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Abstract  The Caltech Multi-Vehicle Wireless Testbed (MVWT) is an experimen-
tal platform for investigating the increasingly important intersecting
frontiers of reliable distributed computation, communication and con-
trol. The testbed consists of eight autonomous vehicles equipped with
onboard sensing, communication and computation. The vehicles are
underactuated and exhibit nonlinear second-order dynamics, key prop-
erties that capture the essence of similar real-world applications at the
forefront of cooperative control.

The relative simplicity of the testbed facilitates the investigation and
application of novel ideas in reliable computing, real-time optimal con-
trol, stability of interconnected systems, control of and over networks,
and formation flight. In this paper, we describe in detail the MVWT
and its components so that readers may envision how it can be used to
provide proof-of-concept for new techniques in multi-vehicle control.

Keywords: Multiple vehicles, coordinated, distributed, cooperative, testbed.

1. INTRODUCTION

We have developed a versatile experimental testbed (called the Multi-
Vehicle Wireless Testbed, or MVWT) for the implementation of control
algorithms for single- and multi-vehicle control problems. It consists
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of eight fan-driven vehicles that glide on low-friction omni-directional
casters. Each vehicle is equipped with an onboard computer and local
sensors, and can communicate over a local wireless network.

The goal of the MVWT is to embody the difficult problem of multi-
vehicle control (as found, for example, in multiple UAV systems) in
an easy to use, low-cost and low-risk system. Our testbed captures
many aspects of real-world application environments and can be used
to validate theoretical advances in a variety of disciplines. Multi-vehicle
control problems appear in a wide variety of applications in which theo-
retical advances can significantly improve our ability to perform complex
tasks. Military applications include operation of unmanned aerial vehi-
cles (UAVs) and unmanned combat aerial vehicles (UCAVs) in a variety
of situations. Civilian examples include automation of air traffic control
systems, automated highway systems, planetary exploration, and search
and rescue operations.

The ultimate success of these applications depends heavily on a greater
understanding of the research areas related to multi-vehicle (in partic-
ular, decentralized) control. This is especially true in situations where
agents in a decentralized control scheme are part of a communications
network and the effects of delay, communication constraints and dynamic
constraints must be considered.

The main purpose of our testbed is to provide a platform where new
theoretical ideas can be implemented and their practicability can be
evaluated in light of the reality of a physical experiment. We briefly
mention several areas that users of the MVWT are either exploring or
plan to explore.

A natural task for a multi-vehicle system is formation flight wherein
vehicles must maintain their positions relative to some global “shape”.
In [9, 22] formations and formation changes are specified by abstract
graphs that define the neighbors of each vehicle and the desired distances
and angles between them. In particular, the relationship between the
stability of a formation and the structure of the associated graph is
explored. Applying these results in a system with non-trivial dynamics
such as the MVWT would represent a significant advance.

Optimal control techniques such as trajectory generation [20] and re-
ceding horizon control [12, 7, 14] are obvious choices for the control of
nonlinear vehicles such as those in the MVWT. However, it is not at all
obvious how to “distribute” optimal control problems [15, 21] over multi-
ple vehicles so that each is solving a sub-problem in a truly decentralized
fashion.

Low bandwidth communication introduces many difficulties into con-
trolling the MVWT and systems like it. For instance, to achieve a



A Platform for Cooperative and Coordinated Control of Multiple Vehicles 3

consensus (e.g regarding what formation to assume) in a distributed
asynchronous network is theoretically impossible [11]. To address such
difficulties, we are examining novel communication strategies [10, 23] and
investigating their interactions with multi-vehicle control algorithms.

Finally, writing reliable control programs (to implement the above
algorithms) and communication protocols is a fundamentally difficult
problem even without the complicated dynamical scenarios that are
commonplace in multi-vehicle control. We are exploring formal software
methods and ideas including novel languages [17] and compiler tech-
niques [13], and we plan to use these tools to implement multi-vehicle
algorithms on the MVWT.

Many of the research areas described above carry novel results appli-
cable to flight control experiments, but which have been verified only in
simulation. In many cases a combination of high cost, prohibitive risk,
and labor-intensive implementation inhibits the process of transferring
novel control ideas to aircraft flight experiments.

To address this, our vehicles are designed to possess dynamics that
capture the essence of real-world applications and thus require real-time
and perhaps reconfigurable control. Many academic experiments involv-
ing coordinated or cooperative planning use vehicles for which real-time
control is not an inherent requirement (e.g., wheeled kinematic vehi-
cles). Our vehicles are described by equations that are second order
dynamic, nonlinear, underactuated, input constrained, and input sign
constrained. As in the case of real-world high performance systems such
as military aircraft, these features make quick response time to new or
existing constraints critical for mission success.

While the ground based flight control testbed we describe here cap-
tures many of the dynamical features of aircraft, it also avoids the danger
of expensive failures or the overhead of launching, landing and main-
taining temperamental aircraft. Our testbed is low cost, low risk and is
designed specifically for ease of use and versatility in controller design
and implementation.

We proceed here to give an overview of the architecture of the MVW'T
to show how we decided to address the goals defined above. We also de-
scribe the educational uses of the MVWT, and provide a brief discussion
of related experimental testbeds. The later sections of the paper are de-
voted to the description of the components of the MVWT.

Overview. An overhead view of MVWT arena is indicated by Fig-
ure 1.1. The MVWT vehicles operate on a smooth floor of approximate
dimension 6.7 m x 7.3 m. Each vehicle in the MVWT is equipped with
an onboard computer, local sensors and an 802.11b wireless Ethernet
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Figure 1.1. A diagram of the Caltech MVWT. An off-field vision computer processes

images from overhead cameras (A) and provides state information to the vehicles (B).
An obstacle (C), due to an unrelated experiment in the same space must be avoided.

card for communication over our laboratory’s local area network. Video
cameras mounted on the ceiling take pictures of the field at 60Hz and
are connected to an off-field vision processing system. The vision sys-
tem identifies each vehicle, its position, and its orientation by the unique
symbol that appears on the vehicle’s “hat” (Figure 1.9). It broadcasts
this information over the local area network and the vehicles receive
it via their wireless cards. Each vehicle can communicate through the
same wireless network to the other vehicles and to auxiliary computers
off-field that may serve as command systems, real-time monitors, data
loggers or human user interfaces.

The block diagram of Figure 1.2 depicts the MVWT architecture. A
picture of an MVWTT vehicle appears in the lower right. Each vehicle’s
input is composed of communicated information (e.g. from the vision
system, other vehicles or a command center), and sensed information
from onboard sensors (e.g. gyroscopes and ultrasonic range finders).
The vehicle’s output includes messages to other vehicles (or auxiliary
computers) and actuation commands to its two ducted fans, which pro-
vide thrust and the vehicle’s means of mobility. A configurable user
interface is defined in a program called “Master Control” which handles
high level control commands, including those for data logging. Informa-
tion flows both ways between Master Control and the vehicles, which
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Figure 1.2.  The structure of the MVWT: Vehicles receive input from sensors and
from the wireless network and output thrust commands to their fans and messages
to the network. A vision system senses the positions and orientations of the vehicles.

allows for easier testing of control designs and real-time monitoring of
results.

The computing platform onboard each vehicle is a laptop which runs
the QNX real-time operating system and a C++-based software suite
called RHexLib (described in Section 6). This software architecture al-
lows us a rapid prototyping environment that places few restrictions on
the type and design of controllers that we are able to implement. Essen-
tially, we can implement any controller that can be written in C/C++
and is amenable to a statically-scheduled and fixed-rate environment.
The additional details of our software environment (see Section 6) and
our communication capabilities (see Section 7) make for a highly config-
urable platform for experiments in many cutting edge areas of control
theory. Our testbed can be used to investigate decentralized control al-
gorithms, high-level coordination algorithms, real-time communication
protocols, novel wireless network architectures, distributed sensing and
actuation strategies, and much more.

Educational Uses. In the Spring of 2002 the MVWT was used as
the main experimental testbed for the Caltech course “Applications of
Control Technology” (CDS 111). The purpose of the course is to provide
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students with the opportunity to put into practice the theoretical tech-
niques learned in previous courses. In CDS 111, the students become
familiar with the components of the testbed and how to operate the vehi-
cles. They then run simple programs to become familiar with controller
design and deployment, and finally are required to design their own con-
trollers to accomplish specific tasks on the testbed. The course drives
continuous improvement in software infrastructure and user-friendliness
of the MVWT for future users. We expect the testbed to be used by
CDS 111 for at least the next several years.

Related Work. There are several other testbeds related to the
MVWT. For example, the recent popularity of the RoboCup [6] robotic
soccer tournament has seen numerous wheeled robot systems built. The
main difference between such systems and the MVWT is that they can
often be treated as if they are first order, thereby significantly simplifying
their control. Several flight based testbeds are also in development that
use fixed-wing UAVs [8], unmanned helicopters [16], or hovercraft [25].
The MVWT differs from the first two in that vehicle failures are not as
dramatic and costly. The latter testbed is quite similar to the MVWT,
although the vehicles float on a forced air table rather than resting on
casters, limiting the range of the vehicles to the size of the (necessarily
small) table.

Paper Organization. In the rest of this paper we describe in
detail the architecture of the MVWT including the physical and compu-
tational specifications of the vehicles and the laboratory infrastructure
that supports them. In Section 2 we describe the details of the system
hardware. We discuss the vision system in Section 3 and onboard sensing
capabilities in Section 4. In Section 5 we describe the various electronic
components. Our software environment is described in Section 6 and
our communication systems in Section 7. We discuss how the testbed
has been used to explore new control algorithms in Section 8. In Section
9 we attempt to predict the future of the system in terms of continued
infrastructure development and planned interesting uses of the MVWT.

2. VEHICLE HARDWARE

One of the MVWT vehicles is shown in Figure 1.3. It is supported by
three low-friction omni-directional casters and is driven by two ducted
fans (fixed to the vehicle), each producing up to 5.0 N of thrust. The ve-
hicle is essentially a “laptop sandwich”, with a laptop computer secured
between two pieces of machined acrylic. Attached to the top acrylic
piece are the fan assemblies, battery packs, identifying “hats”, interface
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Figure 1.3.  An MVWT vehicle (left) and exploded view (right).

board, and local sensors. The casters are attached (ball-down) to the
bottom piece of acrylic. All of these components are described in detail
below.

See Figure 1.4 for critical dimensions and the MVWT website [2] for
vehicle specifications, including a bill of materials, detail drawings of the
acrylic structure, and laptop specifications.

2.1. COMPONENTS

Chassis. The chassis is machined from acrylic, chosen for its low
cost and machinability. Acrylic also allows us to easily bond additional
components to the main chassis (e.g., to keep the bumpers from sliding
off or to hold the batteries in place). The structure was designed to
allow access to most of the laptop ports, including USB, power, video,
and PS/2 ports.

A loop of clear vinyl tubing is stretched around the bottom plate
of the chassis to protect the vehicle and its contents during bumps with
other vehicles or with the surrounding walls of the testbed floor. Finally,
a corrugated plastic “hat”, placed on the top of the vehicle, is used by
the vision system to determine vehicle identity, position and orientation.
See Section 3 for more details.

Casters. The casters (also known as ball transfer units) are fur-
nished by Alwayse Engineering Limited. They are nearly ideal for our
purposes since they have relatively low friction and are self-cleaning.
According to the Alwayse website [1], the load ball (50.8mm diameter)
“rotates on a bed of small balls supported on a hardened steel, precision
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Figure 1.4.  Critical dimensions of an MVWT vehicle.

machined table.” There are two seals that keep dirt and dust away from
the bearing surfaces - one to remove large particles and another to scrape
the ball clean. This self cleaning feature has proved to be indispensable,
as other omni-directional casters we tried quickly “gummed up” with
dust and debris, drastically changing their friction characteristics.

Fan Assembly. The fan assembly consists of the ducted fan housing
and rotor (WeMoTec Minifan 480), motor (Hacker B40-14S), and motor
controller (Jeti MASTER 40-3P Opto). Assembling these components is
fairly straightforward; the most critical step is balancing the fan rotor.
An unbalanced rotor not only degrades thrust performance, but also
causes the rotor to vibrate and hit the side of the duct during operation,
causing excessive noise and damage to the rotor and duct. We found the
Du-Bro Prop Balancer to be an effective tool to balance the rotor.

Fan Characterization. For a control system to be effective, the
actual control input (in our case, the actual forces produced by each fan)
should be equal to the control input commanded by the control system.
In the case of the MVWT vehicle, the control system software onboard
the laptop commands forces to each fan. These forces are converted to
integer values and sent via USB to the microcontroller. Therefore it is
necessary to determine what fan force is produced for a given integer
input to the microcontroller. See Section 8 for details of controllers
used on the vehicle, Section 5 for details of the vehicle’s electronics
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Figure 1.5.  Fan assembly hanging in the thrust map test fixture (left) and a typical
thrust map (right). Note that the entire weight of the fan assembly is supported by
the load cell.

(microcontroller and interface board), and Section 6 for details of the
software used on the vehicle.

For each fan assembly, thrust was measured over the full range of in-
teger input signals sent to the microcontroller, producing a map between
the microcontroller’s input signal and actual fan thrust. The fixture used
to create these maps is shown in Figure 1.5, along with a typical thrust
map produced by the fixture. To measure thrust, the fan is hung in the
fixture as shown, with the entire weight of the fan assembly supported
by a load cell (which outputs a voltage proportional to axial load).

Battery Pack. Each fan assembly is powered by ten sub-C size
nickel metal hydride (NiMH) 3000 mAh cells, manufactured by both
Sanyo and Panasonic and packaged by Batteries America of Middleton,
WI. The battery packs are charged with a Robbe Power Peak Infin-
ity II charger, which automatically detects when the batteries are fully
charged, preventing damage to the battery cells. During normal use, a
battery pack lasts about 20 minutes and takes approximately 1.5 hours
to charge. Current draw is approximately 20 A at full thrust.

Computing Platform. Each vehicle is equipped with either a
700 MHz Dell Inspiron 2100 laptop or Dell Latitude L400 laptop (both
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Figure 1.6.  Detail view of the interface (PIC) board that relays information between
the onboard computer and the fans and sensors.

of which have the same form factor). The screens are removed to save
space and reduce weight and power.

Interface Board. An electronic interface board relays fan force
output from the onboard computer via the USB bus, converts it into a
pulse-width modulated (PWM) signal, which is the format expected by
the motor controllers. The interface board is also used to relay sensor
information to the onboard computer. See Figure 1.6 and Section 5 for
more details.

2.2. PARAMETER IDENTIFICATION

The simplified equations of motion (assuming perfect sensing and ac-
tuation, no delays, no disturbances, and linear friction) for the vehicle
are listed in Equations 1 - 3. These are derived by observation from the
simple schematic of the vehicle shown in Figure 1.7 (A more detailed
discussion can be found in Section 8).

mi = —ux+ (Fr+ Fr)cosf (
my = —py+ (Fr+ Fr)sind (2)
JO = —yb+ (Fp—FL)ry (3)

[
~—

These equations include four physical parameters: the mass m, the
mass moment of inertia J, and the linear and rotational viscous friction
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Figure 1.7.  Schematic of MVWT vehicle. The coordinate frame is inertial and the
forces Fr, and Fr are applied at the fan axes.

coefficients y1 and 1. The geometric parameter r;(= 0.123 m) is the
distance between the center of mass of the vehicle and each fan axis.

Mass. Mass was measured with a digital scale. Each vehicle has a
mass of 5.05 £+ 0.05 kg.

Mass Moment of Inertia. To measure J, the vehicle was hung
from a rod as shown in Figure 1.8. It was then displaced from its equi-
librium position and allowed to swing freely. J was calculated from the

small-angle approximated equation J = mL?( 4g7rT22L — 1), where L is the
vertical distance from the axis of rotation to the vehicle’s center of grav-
ity and T is the period of oscillation. The value of J was found to be
0.050 % 0.005 kg m2.

Linear Friction. A test fixture for determining p is shown in
Figure 1.8. The vehicle was pulled back from its equilibrium position
and allowed to oscillate. The vision system recorded the position of the
vehicle as a function of time, and the logarithmic decrement technique
was used to determine the damping coefficient [19]. p was found to vary
between 3.3 and 5.5 ks—g (different for each vehicle).

Rotational Friction. The rotational viscous friction coefficient

was calculated by measuring the steady state angular velocity of a vehicle

with one fan operating at constant thrust and the other turned off. The

equation of motion in this case is J6 = Fry — 10 (assuming the vehicle

is rotating about its center of mass — this was observed in practice). At
Fry

steady state (0 = 0), O = — > or Y = %. All parameters in this

equation are known (F' from the thrust map, r by direct measurement,
and fgs via vision system), making the calculation of ¢ trivial. This



12

Rotate about
thispoint Arrowsindicate
vehicle motion

A

Figure 1.8.  Test fixtures used to measure J, the mass moment of inertia (left), and
1, the linear viscous friction coefficient (right).

parameter was found to vary between 0.049 and 0.064 kg sz (different
for each vehicle) using this method.

3. LAB POSITIONING SYSTEM

Vehicle localization is accomplished using an overhead camera system
known as the Lab Positioning System (LPS). This system consists of
four Pulnix TM-6710 monochrome CCD cameras and three Matrox vi-
sion processing boards (one Genesis and two Genesis Plus). Each camera
covers an area of approximately 4.88 x 4.26 m on the floor and produces
640 x 480 pixel images at 60 Hz. The Genesis vision board combines
these four images into one and each Genesis Plus board processes alter-
nate frames of data.

Vehicle localization and identification is accomplished using a pattern
of black “blobs” on white “hats” atop each vehicle. To facilitate process-
ing, the floor of the MVWT lab is entirely white so blob identification
is unambiguous. The vision processing boards perform a standard blob
analysis, identify all blobs in the image that are in an appropriate size
range, and send that information to the vision processing algorithm. The
algorithm takes this information and identifies the patterns of blobs cor-
responding to the hats with their associated vehicle identities, positions
and orientations.

Figure 1.9 depicts an example hat pattern. It has two large blobs, one
with one white patch, or “hole,” and the other with two, that are used for
localizing and determining the orientation of the corresponding vehicle.
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Figure 1.9.  An example vehicle “hat” (number 1 shown). The large “blobs” are
used to determine vehicle location and orientation and the smaller blobs determine
the vehicle’s identity.

Between these blobs are up to three smaller blobs (with no holes) that
represent, in binary, the vehicle’s integer identification number.

Localization is accurate to approximately 1 cm (when the vehicles
are stationary). Noise when the vehicles are stationary is insignificant,
with a standard deviation of 0.2-0.25 mm in position and 0.0035 rad
in orientation. The vision system also provides rate information using
an (unfiltered) “dirty derivative” which is significantly noisier than the
position data, with a standard deviation of 1.0-1.5 cm/s in linear ve-
locity and 0.2 rad/s in angular velocity for a stationary vehicle. All
filtering and smoothing of this data is currently done on board the vehi-
cles. Processing of one frame of vision data takes approximately 33 ms.
This information is then broadcast to the vehicles over the local wireless
network.

4. ONBOARD SENSING

Onboard sensing not only serves to augment the vision system in ob-
serving the vehicle motion and behavior, it also enables the vehicles, in-
dividually or collectively, to gather information about their surrounding
environment. The onboard sensing capability of the MVWT facilitates
research of interesting topics such as distributed sensing, sensor fusion,
and decision making.

4.1. ULTRASONIC RANGEFINDER

In many multi-vehicle applications, whether they be formation con-
trol, mapping and tracking tasks, or obstacle avoidance, knowing the
relative distance from one vehicle to another vehicle or object is vital.
The most common types of proximity sensors include infrared, acous-
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Figure 1.10.  The beam pattern for the Devantech SRF04 ultrasonic rangefinder.
The SRF04 has a range of approximately 3 cm to 3 m and a resolution of approxi-
mately 8 cm.

tic, and optical (laser) rangefinders. After weighing the requirements of
range and accuracy against the constraints of cost and dimensions we
chose to explore the use of an ultrasonic (i.e. acoustic) rangefinder.

Sensor description. The ultrasonic rangefinder we selected for the
MVWT is the Devantech SRF04. It has a minimum range of approxi-
mately 3 cm and a maximum range of approximately 3 m. The sensing
cone of the SRF04, or the angular range, sweeps through an approxi-
mately 50°angle, as illustrated in Figure 1.10. The resolution allows for
detection of a 8 cm target at approximately 2.8 m.

Software Integration. The sonar measurements are made avail-
able to the vehicle’s onboard computer via the electronics interface (Sec-
tion 5). Each sonar sensor uses two bytes of the data packet sent via
the USB to the SonarModule in RHexLib (described in Section 6). The
SonarModule allows the control software to collect range measurements
at a user-specified rate and output them using the logging capabilities
built into the MVWT RHexLib software.

4.2. RATE GYROSCOPE

The vision system introduces significant delays (greater than 0.05 sec)
into the vehicle’s control system, which degrade the vehicle’s perfor-
mance. Use of an onboard piezoelectric rate gyroscope (gyro) can sig-
nificantly reduce the angular rate delay, since minimal signal processing
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and no communication is required to get the gyro output to the control
system. In addition, the gyro measures 6 directly, which has advantages
over estimating 6 based on our discrete vision measurements.

Sensor Description. The gyro we are using is the Tokin CG-
16D, whose output is proportional to the angular rate of the sensor, a
product of the Coriolis effect on an internal vibrating ceramic column
printed with electrodes.

Gyro Calibration. The gyro was placed on a turntable and its
output measured for a given angular rate. We found that the output of
the gyro was linear in the range + 840 degrees/s, which in fact exceeds
Tokin’s specified maximum detectable angular rate of + 90 degrees/s.

Gyro Circuit. Before using the gyro signal in the vehicle’s onboard
control system, it must be converted from an analog signal to a digital
one. The PIC, which does the A/D conversion, accepts input in the 0 - 5
Volt range and converts it to an 8-bit digital signal. While on the vehicle,
however, the gyro outputs a signal only in the range 2.0 + 0.3 V, even
during aggressive maneuvers. If this signal were sent directly to the PIC,
the resulting digital output would have poor resolution. To improve this
resolution, we built a circuit to amplify the gyro’s output, using more
0 - 5 Volt range of the A/D input. In addition, the circuit includes a
low-pass filter to reduce the effect of high-frequency noise.

Preliminary Results. See Figure 1.11 for a plot of the vehicle’s
angular rate as measured by both the gyro and vision system (to produce
this data, the vehicle was rotated back and forth by hand). As discussed
above, the gyro output is sent through an analog filter prior to use by
the vehicle’s onboard control system. As currently implemented, the
angular rate from the vision system is calculated by performing a “dirty
derivative” on the vision system’s vehicle orientation (angle) output. To
accurately compare the gyro and vision system angular rate data, the
vision system’s angular rate output was processed through a digital filter
with characteristics similar to the gyro’s analog filter. Figure 1.11 shows
that with the same filtering, the gyro signal produces a cleaner signal
and one with less delay than the vision system.

5. ELECTRONICS

In this section we describe the electronics onboard the vehicles. In
Section 5.1 we describe the latest version of electronics, the MVWT in-
terface board, which communicates with the onboard laptop though the
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Figure 1.11. A plot showing the angular rate of an MVWT vehicle, from both the
gyro and the vision system. The vision data has been post-processed by a digital filter
with the same characteristics as the gyro’s analog filter. Note the smoother signal
from the gyro and the slight delay introduced by the vision system.

laptop’s Universal Serial Bus (USB). A description of the Pulse Width
Modulation (PWM) scheme and the command communication proto-
col is given. In Section 5.2 we describe the recently developed sensor
integration scheme at the hardware level and the local feedback commu-
nication protocol. Section 5.3 summarizes the electronics with the help
of a functional flow chart.

The motor speed control assembly consists of a microcontroller which
receives integer values (corresponding to a commanded force) which are
generated by the onboard laptop. The microcontroller converts these
values to PWM signals with appropriate duty cycles, which it outputs
to the two motor controllers, one each for the left and right fans. The
motor controllers control the fan speeds proportional to the duty cycle
of the input PWM signals.

5.1. THE MVWT INTERFACE BOARD

The MVWT interface board is the latest version of electronics in-
stalled on the vehicles. An 8-bit microcontroller Microchip PIC16C745
with USB 1.1 support is the core of the interface board. In addition to
translating force commands from the onboard computer to PWM signals
required by the two motor controllers, the board is also capable of col-
lecting data from onboard sensors and sending it back to the computer.
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The force command instruction format that the interface board ex-
pects from the onboard computer is composed of three bytes. The first
byte is used as a “preamble” recognized by the microcontroller. The
second and the third bytes are desired force values for the right and the
left fans respectively.

The interface board provides I/O ports and USB socket for the micro-
controller, and also protects the keyboard of the onboard computer. In
addition, the interface board integrates a monitoring circuit for battery
voltage and switching circuits for the batteries.

5.2. SENSOR INTEGRATION

The interface board is capable of collecting data from the onboard
sensors and reporting them back to the laptop. In general, for an analog
sensory signal, the signal first needs to be filtered and amplified. We can
use any of the 5 available A/D channels available on the microcontroller
to measure this signal. As examples, we discuss this interface mechanism
as employed for two different sensors.

Gyroscope. Being an analog device, the gyroscope (gyro) inter-
faces to the microcontroller through an analog to digital (A/D) converter
channel available on the chip. Whenever there is a new value available
at the A/D conversion register, the microcontroller sends it to the laptop
through the USB. For more details on the gyro, please refer to Section
4.

Ultrasonic Sensors. In every alternate timer 1 interrupt ser-
vice routine, the microcontroller sends a firing pulse to the sonic sensor
through the bi-directional I/O PORT A. In response the sonic sensor
sends an ON_time pulse back to the external interrupt (INT) pin of
PORT B. A high to low transition on the INT pin triggers the external
interrupt and the width of the ON _time pulse is caught by Timer 1. For
the details of the ultrasonic sensor, please refer to Section 4.

Local Feedback Communication Protocol. We refer to the
link from the interface board to the laptop as the local feedback com-
munication protocol. The microcontroller sends data packages of length
8 bytes back to the laptop through USB. The first byte is reserved for
the system. The second byte is used for the gyro data. The third and
forth bytes are used for the sonic sensor. The others are free for future
use.
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Figure 1.12.  MVWT Electronics Design. The current version of the interface elec-
tronics use the Microchip PIC microcontroller (enclosed in rectangle) to interface to
the laptop, two onboard sensors, and the motor controllers.

5.3. ELECTRONICS DESIGN

The primary purpose of the electronics design is to provide an in-
terface between the laptop and the other electrical components, such as
electrical fans, the gyroscope, and ultrasonic sensors. In Figure 1.12, the
big block on the left side is the microcontroller. From top to bottom,
there are four channels connecting to the right side. The first one is the
data flow between the microcontroller and the laptop. It is a two-way
USB channel. The second one is the gyro data flow. It is a one-way
A /D converter channel from the gyro to the microcontroller. The third
one is the ultrasonic sensing channel, and the microcontroller sends out
firing pulses by PORT A and gets ON_time pulses back by PORT B.
The fourth one is the one-way PWM channel which sends the PWM
control signals to motor controllers.
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Figure 1.13.  The structure of the MVWT software: Software on the PIC communi-
cates between the laptop and the sensors and motors via the USB bus. A QNX USB
driver is managed by the operating system to created a /dev/usbpic interface to the
PIC. The RHexLib Module Manager manages various RHexLib modules for control,
reveiving communication from the vision system, logging data, and communicating
with other vehicles and the master controller.

6. SOFTWARE ENVIRONMENT

The software environment for the MVWT consists of the operating
system (OS), the low level device drivers, inter-vehicle communications
and a library and API that tie everything together. We discuss each of
these components in turn. Figure 1.13 illustrates the structure of the
software on an MVWT vehicle.

Operating System. The operating system running on the vehicles
and on the command and control workstation is QNX, a freely available
real time OS [26]. QNX is a POSIX compliant UNIX-like OS that pro-
vides for real-time scheduling and interprocess communication. Most of
the software we have written for the MVWT (except the device drivers)
is independent of the details of QNX and will run equally well on other
versions of UNIX. We chose QNX because it is highly configurable for
embedded systems (the kernel can, for example, be configured to be
quite lean) and because several related software enabled control projects
[28, 8, 16] also use QNX, allowing us to easily share software.
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Hardware Interface. As we described in Section 5, commu-
nication between the microcontroller on the interface board and the
processor is via a USB bus. We have written a QNX device driver
that manages this interface. The details of the driver are beyond the
scope of this paper so we only describe its operation here. Starting the
usb-pic driver places a UNIX-style character device in the filesystem
at /dev/usbpic. Integer triples of the form (0x05,L,R) can be written
to /dev/usbpic and are sent to the microcontroller where they are con-
verted into PWM signals and sent to the motors. There is an empirically
measured map f : {0,1,...,255} + R=Z0 that maps commands ¢ into the
steady state force f(c) generated by the fans (see Figure 1.5). Thus
to generate 2.5 N on the left fan and 0.1 N on the right fan, the user
writes (05, f71(2.5), f71(0.1)) to /dev/usbpic. Software may also read
integers from /dev/usbpic that are generated by sensors (such as the
gyroscope described in Section 4).

RHexLib. Control software on the MVWT vehicles and com-
mand and control station are written in C++ using the RHexLib library
and API [3]. RHexLib is freely available and was originally written for
the RHex robot [24, 18], although it is quite general and can be easily
adapted to new applications. RHexLib programs consist of a collec-
tion of Modules and a static schedule set up by the user for executing
the modules in an interleaved fashion. The schedule is executed by the
RHexLib ModuleManager. RHexLib provides a template for modules
in the form of a C++ abstract base class with the following abstract
methods that must be defined by user modules that inherit from it:
init(), activate(), update(), deactivate(), and uninit(). The
init () and uninit () methods are called when the modules are added to
the ModuleManager and serve as the constructor and destructor for the
module (for memory and resource (de)allocation). The activate() and
deactivate () methods are called when the Module Manager activates
or deactivates the module. When a module is active, the ModuleMan-
ager calls the module’s update method at some frequency that is an at-
tribute of the module. For example, the most basic single vehicle MVW'T
program consists of three modules: VisionModule, ControlModule and
DeviceWriter. The update methods of these modules read vehicle po-
sition data from the vision system, compute a state-based control law
and write the computed forces to /dev/usbpic respectively.

Simulator. We also have a virtual device that can replace the actual
USB device driver. It sends force commands written to /dev/usbpic to a
numerical simulator. The simulator integrates the forces with respect to
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the model and broadcasts vehicle position data just as the vision system
does. Thus, the same RHexLib code that runs on the actual vehicles
may also be tested in simulation without any code being rewritten.

Trajectory Generation. An auxiliary component of our software
environment is the Nonlinear Trajectory Generation (NTG) package [20].
NTG computes optimal trajectories given initial, trajectory, input and
final constraints and can be used to generate feasible trajectories for the
MVWT vehicles to follow. Because the computation of such trajectories
takes time (0.5 to 1.5 ms), NTG is run as a separate thread so that the
main inner loop control thread can continue to control the vehicle.

7. COMMUNICATIONS

Communication between the vehicles and with command and con-
trol computers is made possible by wireless Ethernet using an 802.11b
access point. The computer onboard each vehicle is equipped with an
802.11b PC card, the standard QNX TCP/IP stack, and its own unique
IP address. The wireless network serves three purposes. First, the setup
provides for ease of development by allowing us to remotely modify,
compile, and start the control algorithms on the vehicles. Second, coop-
erative control algorithms use the wireless network to communicate with
other vehicles and the master controller. Lastly, the real-time position
and orientation information for each vehicle is broadcast to the vehicles
and master controller using the UDP protocol.

The implementation of software algorithms for cooperative control is
facilitated by a communications software suite of our own design called
Libcomm. Libcomm is a library that provides communication primi-
tives for real-time control applications and abstracts away the underly-
ing network protocol. It consists of several parts: A standard C library
providing the communications API; a C++ module for RHexLib that
wraps the API and makes it useful when designing control applications
with RHexLib; and a MATLAB implementation of the API for rapid
prototyping of control algorithms at a high-level. The Libcomm API is
not tied to any particular network implementation and allows additional
network backends to be added to the library with ease. The backend
currently in use by the MVW'T project uses the UDP protocol for all
communications traffic. UDP is an adequate choice for unreliable wire-
less networks because of its lightweight implementation, which utilizes
datagrams rather than more expensive streams.

With Libcomm, message passing between hosts consists of sending
a list of parameters with their corresponding values to a given host or
broadcast to all. In addition, each message has a type which identifies
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it to the appropriate RHexLib module on the receiving end. Naming of
hosts is achieved in a distributed fashion by the automatic broadcast of
a string identifier when Libcomm is initialized. This allows each vehicle
to keep track of all other vehicles within communications range without
requiring knowledge of the naming method on the underlying network
protocol.

Investigation of coordinated control in ad-hoc networks is a goal of
the MVWT project. Ethernet over 802.11b provides a managed rather
than ad-hoc wireless network. In order to study the performance of ad-
hoc networks further, a Bluetooth backend for Libcomm is currently in
development. See Section 9 for more details.

8. MODELING AND CONTROL

This section details our initial approaches to controller design. We be-
gin with a discussion of a general system model and its features. We then
discuss the effects and implications of closed-loop delay on the system,
and describe several controller designs that have been demonstrated on
the testbed and/or in simulation.

8.1. SYSTEM MODELING

A significantly simplified model of a single MVWT vehicle is given in
Figure 1.7 of Section 2. Although useful for simple, moderately aggres-
sive control, the model neglects factors such as closed-loop delay, vision
noise and disturbances, vehicle disturbances and actuator dynamics. A
more general version of the system equations that includes these consid-
erations is given in equations (4) through (7).

é = ga(§,a(udes)) (4)
u = ha(g) (5)
x = f(x,u)+d(x) (6)
y h(x(t —7(t))) + n(x) (7)

Equations (4) and (5) represent the actuator dynamics. The forces com-
puted by the controller are denoted uges € U C R?, q represents the
fact that these forces are quantized for input into our digital electron-
ics, and u € U represents the actual forces that the fans apply to the
vehicle. The input space U is defined by the bounds on our actuation
variables. The vector & € R™ represents a state-vector of the actuator
system (electronics, motor controller, motor and fans), g, and h, rep-
resent the dynamics of the actuators. For example, we could model our
actuator system as a first-order lag where u = ¢, in which case ¢ € R2.
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More sophisticated models could augment the state with battery voltage
and g, and h, could include the evolution and effect of battery voltage
on the actuators.

Equation 6 represents the vehicle dynamics. The variable x is the
vehicle state vector [z,y,0,,7,0]7 € RS. The vehicle dynamics are
described by f, and d represents disturbances to the vehicle, such as
bumps in the floor or wind from other vehicles’ fans.

Equation 7 represents the sensor dynamics. The vector y € RS is the
full state estimate formed by discrete-time (60 Hz) measurements of z,
y, and 0. The function 7 : R — R represents the closed-loop system
latency, not including delay due to actuator dynamics. Note that this
latency may, in general, be time dependent. The function n represents
measurement noise and includes errors in calibration of the map from
pixel coordinates to floor coordinates.

The function f in (6) consists of a nonlinear input term and a (gen-
erally nonlinear) friction term. If we assume linear friction, perfect ac-
tuation (u = uges), and perfect sensing (y = x), then we recover the
equations presented in Section 2.2. These are repeated here for com-
pleteness:

mi = —ut+ Fcos6
mj = —py+ Fsing (8)
JO = —yb +Try

where F £ F; 4+ Fr and T £ Fr — Fy,. The force ranges for F, and Fp
are [0, Fjuaz), and so the input space can be described by (Fr, Fg)! €
U = [0, Fruaz) X [0, Fynaz)- Note that the model above has hovercraft-like
dynamics, particularly because we have assumed linear viscous friction.

8.2. TIME DELAY

The closed-loop time delay, not including actuator delay, was deter-
mined experimentally to be 65 ms. This is the average time from when
an event occurs on the floor to when a signal is sent to the actuators
based on this event. The value was determined by replacing one of the
identification blobs on the vehicle hat with a bank of LED’s. When the
LED’s were lit, the identification blob would be obscured and the vi-
sion system would lose the vehicle. A controller was written that would
turn the LED’s off when the vision data indicated that the vehicle was
missing and back on when the vision data indicated that the vehicle was
visible. The vision data then consisted of a train of square waves indi-
cating whether or not the vehicle was visible, and the period of these
waves was twice the closed-loop time delay. Table 1.1 is a break-down
of approximately where the time-delays occur.
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delay Event elapsed time
(ms) (ms)
0 LED on/off 0
8 Camera takes picture 8
3 Vision broadcasts data 41

3

6 Laptop receives data 47
1 Controller receives data 48
6 | PIC receives control signal | 54
1 LED on/off 65

Table 1.1 . The closed loop time delay of the system not including actuator delay.
The table shows various factors that contribute to the delay.

8.3. LINEAR CONTROL TECHNIQUES

In this section, we discuss linearization of the model in equation 8.
Although the model given is uncontrollable around any equilibrium, we
describe a class of simple trajectories for which the error dynamics asso-
ciated with tracking can be linearized to regain controllability. Results
on stabilization of the error dynamics for a circular trajectory (described
below) are then given, using both LQR and classical control techniques.

8.3.1 Linearization. The equilibria for the dynamics in equa-
tion (8) are any constant position and orientation with zero velocity.
However, the linearized dynamics are not controllable around any such
equilibria. To achieve controllability, we can consider, for example, the
error dynamics around a constant velocity &0 and heading 0,0y, yield-
ing a reference state

[l'r(tO) +ti:noma yr(tO) +tynoma Hnoma i’noma ynoma 0]7

where ¥nom = Tnom tan(fpom). The nominal inputs are F, = Fr =
From = (NZnom) /(208 0pom). The error dynamics, denoting the error
states with a subscript e, become

mie = —N(Ze + Tnom) + F cos(0c + Opom)
mye = —77(% + ynom) + F Sin(ae + 0nom>
JOe =~ + Try. (9)

The controllable equilibria of equation 9 are any constant [ze, Ye, Oc, e, e, 06]
such that 0, = . = 9. = 0. = 0. To track the straight line path exactly,

we can specify that (x.,ye) = (0,0) and use linear control techniques to
stabilize the error dynamics to this equilibrium (the origin).
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Rather than tracking a straight line, a vehicle motion more suited to
the spatially constrained testbed floor is to trace a circular path with
a constant radius and constant angular velocity. Such motion is most
easily analyzed when the model in equation (8) is written in polar co-
ordinates. As with tracking the straight line path above, tracking the
circular path becomes a stabilization problem in the (polar) error dy-
namics, for which we design LQR controllers. Experimental results for
this are given in the next section.

8.3.2 LQR Control. The error dynamics in equation 9 have
been stabilized using an linear quadratic regulator (LQR) controller in
simulation and on the testbed. An LQR controller has also been exper-
imentally validated for stabilization along the circular path described
above, namely a trajectory that moves with constant radius and angu-
lar velocity around the post obstacle in the middle of the testbed floor.
Figure 1.14 depicts the response of the controller to a step change in
radius in both an xy plot and a time history of the absolute position
error. On the xy plot, the step command was received when the vehicle
was at the position indicated by the inner vehicle on the figure. The
solid line depicts the actual path the vehicle took, and the dashed line is
the reference. On the error time history, the step command was received
at the beginning of the time span of the plot. The gyro sensor was used
for angular rate measurement during this experiment.

The optimal LQR gain matrix K for the vehicle before the step re-
sponse is different from the optimal gain matrix after the step. This is
due to the fact that the linearized A and B matrices depend on the ra-
dius (p) and angular velocity (£) of the circular trajectory to be tracked.
The above results, therefore, reflect LQR control that is gain scheduled
between the two trajectories. The gain schedule we have designed is
scheduled on thirty values of p between 0.1 m and 3.0 m, and ten val-
ues of & between 0.1 rad/s and 1.0 rad/s. Structural symmetry in the
K matrix is exploited to allow negative angular velocities in the same
magnitude range. Bilinear interpolation for each of the elements of K is
used to allow reasonable tracking of any (p, £) in the given ranges.

This general gain scheduled design allows us to track more general tra-
jectories than indicated above, and can be used, for instance, to change
directions in mid-flight operations. This maneuver has been experimen-
tally validated on a triangular formation of three vehicles, where each
vehicle uses it’s own local copy of the LQR controller described above.

8.3.3 Classical Control. Classical lead compensators have
been designed to stabilize the vehicle about a circular reference tra-
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Figure 1.14. LQR step response. Vehicle was commanded to increase radius from

1 m to 2 m while traveling at 0.5 m/s.

jectory. The primary difference between this approach and the LQR
controller described above is that it is a dynamic compensator rather
than a static set of gains, which helps to smooth out the effects of noisy
vision data. Robustness to time delay can also be treated explicitly in
controller design. Another significant difference in this controller imple-
mentation as compared to the LQR was that trajectory center, radius,
and velocity were specified, but position along the trajectory was not,
reducing the state dimension to 5. This type of controller would be use-
ful in a situation where an obstacle avoidance algorithm specifies at each
instant a desired velocity rather than position; see for example [27].

A nested-loop approach was used to design the controllers. First, a
first order lead compensator of the form Cy = K ?—Tz was designed as an
inner loop to control the orientation of the vehicle with respect to the
dynamics linearized about driving at a constant velocity in a straight
line. A proportional controller was then implemented as an outer loop
to command the reference orientation to drive the vehicle to the correct
radius. Velocity along the trajectory was also controlled using a static
proportional gain. Figure 1.15 is the block diagram of this controller.

The primary advantage of the classical design methodology was the
ease with which time delay could be explicitly taken into account to help
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velocity error
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§+32 T
Theta

radius error theta ref

Figure 1.15.  Schematic of classical controller. The error in radius is used to generate
a reference angle, then lead compensation is used to control to this angle. Speed along
the trajectory is regulated using proportional control.

Figure 1.16.  Step response xy plot. Vehicle was commanded to increase radius from
1 m to 2 m while traveling at 0.5 m/s.

ensure robustness. The controllers were designed to have at least 60 de-
grees of phase margin after taking into account 100 ms of time delay. The
maximum bandwidth achieved by the inner loop (orientation) controller
was 6 rad/s with 65 degrees of phase margin (after time delay taken into
account) using the parameters a = 2,0 = 30, K = 90 in the lead com-
pensator given above. Bandwidth in the outer loop (radius) controller
was 0.45 rad/s with 60 degrees of phase margin (again with time delay
accounted for) using unity gain. A proportional gain of 8 was used to
control the speed along the trajectory. Note that these controllers were
designed for early vehicle prototypes and so these parameters would be
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different for maximum performance on the newer vehicles. Figure 1.16
is an xy plot of the step response in radius from 1 m to 2 m at 0.5 m/s
velocity. For the step out, 10% overshoot was observed in both simula-
tion and testing. For the opposite case, the step in from 2 m to 1 m,
20% overshoot was observed in both simulation and testing.

8.4. NONLINEAR CONTROL TECHNIQUES

The linear techniques above do not necessarily respect the nonlineari-
ties of the model or the input constraints, i.e. that fact that the two fan
forces Fy, and Fr are uni-directional and bounded by Fj,q.. An explicit
nonlinear feedback control law that does respect the nonlinearities of the
model in equation 9 is currently under construction.

Optimization based control is a powerful tool in that such nonlinear-
ities and constraints can explicitly be accounted for in the optimization
problem. By optimization based control, we refer to the generation of
optimal trajectories for path planning. The trajectories may be tracked
by an inner-loop control or may implemented in a receding horizon fash-
ion. Both numerical and experimental results for single vehicle optimiza-
tion based control have been carried out and are detailed in the work
by Chauvin, Sinegre and Murray [5]. The optimization itself is carried
out using the Nonlinear Trajectory Generation software package [20].
Specifically, open-loop time optimal trajectories were generated on-line
by NTG, for point to point motions of a testbed vehicle. Tracking of the
trajectories was achieved using an LQR-based inner-loop control and the
experimental results are given in [5]. Simulations for receding horizon
control of single and multiple testbed vehicle are also detailed in [5] and
[7], respectively.

Although the optimal control framework allows you to specify arbi-
trary (well-posed) problems with constraints, the trade-off of course is
that we are subject to the complexities and reliability issues related to
on-line optimization. Namely, while and LQR controller may go unsta-
ble when the inputs are saturating, an optimization based controller can
go unstable if the computations take too long or fail to give an answer
all together. These issues are discussed in [5].

9. FUTURE DIRECTIONS

The MVWT is in a constant state of flux due to the variety of needs
various researchers at Caltech and elsewhere place upon it. We conclude
our report by describing some of the advances we have planned for the
near future that we hope will increase the usability of the testbed for
new research.
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First, we plan to add to and enhance the sensor suite available to the
MVWT control designer by adding new or upgrading old sensors and
by providing more complete sensor fusion and filtering in the software
environment. In particular, integrating the gyro data and fusing it with
the orientation data from the vision system will make available a better
state estimate for the vehicle. Alternatively, accelerometers can be added
to the vehicle so that it is not dependent on the vision system at all and
therefore usable outside of our laboratory.

Second, we plan to explore other communications systems in addition
to wireless Ethernet, such as Bluetooth, a standard for short range wire-
less communication that has a variable communications range dependent
on the transmission power. Such communications systems are useful for
battery-powered vehicles wherein the power draw of all systems needs
to be minimized. In this direction, a backend to our communications
software that utilizes the L2ZCAP Bluetooth protocol on the QNX op-
erating system is currently under development. We are also exploring
the possibility of simulating bandwidth limited and congested networks
in our communications software so that the robustness of our control
algorithms to such disturbances can be investigated.

Third, we plan to greatly increase the flexibility of our software sys-
tems on the vehicles and on the command computers. This will involve
designing monitor software and user interfaces for easily issuing high
level commands to the vehicles. We also have begun work toward pro-
viding standard interfaces between the low-level RHexLib software and
other software architectures such as the Open Control Platform [28] and
Ptolemy [4]. Finally, we have begun implementation of a new formal pro-
gramming language called CCL [17] for writing verifiable control code.

10. CONCLUSION

Our goal with the Multi-Vehicle Wireless Testbed is to explore and
validate new research advances in cooperative control by providing a
challenging and realistic environment for their implementation. Our ex-
pectation is that this document, detailing the MVWT hardware, labora-
tory infrastructure, electronics design, software systems and basic mod-
eling and control issues, will serve as a practical foundation for future
applied work on the MVWT and in multi-vehicle systems in general.
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