small and pk À pi for i ∈ D and
i 6= k in the case when pk > 1

2πR .

Let us consider the case when pk < 1
2πR . In this case,

the currently detected obstacle is not considered to be
one of the previously detected obstacles and is asso-
ciated with any one of obstacles in the set Dc. The
probability that the measured data will be associated
with wrong obstacle can be expressed as in the next
proposition.

Proposition 2 If pk < 1
2πR , then

P (error) =

2πR
∑

i∈D
pi

2πR
∑

i∈D
pi + (l −m)

(11)

where m is the number of previously detected obstacles.



Figure 2: Simulation Platform

Proof: From the Eq. (8), the probability that the
currently detected obstacle is not a new one can be
expressed as 1 − (

∑
j∈Dc pj)/(

∑l
j=1 pj). This is the

probability that the currently detected obstacle will be
associated with a wrong obstacle since it is associated
with an obstacle in the set Dc. Therefore, we have

P (error) = 1− (l −m)/(2πR)∑

i∈D
pi + (l −m)/(2πR)

= 1− l −m

2πR
∑

i∈D
pi + (l −m)

From the above proposition, the association error is
small when

∑
i∈D pi is small.

In some cases, the sensors on the vehicle might return
wrong detection signals. One solution to a such case is
to defer the association until the vehicle can recognize
they are wrong signals since the probability for consec-
utive error is smaller than the probability for one time
error. We do not consider the case when the sensors on
the vehicle return wrong detections constantly.

5 Simulation

5.1 Description of Simulation Platform
The game named “RoboFlag” was used as a simulation
platform for validating the algorithm ([2], [5]). The
game has two teams, Red and Blue. The Red team’s
objective is to infiltrate Blue’s territory, grab the Blue
flag and bring it back to the Red Home Zone, and visa
versa. See Figure 2. During the game, the following ob-
jects will be on the playing field: 8 Red robots, 8 Blue

robots, 8 scoring balls, and 8 obstacles. Each robot
has its own local information such as its position, ori-
entation, translational velocity and angular velocity. It
also has information on the position and orientation
of obstacles within its conic sensor range with radius
Rs and angle Ωr. The origin is located at the center
of the region and orientation is measured counterclock-
wise from the horizontal axis with range between 0 and
2π.

In order to apply the algorithm described in the
previous section, two probability density functions,
f(mT | xi

T ) and f(xi
T | xi

T−1), are needed. The former
is the pdf implying that the vehicle will have measure-
ment mT when the obstacle i has the state xi

T at time
T∆t. This is a characteristic of the sensors; thus it can
be obtained. The latter is the pdf meaning that the
obstacle i will have the state xi

T at time T∆t when the
obstacle i has the state xi

T−1 at time (T − 1)∆t. This
can be obtained if there is information on the velocity
of obstacles, statistics of angle changes, and so on.

The dynamics of the obstacles are as follows: the
initial positions of l moving obstacles are uniformly
distributed on the rectangular region R with (field
width)×(field length). A new random location for each
obstacle is determined at time tswitch, where tswitch is
a Poisson process with parameter λ∆t. Each obstacle
moves toward its new target positions with velocity vm

at time tswitch. The target destination of each obstacle
has uniform distribution as well.

5.2 Simulation Results
In the simulation, the following values were used: ∆t =
0.5, λ = 1.6, field length = 60, field width = 40, and
vm = 5. The region R is divided into 1 × 1 square
cells. The vehicle begins with the initial probability
map with all cells having values 1/4800π at time 0.

Simulation results are shown in Figure 3. The left fig-
ure shows the case when the vehicle previously detected
one obstacle. The vehicle detected an obstacle (obsta-
cle 1) and the probability distribution of the obsta-
cle’s location was estimated by time propagation after
the vehicle lost tracking of the obstacle from its sen-
sor range (see the probability distribution on the left
of the figure (a)). During navigation through the en-
vironment, the vehicle detects an obstacle within its
sensor range (see the point indicated by arrow in figure
(a)). It recognizes that the obstacle is different from
the previously detected one since p1 < 1/4800π. The
obstacle 2 is added to the set D. From the Eq. (11),
the probability of association error is almost zero since
p1 ≈ 0, which means the detected obstacle indicated
by white arrow is not the previously detected obstacle
but a new one.

The right figure shows the case when the vehicle previ-
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Figure 3: Simulation Results

ously detected two obstacles, that is, D = {1, 2}. The
probability distribution was updated by time propaga-
tion after the vehicle lost tracking of them. The dis-
tribution on the left is for obstacle 1 and the one on
the right is for obstacle 2. The vehicle detects an ob-
stacle within its sensor range (see the point indicated
by white arrow in figure (b)). It recognizes that the
obstacle is different from the previously detected one
since p1 < p2 < 1/4800π.

6 Conclusion

This paper proposed a method for building a probabil-
ity map of uncertain dynamic environments with mul-
tiple obstacles. It is assumed that the vehicle has a
limited sensor range and therefore lacks global infor-
mation. The probability map is updated using sen-
sor information and a priori statistics of the dynamic
environment. This paper also proposed data associ-
ation algorithm for indistinguishable obstacles, which
enables the vehicle to determine if the detected obstacle
at present time is previously detected one or not. This
paper also presented error bound of the algorithm.
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