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Abstract

We consider the problem of estimating the internal state
(hidden variables) of a class of hybrid guarded-command
programs. Such programs model dynamical systems that
have both continuous and discrete states. For these sys-
tems we supply a definition of weak observability and
for the case where a given system is weakly observ-
able we construct an observer that takes advantage of
the special guarded-command structure of the program.
We then focus on a particular example, the “RoboFlag
Drill” wherein two teams of robots compete in a sim-
plified capture-the-flag-like game. For this system, the
state is large enough and complex enough that the simple
observer is not practical. Thus we propose an efficient
observer that takes advantage of the particular structure
of the RoboFlag Drill.

1 Introduction

In this paper we examine the problem of observing the
values of hidden variables in a class of guarded com-
mand programs. Such programs, which consist of a set
of guard-rule pairs, are typically used in program ver-
ification to formally model algorithms. In this paper
we extend this use to modeling a kind of hybrid system
wherein there is an interplay between discrete and con-
tinuous variables. In particular, we are concerned with
decentralized multi-robot systems, such as are found in
robot soccer, where continuous variables represent phys-
ical quantities such as position and velocity, and discrete
variables represent the state of the internal logical sys-
tem or communications protocol used by the robots to
coordinate their actions. The observation problem of in-
terest is then to observe the internal discrete part of the
system given the evolution of the continuous part.

The main contributions of this paper are to define, in
Section 2, the observation problem for transition sys-
tems as represented by guarded command programs and
to construct observers for such systems. After defining
the requirements of an observer for a guarded command
program in general, we examine in Section 3 a particular
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class of guarded command programs. For this class we
propose a candidate observer and show that if the sys-
tem is observable then the candidate indeed satisfies the
requirements of an observer.

In Section 5 we introduce a multi-robot task similar to
the game “capture the flag” and specify it in the form of
the particular class of guarded command programs de-
fined in Section 3. We show that, given the evolution of
the positions of the robots, the discrete state of the pro-
gram, representing an assignment of defending robots to
attacking robots, is observable. We then note in Section
6.3 that, due to the large state space of the system, the
observer defined in Section 3 is not practicable. There-
fore we define a more efficient, but possibly slower, ob-
server. We end the paper with simulations of the capture
the flag system that demonstrate the convergence of the
two observers on various examples.

Related Work: Hybrid systems characterized by the
interaction of continuous variables, governed by differ-
ential or difference equations, and by discrete variables,
described by finite state machines, if-then-else rules or
propositional and temporal logic have been examined
by many researchers [3, 8, 4]. Guarded commands pro-
grams are introduced in [7] and are used to model cap-
ture the flag like systems in [9]. We have adopted this
way of modeling hybrid systems because it is particu-
larly suitable for describing a distributed system that
may be parameterized by the number of agents in it. The
guarded command formalism allows us to implicitly rep-
resent large state spaces that would have to be explicitly
represented in other formalisms. Observability of hybrid
systems has been examined in [2] for the MDL modeling
framework, in [11] with piecewise discrete time linear sys-
tems, and in [1] where piecewise-linear continuous-time
systems are studied. In the discrete event literature the
observability problem for finite automata is examined
in, for example, [5] where an observer similar to the one
described in this paper is proposed. The systems we ex-
plore in this paper have continuous variables, however,
and it is not obvious that such observers can be used
in our case. Observability of programs is also related to
information flow security [10] where the problem of en-
suring that hidden variables can not be observed from
observable variables.



Fig. 1: Trajectories σ2(t) and σ3(t) are weakly equivalent
trajectories according to Definition 2.4 while σ3(t)
is not weakly equivalent to either σ1(t) or σ2(t).

2 Definitions

2.1 State Transition Systems

Consider a set of variable symbols V with types type(v)
for each v ∈ V . A state s is a function from V into U
where U =

⋃

v∈V type(v). The set of all states is denoted
S. For a subset W of V , we denote by S|W the set of
states

S|W = {s|W : s ∈ S}.

A transition relation on S is a relation R ⊆ S×S. The
set S is called the domain of R and is denoted dom(R).
If sRs′ and v ∈ V , we will write v to refer to s(v) and v′

to refer to s′(v). For example, if we denote R by

x′ < y ∨ y′ = z (1)

then sRs′ ⇔ s′(x) < s(y) ∨ s′(y) = s(z).

Given a transition relation R, an execution of R is a
sequence σ = {st}t∈N such that stRst+1 for all t ∈ N.
The set of all executions of R is denoted E(R). If σ ∈
E(R) is fixed and v ∈ V we denote by v(t) the value
σ(t)(v). The trajectory of v ∈ V with respect to σ is
the sequence {σ(t)(v)}t∈N.

We define transition relations over subsets W of V , as
in R ⊆ S|W × S|W , to enforce the notion that R does
not have information about variables in V −W . We may
then extend R to all of V as follows.

Definition 2.1 The extension of R to S is defined by

exS(R) = {(s, s′) ∈ S × S : s|dom(R) R s′|dom(R)}.

2.2 Observability

We now define two notions of observability for transi-
tion systems (both in Definition 2.5). The first is the
standard notion: The system is observable if any two
execution sequences can be distinguished by their out-
puts. The second is a weaker definition motivated by

the fact that in the systems in which we are interested
(such as that described in Section 5), uniqueness is not
guaranteed. That is two different states may transition
to the same state. Thus, we use the notion of “weakly
observable”: The system is observable as long as any two
executions that do not collapse onto the same state be-
fore stabilizing can be distinguished from their outputs.
The following definitions state these ideas formally.

Definition 2.2 Given a transition relation R on S and
an output function h : S → U , two executions σ1, σ2 ∈
E(R) are distinguishable if there exists a time t such that
h ◦ σ1(t) 6= h ◦ σ2(t).

Definition 2.3 Let R be a transition relation on S, the
set A ⊂ S is the ω-limit set of R, denoted by ω(R), if
the following hold:

(i) if s ∈ A and s R s′, then s′ ∈ A;

(ii) for each σ ∈ E(R), there exists a time tσ such that
σ(tσ) ∈ A for all t ≥ tσ.

Definition 2.4 Given a transition relation R, two ex-
ecutions σ1, σ2 ∈ E(R) are weakly equivalent, denoted
σ1 ∼ σ2, if there exists a time t∗ such that σ1(t

∗) /∈ ω(R)
and σ1(t) = σ2(t) for all t ≥ t∗.

Examples of weakly equivalent and inequivalent trajec-
tories are illustrated in Figure 1.

Definition 2.5 (Observability and Weak Observability)
The transition relation R is said to be observable with
respect to the output function h : S → U if any two
executions σ1, σ2 ∈ E(R) are distinguishable. The system
is weakly observable if whenever σ1 � σ2 then σ1 and σ2

are distinguishable.

In this paper we suppose that the programs we wish to
observe are defined on V = H ∪ O, where H ∩ O = ∅,
and H and O consist of hidden and observable variables
respectively.1 In this case h is essentially a projection.
In the sequel we construct an observer R̂ for the couple
(R, h) that is defined over a variable set W such that
O ⊆ W and H∩W = ∅. We will denote by α the vector
of all variables in H and by α̂ a variable symbol in W −O
that R̂ uses to estimate the value of α.

Problem 2.1 (Observer) Let V = H∪O and W be such
that O ⊆ W and H∩W = ∅. Suppose that α is the vector

1If the system under observation has output function h that is
not simply a projection of the state, we could define an auxiliary
variable y, set O = {y} and require that y = h ◦ σ(t) for all t and
all σ ∈ E(R).



of all variables in H and suppose that α̂ ∈ W −O. Given
a transition relation R : S|V ×S|V , the transition relation
R̂ : S|W ×S|W is an observer for R if the following hold
for all σ ∈ E(ex (R) ∩ ex (R̂)):

(i) there exists a time t∗ such that α̂(t) = α(t) for all
t ≥ t∗;

(ii) there exists a metric d on type(α̂) such that for
each ε there exists a δ such that for all t

d(α̂(0), α(0)) < δ ⇒ d(α̂(t), α(t)) < ε.

2.3 Guarded Command Programs

One way to specify transition relations is with guarded
command programs, which we now define. A guard is a
predicate on states and a rule (or command) is a relation
on states. A guarded command is then a pair g : r
where g is a guard and r is a rule. As in (1), we denote
guarded commands using primed and unprimed variable
symbols. For example,

x > 0 : x′ = x + y (2)

denotes the guarded command relating two states s1 and
s2 by

s1(x) > 0 : s2(x) = s1(x) + s1(y).

If s is a state and g : r is a guarded command, we say
that g : r is applicable in state s if g(s) is true.

Definition 2.6 A guarded command program consists
of a set Σ of guarded commands.

A guarded command program defines a transition rela-
tion (giving the operational semantics of the program)
wherein all commands are executed in parallel to give a
new state.

Definition 2.7 Given a guarded command program Σ
over variables V , the transition relation corresponding
to Σ is the relation RΣ ⊆ S|V × S|V where s RΣ s′ if
and only if

∀g : r ∈ Σ . g(s) ⇒ s r s′.

Furthermore, if a variable v ∈ V does not occur primed
in any command applicable in s, then s(v) = s′(v).

Note that the composition Σ1 ∪ Σ2 of two guarded
command programs Σ1 and Σ2 has defining relation
RΣ1

∩RΣ2
. The observer problem for guarded command

programs is: Given Σ construct Σ̂ so that RΣ̂ is an ob-
server for RΣ.

3 Problem Statement

We now restrict our attention to a certain class of
guarded commands programs. Let O = {z1, ..., zNO

}
and H = {α1, ..., αNH

} and put V = O∪H. We suppose
that each zi has a associated with it Ki commands of
the form

Pi,j(z, α) : z′i = fi,j(z), j ∈ {1, ...,Ki} (3)

and each αk has associated with it Mk commands of the
form:

Qk,l(z, α) : α′
k = gk,l(α) l ∈ {1, ...,Mk}, (4)

where fi,j(·) and gk,l(·) are functions. We use Σ to de-
note the set of all the commands for the hidden and ob-
servable variables described in (3) and (4). We suppose
that type(zi) = R and denote the vector (z1, ..., zNO

) by z
and the vector (α1, ..., αNH

) by α. We leave U , type(α)
unspecified for now and suppose that it represents the
discrete part of the system.2 Thus, Σ defines a relation
R|V with domain (V → R

NO × U). We require that the
following for any state s:

(A1) For each i there is exactly one j ∈ {1, ...,Ki} such
that Pi,j(z, α) is true, and for each k there is ex-
actly one l ∈ {1, ...,Mk} such that Qk,l(z, α) is
true.

Assumption (A1) implies that there cannot be two dif-
ferent update rules for z (or α) acting simultaneously.
(A1) also implies that at any time there is at least one
update rule holding at that time.

The other assumption we have made (implied by struc-
ture (3) and (4)) is that Σ is deterministic (i.e. that RΣ

is a function). We intend to relax this somewhat strong
assumption in future work.

4 Observer Construction

We now turn our attention to the question of when an
observer exists for Σ. We first propose a candidate ob-
server Σ̂ for (3)-(4). We then show property 2.1(ii), by
choosing a particular d defined on U . Further if Σ is
weakly observable we can also show property 2.1(i) –
that is, that Σ̂ is an observer for Σ.

We use the variable symbol α̂ to represent an estimate
of α, with type(α̂) = 2U . The intention is that α̂ will
denote the set of all possible values of α at any given
time in an execution of Σ ∪ Σ̂. Initially α̂ = U . We

2For simplicity we assume that type(αi) = type(αj) although
this certainly does not need to be the case.



define Σ̂ to be the program containing the single clause:

true : B′ =

NO
⋂

i

Ki
⋃

j

{α : z′i = fi,j(z) ∧ Pi,j(z, α)} ∩ α̂

∧ α̂′ =
⋃

α∈B′

{

β : ∀k.βk ∈
Mk
⋃

l=1

gk,l({α} ∩ {γ : Qk,l(z, γ)})

}

(5)
where B is an auxiliary variable used for clarity. The
assignment to B′ collects the set of all values of α that
agree with the observation z′

i = fi,j(z, α) and that are
currently candidates (they are also in α̂). The assign-
ment to α̂′ maps this forward using the functions gk,l on
each component. An example illustrates the process.

Example 4.1 Let NO = NH = 1, type(α) =
{−2,−1, 1, 2}, and z ∈ R. Instantiate (3)-(4) by:

z < α : z′ = z + 0.1

z > α : z′ = z − 0.1

z = α : z′ = z

|α − z| ≤ 0.5 : α′ = −α

|α − z| > 0.5 : α′ = α

where z observable variable and α needs to be estimated.
Here K1 = 3 and M1 = 2. Suppose that initially z = 0,
and α = 2. The first eight steps of the resulting execution
of Σ ∪ Σ̂ are shown in the following table:

z α α̂
0.0 2 {−2,−1, 1, 2}
0.1 2 {1, 2}
0.2 2 {1, 2}
0.3 2 {1, 2}
0.4 2 {1, 2}
0.5 2 {1, 2}
0.6 2 {−1, 2}
0.7 2 {2}
0.8 2 {2}

From the first step (z := 0.1 → z := 0.2) the observer
determines that α must be positive because the first z
clause was used. The estimate then remains the same
until z changes from 0.6 to 0.7.

We now show that Σ̂ is indeed an observer for Σ.

Theorem 4.1 Given Σ defined in (3)-(4), the program
Σ̂ defined in equation (5) satisfies the following proper-
ties:

(1) For all t, α(t) ∈ α̂(t) (correctness);

(2) If Σ is weakly observable, then 2.1(i) holds for Σ̂
(convergence);

(3) Property 2.1(ii) also holds for Σ̂ (small error).

Therefore, Σ̂ is an observer for Σ.

Proof:

(1) Fix a particular execution. We prove (1) by induc-
tion on t. By assumption, α(0) ∈ α̂(0) = U . For the
inductive step, suppose that α(t − 1) ∈ α̂(t − 1). It suf-
fices to determine how the set-valued map in (5) taking
α̂ to α̂′ operates on the singleton {α(t − 1)}. First note
that if α̂ = {α(t − 1)} then B′ = {α(t − 1)} as well.
In this case, for each k there is at least one l for which
the argument for gk,l equal to {α(t − 1)} and for which
gk,l(α(t − 1)) = αk(t).

(2) By (5) for any given β′ ∈ α̂′ there exists an β ∈ B′

such that

β′
k ∈

Mk
⋃

l=1

gk,l({β} ∩ {γ : Qk,l(z, γ)})

for each k. Also β ∈ B′ implies that β ∈ α̂ and that
for every i there is a j such that z′

i = fi,j(z)∧Pi,j(z, β).
This in turn implies that the sequence {(z(t), β(t))}t∈N

corresponds to an execution σ of Σ with σ(t)(β) = β(t)
and σ(t)(z) = z(t) for all t. Also, β(t) ∈ α̂(t) for all
t. Therefore, for any β′, γ′ ∈ α̂′ there exist sequences
{(z(t), β(t))}t∈N and {(z(t), γ(t))}t∈N corresponding to
executions of σ1 and σ2 of Σ, where σ1(t)(β) = β(t),
σ2(t)(γ) = γ(t), σ1(t)(z) = σ2(t)(z) = z(t) for all t.
Since h ◦ σ1(t) = h ◦ σ2(t) = z(t), σ1 ∼ σ2 and so there
exists a time t such that σ1(t) = σ2(t) implying that
β(t) = γ(t). Thus, the two sequences {β(t)}t∈N and
{γ(t)}t∈N collapse onto the same value. This will occur
for the sequences corresponding to any two elements in
α̂, thus we conclude that α̂ converges to a singleton.

(3) Define d : 2U × 2U → R by

d(A,B) , |A − B| + |B − A|. (6)

It is straightforward to show that d is a distance function.
Note that by (1), α(t) ∈ α̂(t) and thus

d(α̂(t), α(t)) = |α̂(t) − α(t)| = |α̂(t)| − 1.

Thus, to show 2.1(ii), we need only demonstrate that |α̂|
is non-increasing. Since B′ is of the form X ∩ α̂, clearly
|B′| ≤ |α̂|. Now, by (A1), we have that for each α and
each k there is exactly one l such that Qk,l(z(t), α) is
true. This implies that in (5) |α̂′| ≤ |B′|.
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Fig. 2: An example state of the RoboFloag Drill for 5 robots.
Here α = {3, 1, 5, 4, 2}.

5 An Example: The RoboFlag Drill

In this section we consider a game called RoboFlag that
is similar to “capture the flag”, only for robots [6]. Two
teams of robots, say red and blue, each have a defensive
zone that they must protect (it contains the team’s flag).
If a red robot enters the blue team’s defensive zone with-
out being tagged by a blue robot, it captures the blue
flag and earns a point. If a red robot is tagged by a
blue robot in the vicinity of the blue defensive zone, it
is disabled. We do not propose to devise a strategy that
addresses the full complexity of the game. Instead we ex-
amine the following very simple drill or exercise. Some
number of blue robots with positions (zi, 0) ∈ R

2 must
defend their zone {(x, y) | y ≤ 0} from an equal number
of incoming red robots. The positions of the red robots
are (xi, yi) ∈ R

2. An example for 5 robots is illustrated
in Figure 2.

The red robots move straight toward the blue defen-
sive zone. The blue robots are assigned each to a red
robot and they coordinate to intercept the red robots.
They start with a random (bijective) assignment α :
{1, ..., N} → {1, ..., N}. At each step, each blue robot
communicates with its neighbors and decides to either
switch assignments with its left or right neighbor or keep
its assignment. We consider the problem of estimating
the current assignment α given the motions of the blue
robots – which might be of interest to, for example, the
red robots in that they may use such information to de-
termine a better strategy of attack. However, we do not
consider the problem of how they would change their
strategy in this paper.

The system can be described with guarded commands
as follows (the description here is similar to that in [9]).

The red robot dynamics ΣRed are described by the N
clauses

yi − δ > 0 : y′
i = yi − δ

for i ∈ {1, ..., N}. These state simply that the red robots
move a distance δ toward the defensive zone at each step.
The blue robot dynamics ΣBlue are described by the 3N
clauses

zi < xαi
: z′i = zi + δ

zi > xαi
: z′i = zi − δ

zi = xαi
: z′i = zi

for i ∈ {1, ..., N}. To define the assignment protocol, it
is useful to define, for i ∈ {2, ..., N − 1}, the predicates

downi , upi−1

upi , ¬downi ∧ xαi
> xαi+1

and for robots 1 and N the predicates

down1 , false downN , upN−1

up1 , xα1
> xα2

upN , false .

The assignment protocol dynamics ΣAssign are then
given by the 3N clauses

downi : α′
i = αi−1

upi : α′
i = αi+1

¬(downi ∨ upi) : α′
i = αi.

for i ∈ {1, ..., N}. Note that we have defined ΣAssign so
that α remains a permutation of {1, ..., N} at every step.
The complete RoboFlag specification is then given by

ΣRF , ΣRed ∪ ΣBlue ∪ ΣAssign .

For the blue robots we assume that initially zi ∈
[zmin , zmax ] and zi < zi+1. For the red robots, we as-
sume it is always the case that xi ∈ (zi−1, zi) and yi > 0.
We will denote with x = (x1, ..., xN ), y = (y1, ..., yN ),
z = (z1, ..., zN ), α = (α1, ..., αN ).

It should be apparent that ΣRF has the form described in
Equations (3) and (4). Furthermore, it is straightforward
to show that assumption (A1) holds. In the sequel we
will be concerned only with the system ΣBlue ∪ ΣAssign .
This is because the evolution of ΣBlue ∪ΣAssign depends
only on the initial values of x and y and not on the
evolution of ΣRed . Therefore, we may treat x and y as
parameters of ΣBlue ∪ ΣAssign and put O = {z1, ..., zN}
and H = {α1, ..., αN} corresponding to the problem def-
inition 2.1.

It can be shown that α stabilizes to the assignment α∗ =
(1, ..., N) by showing that (1) the number of “conflicts”
(pairs (i, j) such that i < j but xαi

> xαj
) decreases at



each step that changes an assignment and (2) once down i

and upi are both false for all i, they remain false forever
after. Once α stabilizes, the values of zi converge to the
interval (xαi

− δ, xαi
+ δ). For a given execution σ ∈

E(ΣBlue ∪ ΣAssign) we denote the time that α stabilizes
by tασ and the time that the whole system stabilizes by tσ.
Note that tασ ≤ tσ. The observation problem of interest
is then

RoboFlag Drill observation problem: Given initial
values for x and y and the values of z corresponding to
an execution of ΣBlue ∪ ΣAssign , determine the value of
α during that execution.

6 Observability of the RoboFlag Drill

To solve the RoboFlag Drill observation problem, we first
determine whether ΣBlue∪ΣAssign is weakly observable.
In particular, we want to know if inequivalent executions
of ΣBlue ∪ ΣAssign lead to different sequences for z.

6.1 Observability

Lemma 6.1 The program ΣBlue ∪ΣAssign is weakly ob-
servable.

Proof: (Sketch) Suppose xi ∈ (zi−1, zi) is invariant (i.e.
δ is small). For given initial values of x and y consider
any two executions σ1 � σ2 of ΣBlue ∪ ΣAssign (that
might arise from different initial values of α and z). Put
tα = max{tασ1

, tασ2
} and t∗ = max{tσ1

, tσ2
}. There are

two cases:

1. tα < t∗: Then σ1(t
α)(α) = σ2(t

α)(α). Since by
assumption σ1 � σ2, it must be that σ1(t

α)(z) 6=
σ2(t

α)(z).

2. tα = t∗: Then σ1(t
α − 1)(α) 6= σ2(t

α − 1)(α). If
σ1(t

α)(z) 6= σ2(t
α)(z) then we have the desired

result. Thus, suppose σ1(t
α)(z) = σ2(t

α)(z) , z∗.
Then it can be shown that for some i,

σ(tα − 1)(zi) = z∗i − δ but

σ(tα − 1)(zi) = z∗i + δ.

This is because at time tα−1 the values of α under
the two executions differ.

6.2 RoboFlag Observer

We now examine the observer Σ̂ as defined by (5) with
respect to ΣBlue ∪ ΣAssign . We have

Pi,1(z, α) ⇔ zi < xαi
, fi,1(z) = zi + δ,

Pi,2(z, α) ⇔ zi > xαi
, fi,2(z) = zi − δ,

Pi,3(z, α) ⇔ zi = xαi
, fi,3(z) = zi

and

Qk,1(z, α) ⇔ downk, gk,1(α) = αk−1,
Qk,2(z, α) ⇔ upk, gk,2(α) = αk+1,
Qk,3(z, α) ⇔ ¬(downi ∨ upi), gk,1(α) = αk.

Note that Pi,j only depends on zi and αi and so we
may also write Pi,j(zi, αi) and similarly for fi,j . Since
the system is weakly observable, the properties listed in
Theorem 4.1 hold. We may also determine the rate of
convergence of Σ̂. We have

Proposition 6.1 The observer Σ̂ applied to ΣBlue ∪
ΣAssign converges in at most tασ + 1 steps in any exe-

cution σ of ΣBlue ∪ ΣAssign ∪ Σ̂.

Proof: (Sketch) Recall that we have assumed that zi ∈
(xi, xi+1) is invariant. Since α(tασ) = α∗ = (1, ..., N),
from (5) we have that zi(t

α
σ) > xαi

for all i. This implies
that B′ = α∗.

6.3 A More Efficient Observer

Note that the number of possible assignments |U | is N !.
Therefore, without some efficient scheme for representing
α̂, the space and computational requirements for com-
puting the clause in (5) is prohibitively high. In this
section we propose an approximate observer for α (in
the sense that it may over-approximate the observer de-
fined previously) in the following manner. For each i we
keep a set mi ⊆ {1, ..., N} of possible assignments to the
ith blue robot. Initially, mi = {1, ..., N}.

First, for A,B ⊆ {1, ..., N}, define

A ≤ B ⇔ ∀i ∈ A ∀j ∈ B . xi ≤ xj

and define A≤ = {j : A ≤ {j}}. Also define A≥ = {j :
A ≥ {j}}. We use A 6≤ B to mean ¬A ≤ B and similarly
for 6≥. We now describe in Algorithm 1 a procedure
for mapping forward the sets m1,...,mN at each step.
Although we write the procedure as a loop to better
show its structure, it could equally be written (with some
effort) as a rule in a guarded command program.

In each iteration i of the for-loop in Algorithm 1 we
compute four sets: AP , DP , AN and DN (for “Add
Previous”, “Delete Previous”, “Add Next” and “Delete
Next”). AP and AN consist of elements from mi−1 and
mi+1 respectively that should be added to mi because
there is a possibility that αi could take on these values.
Similarly, DP and DN consist of elements from mi that
should be deleted from mi. Note that DP is the set of
elements in mi that must be exchange with some element
in mi−1 under the assumption that nothing in mi−1 has
exchanged with an element of mi−2. The boolean vari-
able flag is used to denote the truth of this assumption.
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Fig. 3: The performance of Σ̂ (a) and Σ̃ (b) for the RoboFlag Drill. Here, N=8.

Algorithm 1 Approximate Observer

m′
1 = (m1 − m≤

2 ) ∪ (m 6≤
1 ∩ m2)

flag = true
for i = 2 to N do

AP = m 6≥
i ∩ mi−1

if flag then

DP = m≥
i−1 ∩ mi

else

DP = ∅
end if

AN = (mi − DP) 6≤ ∩ mi+1

DN = m≤
i+1 ∩ m≤

i−1 ∩ mi

m′
i = (mi − DP − DN ) ∪ AP ∪ AN

flag = (AP ∪ DP = ∅)
end for

Call the function computed by the above procedure ĝ so
that m′

i = ĝi(m). We may then represent the approxi-
mate observer Σ̃ by the single clause

true : b′i = mi ∩
3

⋃

j=1

{αi : z′i = fi,j(zi) ∧ Pi,j(zi, αi)}

∧(c′1, ..., c
′
N ) = Refine(b′1, ..., b

′
N )

∧m′
i = ĝi(c

′
1, ..., c

′
N ) (7)

where Refine(b1, ..., bN ) takes the assignment sets
b1, ..., bN and produces assignment sets c1, ..., cN with
the following property: If ci = {k} then k 6∈ ci for any
j 6= i. This is helps increase the rate of convergence of
Σ̃ by decreasing the size of the sets mi at each step.

For example if m1 = {1, 2, 3}, m2 = {2, 3} and m3 =
{1, 2} and xi = i, the reader can check that m′

1 = {1, 2},
m′

2 = {1, 2, 3} and m′
3 = {1, 2, 3}.

It can also be shown that in any execution σ of ΣBlue ∪
ΣAssign each set mi converges to αi in at most tασ + 1
steps, where tασ is time at which α stabilizes. The proof of

this fact proceeds similarly to that of 6.1. It is sufficient
to notice that at time tασ +1, by (7) and Refine described
above, we have c′i = {i}.

6.4 Simulation Results

We implemented the RoboFlag drill in MATLAB 6.0 to-
gether with the observer defined in equation (5). We
considered eight robots per team, and show the perfor-
mance of the observer in Figure 3(a). We denote by
d(α̂, α) the distance introduced in (6). We also define
the Entropy of α by

E(t) =
1

N

N
∑

i=1

|αi − i|,

In Figure 3(b), we show the performance of the approxi-
mate observer on the same execution of the same system.
For the approximate observer we plot

d((m1, ...,mN ), α) :=
1

N

N
∑

i=1

d(mi, αi)

where d(mi, αi) is computed according to (6). Notice
that the approximate observer converges more slowly
than the full one. Systems where N > 10 are compu-
tationally too difficult for the full observer but tractable
for the approximate observer. We show the performance
of the approximate observer in an example with N = 30
in Figure 4. In all the simulations the initial assignment
was chosen randomly.

7 Conclusions

We have examined the observability problem for a class
of hybrid guarded command programs. We proposed a
definition of weak observability and proposed an observer
that converges when the system is weakly observable.
The proposed observer can be computationally expensive
as is apparent when it is used with the RoboFlag system.
Thus an approximate observer was proposed that has low
computational and space requirements.
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Fig. 4: Approximate observer performance for the RoboFlag
Drill where N=30.

We have not provided practical algebraic tests for deter-
mining observability of guarded command programs nor
have we provided a general construction for a practicable
observer for systems with large state spaces. We hope to
address these problems in future work. We also hope to
explore non-deterministic guarded commands programs
that can be used for system specification.
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