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Abstract: We introduce a new method of model order selection: minimum description
complexity (MDC). The approach is motivated by the Kullback-Leibler information distance.
The method suggests to choose the model set for which the "model set relative entropy" is
minimum. The proposed method is comparable with the existing order estimation methods
such as AIC and MDL. We elaborate on the advantages of MDC over the available
information theoretic approaches.
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1. INTRODUCTION prior assumption in calculation of the criterion causes
some defects such as high sensitivity to large signal to

Classical problem of model selection among paramet-noise ratio when the true model does not belong to any
ric model sets is considered. The goal is to chooseof the model sets (A.P. Liavas and J.Delmas, 1999).
a model set which best represents an observed dataHere we compare MDC with MDL and AIC in appli-
The critical task is the choice of a criterion for model cation. MDC is able to answer the challenging ques-
set comparison. Pioneer information theoretic basedtion of quality evaluation in identification of stable
approaches to this problem are Akaike information LTI systems under a fair prior assumption on the un-
criterion (AIC) and different forms of minimum de- modeled dynamics. It also provides a new solution to
scription length (MDL) (Akaike, 1974), (Barroet a class of signal denoising problems (Beheshti and
al., 1998). The prior assumption for calculation of Dahleh, 2002).
these in criteria is that the unknown true model is a
member of all the competing sets.
2. IMPORTANT INFORMATION THEORETIC

The new approach, minimum description complex- CRITERIA

ity(MDC), is based on a new distance measure defined
for the elements of the model sets. The distance of
the true model and each model set is the minimum
Kullback-Leibler distance of the true model and the
elements of the model set. We provide a probabilistic
method of MDC estimation for a class of paramet-
e quel Sets. In_ th_'s cglculatlon _th_e key factor is select the model that best fits the data (Wax and
our prior assumption: unlike the existing methods no ,_.

. . Kailath, 1985).
necessary assumption of the true parameter being a
member of the competing model sets is needed. Theln the following order estimation methods the estimate
main strength of the MDC calculation method is inits  of the true parameté?™ is calculated ir§y, a subset of
method of information extraction from the observed Sy of orderm. The estimatefs, (yN), is the maximum
data. likelihood (ML) estimate o6* in Sy,

Consider the following problem: Given a finite set of
observed datg" of lengthN, which is an element of
setYN, a family of models which are parameterized
by elements of a compact s&} with orderM, and

a family of probability density functions (YN;Sy),

Because of MDL’s consistency, it has been widely Akaike information criterion(AIC) is the estimate
used in practical problems. However, lack of a proper of the Kullback-Leibler distance of the true density



f(YN; ), and the estimated densityYN; 85 (yN)) in Before providing a method of order estimation using

Sn (Akaike, 1974). the observed data we define a notion of distance for the
. o pdfs. Note that in the following discussion the length
The AIC estimate is given by of data is assumed to be fixéd

1 . m For a given compact s&,, use a positive cost func-
AICs,(Y") = N log f (y; 0s,(Y")) + N @ tionV(8,yN) for whichEg, gV (62,YV) is afinite non-
negative number and
This estimate is calculated with the assumption that
N is large enough and that the parameter estimate, 1 N 1 N
Bs.(yN), approaches the true parame€srin subset Eo [V (62,Y") 2 Eg [ V(61,Y7) 4)
Sn. The method suggests to select the modelSzet

which minimizes the AIC. for any 6; and 8, in Sy. The equality holds only for

61 = 6,. Choose the cost function such that it is a
Any model defined by a parameter in &t can be  continuous function of bot@ andyN.
used to encode the observed data by using the ShannoBefinition 1 The descrintion complexity ofN usin
coding method. The two-stage minimum description df £(YN:8y), when thpe data isp ene};ated By ig
length(MDL) method is defined based on this coding. Sefined b’ 1 9
In the two-stage MDL approach the description length y
of the data in each subset is defined as (Rissanen, 1
1984) DCn(6,61) £ Eg NV(el,\(N) (5)

logN For any element o8y, definee_g11 in setS;, as

1 .
DLs, (W) = N log f (y"; B, (")) Mo (2)
Similar to AIC the main assumption in calculation of 53]1(N) =arg minEg %V(Ql,YN). (6)
MDL is that the ML estimatebs, (Y\) approache®* 016Sm

as the length of data grows. The description complexity of the data set using subset

Bayesian information criterion(BIC) is another order S, when the data is generated Byis then defined as
estimation method which was proposed in (Schwarz,

197_8). In this meth_od a prior propability for the com- DCn(6,Sn) 2 min DCy(6, 6s,) (7)
peting model sets is assumed. It is suggested to select B5mESm
Fhe model that yieId; thg mgximum posterior. pro_bgbil— = DCy (9, §Sn(|\|)) (8)
ity. Note that the criterion in this approach is similar
to MDL criterion in (2). Definition 2 The minimum description complexity
The two important prior assumptions for calculation (MDPC) of YN, when the data is generated By is
of AIC and MDL in (1) and (2), for subs&, are provided by subseg,
% A % =argminDC 9,6_ N)). 9

Dees, 2h0M-60 @ Sin = arginDCn (6, 65, (N) ©
The second condition in most cases implies Mat < In general the set of all possible cost functions de-
N. pends on the structure of the parametric model set.

) ) One example of such cost function for any parametric
Note that in practical problems we do not know pdf is

whether or not the unknowf* is an element of a
given Sy,. However, in application of MDL and AIC B )
the calculated criteria in (1) and (2) are used for all the V(97yN) = —logf (yN’ ®) (10)
subsets regardless of validity of the two prior assump- This function is well defined for al¥N with prior

tions in (3). assumption that (yN; ) # 0 for anyyN. For this cost
function
3. MINIMUM DESCRIPTION COMPLEXITY _e 1 Ny L oN
DCn(6,0) =Eg NV(G,Y )= N Ho(Y")logq11)

We introduce a new method of subset selection by us-whereHq (YN) is the differential entropy ofN when
ing the observed data of length Unlike the existing it js generated by
approaches none of the conditions in (3) are needed

as our prior assumption. The 9¢t need not to be Ho(YN) = —Enlogs f (W @ 12
stationary. However, for each parametric probability 6(Y") 6100 (yN’ ) (12)
distribution function (pdf), the expected value ¥ If we want the description complexity function to be
and its covariance are finite. Also the pdf§/N; 9) more like a distance measure we add the extra condi-

are continuous functions oM. tion DC(6,0) = 0. For example the new description



complexity using the defined DC in (5) can be defined Note that if the observegN can be produced by all

as elements ofyy, then forp = 1,
IN(f(:6). f(:,66,(N)) = Ti(6,N, Sn) = Su (19)
DCn(6,65,(N)) —DCn(6,6) (13) and we have
where the cost function is defined in (10). In this
casely(-) is the Kullback-Leibler distance o and 0 < DCn(6%, 05, (yN)) < maxDCy(8, Bs, (YV){20)
6cSu

65, (N).

However, ifp # 1 the value ofep(6, Sy, N) and there-
fore the sefl(6,N,Sy) depends on thearianceof
random variable D@, 8s.(YN)). In most cases the
variance of this error is a function of dimension (order)
of Sy. With a fixed data of lengtN as the dimensiom
grows, the variance of error also grows. However the
estimate bias is a decreasing function of order. There-

3.1 MDC and Data Observation

Based on the defined description complexity, consider
a family of parameter estimators for which

Eg(65,(YV)) = 65,(N) (14)  fore for a given finite length data there is a tradeoff
wheree_sn(N) is defined in (6). Note that for this set between the error variance and bias.
of estimators we have The MDC order estimation method suggests to choose

the following subset
Eo(bs, (Y")) =6 (15)

—argmin  max DC(6, 6 21
and therefore the estimator is unbiase&in The ob- S gSn 6cO(YN,Sn.p) (68,65,"))  (21)

d datg" i ted by th k t
i aeNaIcShggL]g;{;f; (y’)“/) aen‘énv?g;’“"?yﬁ?rjﬁ;e ®" Which provides the MDC with validation probability
are available. For order estimation the goal is to P-
first use this information to find an estimate for
DC(6%, 65, (YN)) for each subset and then choose the

subset for which this error is minimum. 3.2 Impulse Response Identification of an LTI system

The first step is to validat@’s given the available es-  Finite length input and corrupted output of an LTI
timate0s,, (YN). The random variable D@, 65, (YN)) system, which is at rest, is available. The system
for eachf has a mean and a variance which are func- output is corrupted by an additive white Gaussian
tions of 8, S, and N. If the data is generated with noise (AWGN) which is zero mean and has variance
8 then with probabilityp, the bounde,(8,Sn,N) is 02. The goal is to find the best estimate of the impulse
available such that for a set g € YN response of the system.

. . Note that for a system which is at rest the input and
Pr{|(DC(8, s, (x")) —EgDC(8, b5, (Y"))| output of lengttN are related to each other only b
< £p(0,Sn,N)} = [(16) the firstN elements of the impulse response. Therefore
the unknownh* is an element of a set of ordéi,

and subseT,(6,Sn,N) in YN is defined as Sv (M = N). By implementing the MDC we want to
choose an estimate d&f of proper lengthm* < N
To(8,Sm,N) = (XN e YN which minimizes the description complexity of the
|(DC(6. b5, (X)) ~ EoDC(8, Bs,(Y"))| frue system.
< £p(8,Sm,N)}. SubsetSy, of RV represents one of the spaces of im-

pulse responses of length The input-output relation-
The validation with probability, and based onthe ob-  ship of the system is
served data, provides the following set of parameters
in S y=VY4+w=h"sxu+w (22)
=hg, *U+ADg, *u+w

O(y",Sn.p) = {0 € Oy € Tp(6,5n,N)}. (17)
] ] ] o :Ath*Sn+BSnAm+W
Therefore, with validation probabilitgin each subset _ _ _ _
Sm, the desired DODCy (6%, 65, (YV)), is bounded by ~ Whereu is the input,y is the noiseless output aryd
is the noisy output. Alsd\s, and Bs,, are functions
. A (W) < of input u. hy_is the projection oh* in Sy. Itis an
geew\!gmp) DCn (6, 65,(y™)) < (18) element ofS, which is a vector of lengtiN with only
x A A mnonzero elements. In each subSgths, (YV) is the
<
DCN(G aesm(yN)) = ee@r(];Na,)S(m.p) DCN(ev esfn(yN)> ML estimate ofh.



Here we use the cost function of form (10) where
the logarithm is a natural logarithm. The description
complexity of random variabl&N in (5), when the
data is generated ky,

YN 112
DCn (hy,hp) = log /27102 + Ep, <|yh2||)

2No?2
(23)

whereyn, = uxh,. Note that in this scenario we have

DCn(h,h) = Hg(YN)log2 = log /202 + % (24)

which is the same for all elements &,. There-
fore, the comparison of the DC and comparison of
Kullback-Leibler distance in (13) are the same.

In each subseﬁgm(N), defined in (6), is

hsa(N) = hg, +
1,7
(AL MAS )

where hg, is the projection ofh in subsetS,. The
minimum description complexity df in Sy, is

(25)

-1
1
AL (N)Bs, (N)As,,

DCn(h,hg,(N)) = log/ 2103 + (26)
1 1 )
21+ g7 G5, (N)Bs, (N)as, )

where
Gs,y(N) =1 -

1
s (AL A, () ) AL (N (27)

is a projection matrix.

3.3 MDC and order estimation

The ML estimate in this example is an efficient esti-
mator which satisfies the necessary condition in (14)

hs, (YN) = arg min|[yN — y,| |2 28
sn(¥") = arg min/y" - yg|| (28)
whereyy = uxg. The observed data is generated by
h*, the unknown elements &,.

The goal is to find probabilistic bounds on
DCn(h*,hg,(YN)) based on the observed data in each
subsetSy. The first step is the validation step in
which DGy (h*, hs,(N)) is validated. This calculation
is based on the observed error

" 1
V(hs, (W), YN) = log /2102 +

Iy = Jsul
5 (1+

No2
(29)

whereys,, = ux ﬁsn(y'\‘). This is a sample of a Chi-
square random variable with the following expected
value and variance

En(V (s, (Y), YN)) = DCx (R s, (N)) + 5"
(30)
var(V (hs, (YN),YN)) = %M%m

+- 1 (DCu (h,hs, (N)) — DCx(h.h)

No2
(31)

Therefore, for a choseps, the set DG (h*, hg,(N))

is validated by using the Chi-square distribution table.
This set is then used to find bounds on the DC crite-
rion DCy(h*, hs, (YN)) in (21) for each subset. MDC
chooses the subset which minimizes the obtained up-
per bound on the description complexity.

3.4 Estimation of MDC

Here we use the properties of the second order statis-
tics of the random variabl®/ (hs,(YN),YN)). The
expected value and variance of this random vari-
able is such that the validation step in calculation of
©(yN, Sn, p) can provide bounds ddCy (h*,hg (N))

Lsn(¥", P1) < DCn (0", h§(N)) < Us, (", p1)(32)
On the other hand D@h, ﬁsﬂ(yN)) itself is a random
variable

DCw (h, hs, (Y)) = log /2703 +

N _ . (12
. <|Y Il

2No2
which is a Chi-square random variable with the fol-
lowing expected value and variance

)(33)

EnDCn(h, P, (YN)) = DCy (h.hg,(N)) + %(34)
m

~oN2

DCn(h, hs, (N)) — DCy(h,h))(35)

varDCy (h, hs, (YN))

NaZ

The second order statistics_of this random vari-
able depends only on O&h,hg,(N)), m, N, and
DCn(h,h), which is fixed for alh. Therefore, by using
DCn(h,hs,(N)) we can provide probabilistic bounds

onDCy (h,hs,(YV))
IDCn(h, hs, (YN)) — EnDCn (h, P, (YN))| <
£p(h, Sm,N) (36)

The probabilityp is the probability that this DC is at
most ingp(h, Sy, N) distance of its expected value.



Hence, with probabilityp; bounds on

DCn(h*,hg (N)) can bevalidated and without cal-
culation of the se®(yN, S, p) probabilistic bounds,
with probability p, on DCy (h*, g, (YN)) can be cal-
culated. The provided bounds are

dL (YN, Sn. p. 1) < DCn(h*,hs, (YY)
< dU (va S‘ﬂv p, pl)(37)

The optimum subset, using this estimate of MDC, is

Sh(y") = argrpindy (V. Sn, P pr). - (38)
Whenm andN — m are large enough, the Chi-square
distributions oV (hg, (YN),yN) andDCy (h*, hs,,(YV))
can be well estimated with Gaussian distributions. In
this case the validation probabilifyy and the confi-
dence probabilityp can be defined in term d®(:)
function 1. The following theorem provides bounds
on the desired DCDCy (h*,hg,(yN)), for this sce-
nario. The calculation of the bounds is similar to
the quality evaluation of LTI system estimates in
(Beheshti and Dahleh, 2000)

Theorem When m, the order ofS,, and M —m
are large enough the Chi-square distributions in of
V(hs,(YN),yN) and DCy (h*,hs,(yN)) can be esti-
mated with Gaussian distributions. Consider =
Q(a) and p = Q(B). Then for the LTI system in
(22), the upper and lower bounds(yN, Sy, p, p1) and

du (YN, Sm, p, p1) are

dU (yNaSThQ(a)vQ(B)) m—’— +|Og

+202Us, + W’ / ﬂ +2Us,(39)

2noZ

and

1
_|_,

d(y", Sm, Q(@),Q(B)) = max{o 5 (40
+log /2102 + 202L +2U
w whSn — \/~ Snt
wherelg, andUs, are defined as follows
242
Usm:Xsmfl'nNJr N WJrKSm(CX). (41)
wherem, = (1- {)og, and
_ 1 N N 12 42
Xan = IV — Vsl (42)
and
g Ow azow 1
K ——-my. (4
si(@) = \f Xgy —5Mu (43)
t QM = s e

If (My—ay/Vim) <Xs, < (My+ a/Vim),Wherevy, =
Z(1— Moy, the lower bound.s,, is zero and i my -+
a+/Vim) < Xs, then

2020
Lsn = Xgn —Mu+— = —Ksu(@)  (44)
Consider the following conditions am and 3
N Xm
N>/ 5 (1- —ms): (45)
27 (1-R)
I\IIILnoo aN =9 l\lllmoo BN - °°, (46)
. an BN
Ilm—:o lim —= =0. 47
N =0 im 5 a7)

These are the sufficient conditions for the bounds on
the DCs to approach each other for whan<< N.
Also the conditions guarantee that the validation and
confidence probabilitiep; = Q(a) and p = Q(B)
approach one as length of dal,grows.

3.5 Comparison of Order Estimation Methods

AIC in (1) and description length in two-stage MDL
(2) for the LTI system in (22) are

~ly=9sy!?

AICs, () = —log( e 2w )+ 1148)
lly-Ygpli? |

DLs, () = —log(———e % )+m m oo (49)

Similar to the MDC criterion, these criteria are func-
tions of the output error (42), the variance of the addi-
tive noise, length of the data and order of the subset.
However, unlike MDC calculation, to calculate these
criteria, it is assumed that the true impulse response is
an element of the subsgt,!.

In practical applications one important method of or-
der estimation evaluation is to check if the method
is consistent. A consistent method is able to point to
the subset with smallest order which includes the true
model set as the length of the data grows. It is known
that MDL is a consistent order estimation method and
AIC is not a consistent method. For MDC, the consis-
tency of the method is guaranteed by the proper choice
of a, and 3. As the length of the data grows these
parameters have to be chosen such that the validation
and estimation probabilities approach one. Therefore,
an improper choice off = 3 = 0 leads to a criterion
which is not consistent. It is important to note that for
subset,, which includes the true model set, the MDC
criterion in (39) witha = 3 = 0 is the AIC in (48).
Also, it should be mentioned that the calculated MDC
for LTI systems in this paper is the same as the new
MDL criterion for linear models which is introduced

in (Beheshti and Dahleh, 2003) and is comparable
with the two-stage MDL.



When the signal to noise ratio is considerably large Wax, M. and T. Kailath (1985). Detection of signals
and the true system has an infinite length impulse re- by information theoretic criterialEEE Trans.
sponse, the behavior of a consistent method might not Acoust., Speech, Signal Processi®)387-392.
be desirable. In this case a practical method should be

able to suggest a threshold on the criterion, otherwise

the consistent method chooses the model set with the

highest order. For this scenario while MDC is able to

provide a thresholding method, MDL thresholding is

not possible. More detailed discussion on these prac-

tical issues is in (Beheshti, 2002) and (Beheshti and

Dahleh, 2002).

4. CONCLUSION

In this paper we presented MDC, a new method of
order estimation. We elaborated on the advantages of
this consistent method over the available information
theoretic solutions. It was shown that AIC is a spe-
cial case of MDC criterion. In this paper the pro-
posed method calculated the description complexity
of noisy data for a family of Gaussian distributions.
The approach can be extended for calculation of the
description complexity for more general classes of
linear models with additive noises and also for when
the variance of the additive noise is unknown.
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