
SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 1

A Decomposition Approach to Multi-vehicle
Cooperative Control
Matthew G. Earl and Raffaello D’Andrea

Abstract— We present methods to synthesize cooperative
strategies for multi-vehicle control problems using a decompo-
sition approach. We motivate the methods using an adversarial
game between two teams of vehicles called RoboFlag. Introducing
a set of tasks to be completed by the team and a task completion
method for each vehicle, we formulate the multi-vehicle control
problem as a task assignment problem. The continuous compo-
nent of the problem is captured by task completion, and the
combinatorial component is captured by task assignment. In this
paper, we present a branch and bound solver for task assignment
along with upper and lower bound algorithms. In our analysis of
the solver, we found that it generates near-optimal assignments
quickly and can be used in real-time applications. We also found
phase transitions as parameters are varied, showing that the
problem becomes difficult to solve when the capabilities of the
adversaries are comparable. Finally, we implement the solver
in a multi-level architecture with a variable replanning rate at
each level. We test the architecture against adversaries with an
unknown intelligence.

I. INTRODUCTION

There are many problems in which a team of vehicles can
perform an objective more efficiently and more effectively than
a single vehicle. Some examples include target intercept [3],
search [4], terrain mapping [26], object manipulation [41],
and reconnaissance [31]. For these problems, it is desirable
to design a multi-vehicle cooperative control strategy.

There is a rich literature on cooperative control. A language
for modeling and programming cooperative control systems
is introduced in [22]. Receding horizon control for multi-
vehicle systems is considered in [13]. Hierarchical methods
are used for cooperative rendezvous in [27] and for target
assignment and intercept in [3]. Cooperative estimation for
reconnaissance problems is considered in [31]. Mixed integer
linear programming is used for UAV cooperative path planning
in [34], [6], and for multi-vehicle cooperative control in an
adversarial environment in [15], [17]. A review from the
machine learning perspective is presented in [40], and there
are several recent compilations of cooperative control articles
in [1], [2], [29].

Multi-vehicle cooperative control problems are often com-
putationally hard, hybrid problems [15]. For real-time appli-
cations, in which the environment is partially unknown and
dynamically changing, the team of vehicles must be able to
generate strategies on-line. A replanning approach using model
predictive control [25], [13] can provide feedback in such
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situations. However, the control algorithms must be able to
run in real-time.

In this paper, we develop strategy generation methods for a
difficult multi-vehicle cooperative control problem. The meth-
ods achieve a balance between computational requirements
and optimality. This balance can be tuned for the particular
problem at hand. Our approach involves the introduction of
tasks to be completed by the vehicles. With the set of tasks
defined, we decompose the multi-vehicle control problem into
a low-level component, called task completion, and a high-
level component, called task assignment. The task completion
component is an optimal control problem, which explicitly
involves the dynamics of each vehicle. For a particular vehicle,
the goal is to find the control inputs necessary to complete the
given task in an optimal way. The task assignment component
is an NP-hard [18] combinatorial optimization problem, which
does not explicitly involve the vehicle dynamics. The task
assignment component utilizes a solver for task completion
as a primitive.

We present a branch and bound algorithm to solve the task
assignment problem. One of the benefits of this algorithm is
that it can be stopped at any time in the solution process and
the output is the best feasible assignment found in that time.
This is advantageous for real-time applications where control
strategies must be generated within a time window. In this
case, the best solution found in the time window is used.

To analyze the average case performance of the branch and
bound solver, we generate and solve many instances of the
problem. We look at computational complexity, convergence
to the optimal assignment, and performance variations with
parameter changes. We found that the solver converges to the
optimal assignment quickly. However, the solver takes much
more time to prove the assignment is optimal. Therefore, if the
solver is terminated early, the best feasible assignment found
in that time is likely to be a good one. We also found several
phase transitions in the task assignment problem, similar to
those found in the pioneering work [24], [37], [28]. At the
phase transition point, the task assignment problem is much
harder to solve. For cooperative control problems involving
adversaries, the transition point occurs when the capabilities
of the two teams are comparable. This behavior is similar to
the complexity of balanced games like chess [20].

Finally, we implement the methods in a multi-level archi-
tecture with replanning occurring at each level, at different
rates (multi-level model predictive control). The motivation
is to provide feedback to help handle dynamically changing
environments.

The paper is organized as follows: In Section II, we state
the multi-vehicle cooperative control problem and introduce
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the decomposition. In Section III, we introduce the example
problem we used to motivate the approach. In Section IV,
we describe our branch and bound approach for the task
assignment problem, and in Section V, we analyze the average
case behavior of the branch and bound solver. Finally, in
Section VI, we apply the solver in a dynamically changing
environment using a multi-level model predictive control ar-
chitecture for feedback. A web page that accompanies this
paper can be found at [14].

II. MULTI-VEHICLE TASK ASSIGNMENT

The general multi-vehicle cooperative control problem con-
sists of a heterogeneous set of vehicles (the team), an operating
environment, operating constraints, and an objective function.
The goal is to generate a team strategy that minimizes the
objective function. The strategy in its lowest level form is the
control inputs to each vehicle of the team.

In [15], [17], we show how to solve this problem using
hybrid systems tools. This approach is successful in deter-
mining optimal strategies for complex multi-vehicle problems,
but becomes computationally intensive for large problems.
Motivated to find faster techniques, we have developed a
decomposition approach described in this paper.

The key to the decomposition is to introduce a relevant set
of tasks for the problem being considered. Using these tasks,
the problem can be decomposed into a task completion com-
ponent and a task assignment component. The task completion
component is a low level problem, which involves a vehicle
and a task to be completed. The task assignment component
is a high level problem, which involves the assignment of a
sequence of tasks to be completed by each vehicle in the team.

Task Completion: Given a vehicle, an operating environment
with constraints, a task to be completed, and an objective
function, find the control inputs to the vehicle such that
the constraints are satisfied, the task is completed, and the
objective is minimized.

Task Assignment: Given a set of vehicles, a task completion
algorithm for each vehicle, a set of tasks to be completed,
and an objective function, assign a sequence of tasks to each
vehicle such that the objective function is minimized.

In the task assignment problem, instead of varying the
control inputs to the vehicles to find an optimal strategy, we
vary the sequence of tasks assigned to each vehicle. This
problem is a combinatorial optimization problem and does
not explicitly involve the dynamics of the vehicles. However,
in order to calculate the objective function for any particular
assignment, we must use the task completion algorithm. Task
completion acts as a primitive in solving the task assignment
problem, as shown by the framework in Figure 1. Using
the low level component (task completion), the high level
component (task assignment) need not explicitly consider the
detailed dynamics of the vehicles required to perform a task.

III. ROBOFLAG DRILL

To motivate and make concrete our decomposition ap-
proach, we illustrate the approach on an example problem
derived from Cornell’s multi-vehicle system called RoboFlag.

Fig. 1. The framework for the task assignment problem using task completion
primitives.

Zone
Defense

Fig. 2. The RoboFlag Drill used to motivate the methods presented is this
paper. The drill takes place on a playing field with a Defense Zone at its
center. The objective is to design a cooperative control strategy for the team
of defending vehicles (black) that minimizes the number of attacking vehicles
(white) that enter the Defense Zone.

For an introduction to RoboFlag, see the papers from the
invited session on RoboFlag in the Proceedings of the 2003
American Control Conference [7], [11], [12]. In [23], protocols
for the RoboFlag Drill are analyzed using a computation and
control language.

The RoboFlag Drill involves two teams of vehicles, the
defenders and the attackers, on a playing field with a circular
region of radius Rdz at its center called the Defense Zone
(Figure 2). The attackers’ objective is to fill the Defense Zone
with as many attackers as possible. They have a fixed strategy
in which each moves toward the Defense Zone at constant
velocity. An attacker stops if it is intercepted by a defender or
if it enters the Defense Zone. The defenders’ objective is to
deny as many attackers as possible from entering the Defense
Zone without entering the zone themselves. A defender denies
an attacker from the Defense Zone by intercepting the attacker
before it reaches the Defense Zone.

The wheeled vehicles of Cornell’s RoboCup Team [39],
[10] are the defenders in the RoboFlag Drill problem we
consider in this paper. Each vehicle is equipped with a three-
motor omni-directional drive that allows it to move along any
direction irrespective of its orientation. This allows for superior
maneuverability compared to traditional nonholonomic (car-
like) vehicles. A local control system on the vehicle, presented
in [30] and Appendix I, alters the dynamics so that at a higher
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Fig. 3. The two state (active and inactive) attacker state machine. The attacker
starts in the active state. It transitions to the inactive state, and remains in this
state, if it enters the Defense Zone or if it is intercepted by a defender.

level of the hierarchy, the vehicle dynamics are governed by

ẍ(t) + ẋ(t) = ux(t)

ÿ(t) + ẏ(t) = uy(t)

ux(t)2 + uy(t)2 ≤ 1. (1)

The state vector is x = (x, y, ẋ, ẏ), and the control input vector
is u = (ux, uy). These equations are less complex than the
nonlinear governing equations of the vehicles. They allow for
the generation of feasible near-optimal trajectories with little
computational effort and have been used successfully in the
RoboCup competition.

Each attacker has two discrete modes: active and inactive.
When active, the attacker moves toward the Defense Zone
at constant velocity along a straight line path. The attacker,
which is initially active, transitions to inactive mode if the
defender intercepts it or if it enters the Defense Zone. Once
inactive, the attacker does not move and remains inactive for
the remainder of play. These dynamics are captured by the
discrete time equations

p[k + 1] = p[k] + vpTa[k]

q[k + 1] = q[k] + vqTa[k] (2)

and the state machine (see Figure 3)

a[k + 1] =





1 if (a[k] = 1)
and (not in Defense Zone)
and (not intercepted)

0 if (a[k] = 0)
or (in Defense Zone)
or (intercepted)

(3)

for all k in the set {1, . . . , Na}. The initial conditions are

p[0] = ps, q[0] = qs, and a[0] = 1. (4)

In these equations, Na is the number of samples, T is the
sample time, (p[k], q[k]) is the attacker’s position at time
ta[k] = kT , (vp, vq) is its constant velocity vector, and
a[k] ∈ {0, 1} is a discrete state indicating the attacker’s mode.
The attacker is active when a[k] = 1 and inactive when
a[k] = 0. Given (p[k], q[k]) and a[k], we can calculate the
attacker’s position at any time t, denoted p(t) = (p(t), q(t)),
using the equations

p(t) = p[k] + vpa[k](t− ta[k])

q(t) = q[k] + vqa[k](t− ta[k]), (5)

where k = bt/T c.
Because the goal of the RoboFlag Drill is to keep attackers

out of the Defense Zone, attacker intercept is an obvious task

for this problem. Therefore, the task completion problem for
the RoboFlag Drill is an intercept problem.

RoboFlag Drill Attacker Intercept (RDAI): Given a defender
with state x(t) governed by equation (1) with initial condition
x(0) = xs, an attacker governed by equations (2) and (3) with
initial conditions given by (4) and coordinates p(t) given by
equation (5), obstacles and restricted regions to be avoided,
time dependent final condition x(tf ) = (p(tf ), q(tf ), 0, 0),
and objective function JTC = tf , find the control inputs to the
defender that minimize the objective such that the constraints
are satisfied.

The operating environment includes the playing field and the
group of attacking vehicles. The operating constraints include
collision avoidance between vehicles and avoidance of the
Defense Zone (for the defending robots).

Next, we define notation for a primitive that generates
a trajectory solving the RDAI problem. The inputs to the
primitive are the current state of defender d, denoted xd(t),
and the current position of attacker a, denoted pa(t). The
output is the amount of time it takes defender d to intercept
attacker a, denoted ∆tint(d, a, t), given by

∆tint(d, a, t) := intTime[xd(t),pa(t)]. (6)

If defender d can not intercept attacker a before the attacker
enters the Defense Zone, we set ∆tint(d, a, t) :=∞.

Near-optimal solutions to the RDAI problem can be gener-
ated using the technique presented in [30] with straightforward
modification. The advantage of this technique is that it finds
very good solutions quickly, which allows for the exploration
of many trajectories in the planning process. Another way to
generate near-optimal solutions for RDAI is to use the iter-
ative mixed integer linear programming techniques presented
in [16]. The advantage of this approach is that it can handle
complex hybrid dynamical systems. Either of these approaches
could be used as a primitive for the RDAI problem. Using the
primitive, the RoboFlag Drill problem can be expressed as the
following task assignment problem:

RoboFlag Drill Task Assignment (RDTA): Given a team
of defending vehicles D = {d1, . . . , dn}, a set of attackers
to intercept A = {a1, . . . , am}, initial conditions for each
defender d and for each attacker a, an RDAI primitive, and an
objective function J , assign each defender d in D a sequence
of attackers to intercept, denoted αd, such that the objective
function is minimized.

We introduce notation (listed in Table I) to describe the cost
function J and the algorithm that solves the RDTA problem.
Let md be the number of attackers assigned to defender d, and
let αd = 〈αd(1), . . . , αd(md)〉 be the sequence of attackers
defender d is assigned to intercept. Let td(i) be the time at
which defender d completes the ith task in its task sequence
αd. Let Au be the set of unassigned attackers, then A − Au
is the set of assigned attackers.

An assignment for the RDTA problem is an intercept
sequence αd for each defender d in D. A partial assignment
is an assignment such that Au is not empty, and a complete
assignment is an assignment such that Au is empty.

The set of times {td(i) : i = 1, . . . ,md}, for each defender
d, are computed using the primitive in equation (6). The time
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TABLE I
VARIABLES FOR ROBOFLAG DRILL PROBLEMS

n number of defending vehicles
m number of attacking vehicles
D the set of defending vehicles
A the set of attacking vehicles
Au the set of unassigned attacking vehicles
A−Au the set of assigned attacking vehicles
xd(t) the state of defender d at time t
pa(t) the position of attacker a at time t
αd the sequence of attackers assigned to defender d
md the length of defender d’s intercept sequence αd
∆tint(d, a, t) time needed for d to intercept a starting at time t.
td(i) the time that d completes ith task in task sequence αd
γa binary variable indicating if a enters the Defense Zone
J the cost function for the RDTA problem
ε weight in the cost function J

at which defender d intercepts the ith attacker in its intercept
sequence, if not empty, is given by

td(i) =

{
td(i− 1), if ∆tint(d, αd(i), td(i− 1)) =∞
td(i− 1) + ∆tint(d, αd(i), td(i− 1)), otherwise ,

where we take td(0) = 0. If defender d can not intercept
attacker αd(i) before the attacker enters the Defense Zone,
the time td(i) is not incremented because, in this case, the
defender does not attempt to intercept the attacker. The time
at which defender d completes its intercept sequence αd is
given by td(md).

To indicate if attacker a enters the Defense Zone during the
drill, we introduce binary variable γa given by

γa =

{
1 if attacker a enters Defense Zone
0 otherwise. (7)

If γa = 1, attacker a enters the Defense Zone at some time
during play, otherwise, γa = 0 and attacker a is intercepted.
We compute γa for each attacker a in the set of assigned
attackers (A−Au) as follows: For each d in D and for each
i in {1, . . . ,md}, if ∆tint(d, αd(i), td(i − 1)) = ∞ then set
γαd(i) = 1, otherwise set γαd(i) = 0.

For the RDTA problem, the cost function has two com-
ponents. The primary component is the number of assigned
attackers that enter the Defense Zone during the drill,

J1 =
∑

a∈(A−Au)

γa. (8)

The secondary component is the time at which all assigned
attackers that do not enter the Defense Zone (all a such that
γa = 0) are intercepted,

J2 = max
d∈D

td(md). (9)

The weighted combination is

J =
∑

a∈(A−Au)

γa + εmax
d∈D

td(md), (10)

where we take 0 < ε � 1 because we want the primary
component to dominate. In particular, keeping attackers out of
the Defense Zone is most important. Therefore, our goal in
the RDTA problem is to generate a complete assignment (Au
empty) that minimizes equation (10).

IV. BRANCH AND BOUND SOLVER

One way to find the optimal assignment for RDTA is by
exhaustive search; try every possible assignment of tasks to
vehicles and pick the one that minimizes J . This approach
quickly becomes computationally infeasible for large prob-
lems. As the number of tasks or the number of vehicles
increase, the total number of possible assignments grows
significantly. A more efficient solution method is needed for
real-time planning. With this motivation, we developed a
branch and bound solver for the problem. In this section,
we describe the solver and its four major components: node
expansion, branching, upper bound, and lower bound.

We use a search tree to enumerate all possible assign-
ments for the problem. The root node represents the empty
assignment, all interior nodes represent partial assignments,
and the leaves represent the set of all possible complete
assignments. Given a node representing a partial assignment,
the node expansion algorithm (Section IV-A) generates the
node’s children. Using the node expansion algorithm, we grow
the search tree starting from the root node. The branching
algorithm (Section IV-B) is used to determine the order in
which nodes are expanded. In this algorithm, we use A*
search [38] to guide the growth of the tree toward good
solutions.

Given a node in the tree representing a partial assignment,
the upper bound algorithm (Section IV-C) assigns the unas-
signed attackers in a greedy way. The result is a feasible
assignment. The cost of this assignment is an upper bound on
the optimal cost that can be achieved from the given node’s
partial assignment. The upper bound is computed at each node
explored in the tree (not all nodes are explored, many are
pruned). As the tree is explored, the best upper bound found
to date is stored in memory.

Given a node in the search tree representing a partial
assignment, the lower bound algorithm (Section IV-D) as-
signs the unassigned attackers in A using the principle of
simultaneity. Each defender is allowed to pursue multiple at-
tackers simultaneously. Because this is physically impossible,
the resulting assignment is potentially infeasible. Because no
feasible assignment can do better, the cost of this assignment
is a lower bound on the cost that can be achieved from the
given node’s partial assignment. Similar to the upper bound,
the lower bound is computed at each node explored in the tree.

If the lower bound for the current node being explored is
greater or equal to the best upper bound found, we prune the
node from the tree, eliminating all nodes that emanate from
the current node. This can be done because of the way we
have constructed the tree. The task sequences that make up a
parent’s assignment are subsequences of the sequences that
make up each child’s assignment. Therefore, exploring the
descendants will not result in a better assignment than that
already obtained.

Before we describe the details of the components, we de-
scribe the branch and bound algorithm listed in Table II. Start
with the root node, which represents the empty assignment,
and apply the upper bound algorithm. This generates a feasible
assignment with cost denoted J bestub because it is the best, and
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TABLE II
BRANCH AND BOUND ALGORITHM

1: Start with a tree containing only the root node.
2: Run upper bound algorithm with root node’s partial assignment (the

empty assignment) as input, generating a feasible complete assignment.
3: Set Jbestub to the cost the complete assignment.
4: Expand the root node using expand node routine.
5: while growing the tree do
6: Use branching routine to pick next branch to explore.
7: Use upper bound algorithm to compute feasible complete assignment

from current node’s partial assignment, and set the cost of this
assignment to Jub.

8: if Jub < Jbestub , set Jbestub := Jub.
9: Use lower bound algorithm to calculate the lower bound cost from

the current node’s partial assignment, and set this cost to Jlb.
10: if Jlb ≥ Jbestub , prune current node from the tree.
11: end while
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Fig. 4. The solution to two instances of the RDTA problem using the branch
and bound solver. The circle at the center of the field is the Defense Zone.
The lines with asterisks denote the attacker trajectories, and the lines without
denote defender trajectories. The parameters for these instances are ε = 0.01,
n = 3, and m = 6.

only, feasible solution generated so far. Next, apply the node
expansion algorithm to root, generating its children.

At this point, enter a loop. For each iteration of the loop,
apply the branching algorithm to select the node to explore
next. The node selected by the branching algorithm, which
we call the current node, contains a partial assignment. Apply
the upper bound algorithm to the current node, generating a
feasible complete assignment with cost denoted Jub. If Jub is
less than Jbestub , we have found a better feasible assignment so
we set Jbestub := Jub. Next, apply the lower bound algorithm
to generate an optimistic cost, denoted Jlb, from the current
node’s partial assignment. If Jlb is greater than or equal to
the best feasible cost found so far J bestub , prune the node from
the tree, removing all of its descendants from the search. We
do not need to consider the descendants of this node because
doing so will not result in a better feasible assignment than the
one found already, with cost J bestub . The loop continues until
all nodes have been explored or pruned away. The result is
the optimal assignment for the RDTA problem.

In Figure 4, we plot the solution to two instances of the
RDTA problem solved using the branch and bound solver.
Notice that the defenders work together and do not greedily
pursue the attackers that are closest. For example, in the figure
on the left, defenders 2 and 3 ignore the closest attackers and
pursue attackers further away for the benefit of the team.

αd1
= 〈〉

〈a1〉

〈a1, a2〉

〈a1, a2, a3〉

〈a1, a3〉

〈a1, a3, a2〉

〈a2〉

〈a2, a1〉

〈a2, a1, a3〉

〈a2, a3〉

〈a2, a3, a1〉

〈a3〉

〈a3, a1〉

〈a3, a1, a2〉

〈a3, a2〉

〈a3, a2, a1〉

Fig. 5. Search tree for the RDTA problem with the defender set D =
{d1} and the attacker set A = {a1, a2, a3}. Each node of the tree denotes
a sequence of attackers to be intercepted by defender d1. The root node
is the empty assignment. The leaves of the tree give all possible complete
assignments of attackers in A.

αd1
= 〈〉

αd2
= 〈〉

〈a1〉
〈〉

〈a1, a2〉
〈〉

〈a1〉
〈a2〉

〈a2〉
〈〉

〈a2, a1〉
〈〉

〈a2〉
〈a1〉

〈〉
〈a1〉

〈〉
〈a1, a2〉

〈〉
〈a2〉

〈〉
〈a2, a1〉

Fig. 6. Search tree for the RDTA problem with defender set D = {d1, d2}
and the attacker set A = {a1, a2}. Each node of the tree denotes a sequence
of attackers to intercept for defender d1 and defender d2. The root node
is the empty assignment. The leaves of the tree give all possible complete
assignments of attackers in A.

In the remainder of this section we describe the components
of the branch and bound solver in detail.

A. Node expansion

Here we describe the node expansion algorithm used to
grow a search tree that enumerates all possible assignments
for the RDTA problem. Each node of the tree represents an
assignment. Starting from the root node, attackers are assigned,
forming new nodes, until all complete assignments are gener-
ated. Each node represents a partial assignment except for the
leaves, which represent the set of complete assignments.

Consider the case with one defender D = {d1} and three
attackers A = {a1, a2, a3}. The tree for this case is shown in
Figure 5. To generate this tree, we start from the root node
representing the empty assignment, denoted 〈〉. We expand
the root node generating three children, each representing
an assignment containing a single attacker to intercept. The
children are then expanded, and so on, until all possible
assignments are generated.

For multiple defenders, unlike the single defender case,
the tree is unbalanced to avoid redundancies. For example,
consider the case with two defenders D = {d1, d2} and two
attackers A = {a1, a2}. The tree for this case is shown in
Figure 6. Again, each node represents an assignment, but
now the assignment is a sequence of attackers to intercept
for each defender in D. In general, for defender set D with
n defenders and attacker set A with m attackers there are
(n+m− 1)!/(n− 1)! complete assignments (or leaves in the
search tree).
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To generate a search tree for the general case, we use a
node expansion algorithm. This algorithm takes any node and
generates the node’s children. The assignment for each child
is constructed by appending an unassigned attacker to one
of the sequences in the parent node’s assignment. The task
sequences in the parent’s assignment are always subsequences
of the sequences in its child’s assignment. Therefore, when
we prune a node from the search tree, we can also prune all
of its descendants.

The node expansion algorithm uses a different represen-
tation for an assignment than we have used thus far. We
introduce this new representation with an example involving
the defender set D = {d1, d2} and the attacker set A =
{a1, a2, . . . , a7}. Consider a partial assignment given by

αd1
= 〈a4, a1〉

αd2
= 〈a2, a5, a7〉.

In this case, attackers a3 and a6 have yet to be assigned. Our
node expansion algorithm represents this partial assignment
with the vectors

δ = (1, 1, 2, 2, 2, 0, 0)

β = (4, 1, 2, 5, 7, 0, 0), (11)

both of length m = 7. Vector δ holds defender indices and
vector β holds attacker indices. For a unique representation,
the elements in δ are ordered so that δ(i) ≤ δ(i + 1). For
the example case, attackers aβ(1) and aβ(2) (i.e., a4 and a1)
are assigned to defender d1 in sequence, and attackers aβ(3),
aβ(4), aβ(5) (i.e., a2, a5, a7) are assigned to defender d2 in
sequence.

In general, the input to the node expansion algorithm is a
parent node with assignment give by

parent.δ = (δ(1), δ(2), . . . , δ(p), 0, . . . , 0)

parent.β = (β(1), β(2), . . . , β(p), 0, . . . , 0), (12)

where both vectors are of size m, and p is the number of
tasks already assigned (or the number of nonzero entries in
each vector). The output is a set of Nchild children, where

Nchild = (n− δ(p) + 1)(m− p). (13)

Each child has assignment vectors δ and β identical to its
parent except for entries δ(p+ 1) and β(p+ 1). In the child’s
assignment, attacker aβ(p+1) is appended to defender dδ(p+1)’s
sequence of attackers to intercept αδ(p+1). The details of the
node expansion algorithm are given in Table III.

To demonstrate the node expansion algorithm, we expand
the node given by equation (11) as shown in Figure 7. Figure 8
shows the normal notation for this expansion. Using this
algorithm, we can grow the assignment tree for any RDTA
problem. In Figure 9 we show the tree for the two vehicle two
attacker example written in our node expansion algorithm’s
notation.

B. Search algorithm

To determine the order in which we expand nodes, we have
tried several tree search algorithms including the systematic

TABLE III
NODE EXPANSION ALGORITHM

1: k := 1
2: for i = δ(p), δ(p+ 1), . . . , n do
3: for each j in the set {{1, . . . ,m} − {β(1), β(2), . . . , β(p)}} do
4: child(k).δ = parent.δ
5: child(k).β = parent.β
6: child(k).δ(p+ 1) = i
7: child(k).β(p+ 1) = j
8: k := k + 1
9: end for

10: end for

δ = (1, 1, 2, 2, 2, 0, 0)
β = (4, 1, 2, 5, 7, 0, 0)

δ = (1, 1, 2, 2, 2, 2, 0)
β = (4, 1, 2, 5, 7, 3, 0)

δ = (1, 1, 2, 2, 2, 2, 0)
β = (4, 1, 2, 5, 7, 6, 0)

Fig. 7. The node from equation (11), written in node expansion format, is
expanded using the node expansion algorithm in Table III.

αd1
= 〈a4, a1〉

αd2
= 〈a2, a5, a7〉

αd1
= 〈a4, a1〉

αd2
= 〈a2, a5, a7, a3〉

αd1
= 〈a4, a1〉

αd2
= 〈a2, a5, a7, a3, a6〉

Fig. 8. The expansion in Figure 7 in our original notation.

search algorithms breadth first search (BFS), depth first search
(DFS) [9], and A* search [38]. The A* search algorithm orders
nodes according to a heuristic branching function to help guide
the search toward the optimal assignment. We use the upper
bound algorithm presented in Section IV-C as the branching
function. The lower bound algorithm presented in Section IV-
D could also be used as the branching function.

For example, consider a tree with three levels, where node
i is labeled ni as shown in Figure 10. For this tree, BFS
gives the ordering (n0, n1, n2, n3, n4, n5, n6, n7, n8, n9), and
DFS gives the ordering (n0, n1, n4, n5, n2, n6, n7, n3, n8, n9).
Suppose the upper bound algorithm run at each node i gives
the following results: Jub(n1) = 3, Jub(n2) = 1, Jub(n3) = 2,
Jub(n4) = 2, Jub(n5) = 1, Jub(n6) = 1, Jub(n7) = 1,
Jub(n8) = 1, Jub(n9) = 0. A* BFS gives the ordering
(n0, n2, n3, n1, n6, n7, n9, n8, n5, n4), and A* DFS gives the

δ = (0, 0)
β = (0, 0)

(1, 0)
(1, 0)

(1, 1)
(1, 2)

(1, 2)
(1, 2)

(1, 0)
(2, 0)

(1, 1)
(2, 1)

(1, 2)
(2, 1)

(2, 0)
(1, 0)

(2, 2)
(1, 2)

(2, 0)
(2, 0)

(2, 2)
(2, 1)

Fig. 9. The tree from Figure 6 written using our node expansion algorithm’s
notation.
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n0

n1

n4 n5

n2

n6 n7

n3

n8 n9

Fig. 10. Example search tree used to illustrate the branching routine in the
branch and bound solver.

ordering (n0, n2, n6, n7, n3, n9, n8, n1, n5, n4).
In A* search, the children of a node must be sorted with

respect to the branching function. The maximum number of
children that emanate from any given node is the nm children
emanating from the root node. Therefore, the maximum num-
ber of items that need to be sorted is nm. To sort the children,
we use Shell’s method [32], which runs in O((nm)3/2) time.

C. Upper bound algorithm

In this section, we describe a fast algorithm that generates
a feasible complete assignment given any partial assignment.
The cost of the resulting complete assignment is an upper
bound on the optimal cost that can be achieved from the
given partial assignment. The idea behind the upper bound
algorithm is to assign unassigned attackers in a greedy way.
At each step, we assign the attacker defender pair that results
in the minimum intercept time. We proceed until all attackers
are assigned or until none of the remaining attackers can
be intercepted before entering the Defense Zone. The details
of this algorithm, which runs in O(nm2) time, are listed in
Table IV.

The input to the algorithm is a partial assignment given by
an intercept sequence αd for each defender d in D such that
the set of unassigned attackers Au is not empty. In addition,
we take as inputs the variables associated with this partial
assignment including the time for defender d to complete its
intercept sequence αd, given by td(md), and binary variable
γa for each a in the set of assigned attackers A−Au.

Given a partial assignment, the greedy step of the algorithm
determines the attacker in the set Au that can be intercepted in
the minimum amount of time, denoted a∗. The corresponding
defender that intercepts a∗ is denoted d∗. To determine this
defender, attacker pair (d∗, a∗) we form a matrix C of intercept
times. The matrix has size |D| × |Au|, and its elements are
given by

c(d, a) := td(md) + ∆tint(d, a, td(md)), (14)

for each d in D and a in Au. The element c(d, a) is the time
it would take defender d to complete its intercept sequence
αd and then intercept attacker a. The minimum of these times
gives the desired defender, attacker pair

c(d∗, a∗) = min
d∈D,a∈Au

c(d, a). (15)

If c(d∗, a∗) = ∞, no attacker can be intercepted before
it enters the Defense Zone. Thus, we set γa := 1 for each
a in Au. Then, we set Au to the empty set because all
attackers are effectively assigned, and we use equation (10) to
calculate the upper bound Jub. Otherwise, c(d∗, a∗) is finite,

TABLE IV
GREEDY UPPER BOUND ALGORITHM

1: Given a partial assignment: intercept sequence αd for each d ∈ D, a
nonempty set of unassigned attackers Au, td(md) for each d ∈ D,
and γa for each a ∈ (A−Au).

2: Initialize variables for unassigned attackers. Set γa := 0 for each a in
Au.

3: Calculate the elements of matrix C. For all d ∈ D and a ∈ Au, set

c(d, a) := td(md) + ∆tint(d, a, td(md)).

4: while Au not empty do
5: Find minimum element of C given by

c(d∗, a∗) = min
d∈D,a∈Au

c(d, a).

6: If c(d∗, a∗) = ∞, no attacker in the set Au can be intercepted
before entering the Defense Zone. Break out of the while loop.

7: Append attacker a∗ to defender d∗’s assignment by setting md∗ :=
md∗ + 1 and αd∗ (md∗ ) := a∗.

8: Update finishing time for d∗ by setting td∗ (md∗ ) := c(d∗, a∗).
9: Remove a∗ from consideration since it has been assigned. Set

c(d, a∗) to ∞ for all d ∈ D, and set Au := Au − {a∗}.
10: Update matrix for defender d∗. For all attackers a ∈ Au, set

c(d∗, a) := td∗ (md∗ ) + ∆tint(d
∗, a, td∗ (md∗ )).

11: end while
12: For each a in Au, set γa := 1.
13: Set

Jub :=
∑

a∈A

γa + εmax
d∈D

td(md).

and we add attacker a∗ to defender d∗’s intercept sequence by
incrementing md∗ by one and setting αd∗(md∗) := a∗. Then,
because a∗ has now been assigned, we remove it from the set
of unassigned attackers by setting Au := Au−{a∗}. If Au is
not empty, we have a new partial assignment, and we repeat
the procedure. Otherwise, the assignment is complete and we
use equation (10) to compute the upper bound Jub.

D. Lower bound algorithm
Here we describe a fast algorithm that generates a lower

bound on the cost that can be achieved from any given partial
assignment. The idea behind the algorithm is to use the princi-
ple of simultaneity. In assigning attackers from Au, we assume
each defender can pursue multiple attackers simultaneously.
The result is a potentially infeasible complete assignment
because simultaneity is physically impossible. Because no
feasible assignment can do better, the cost of this assignment
is a lower bound on the optimal cost that can be achieved
from the given partial assignment. The algorithm, which runs
in O(nm) time, is listed in Table V.

Similar to the upper bound algorithm, the input to the lower
bound algorithm is a partial assignment. This includes an
intercept sequence αd for each defender d in D with Au
nonempty, td(md) for each defender d in D, and γa for each
attacker a in A−Au.

Each attacker a in Au is assigned a defender as follows:
Form a matrix C with elements

c(d, a) := td(md) + ∆tint(d, a, td(md)), (16)
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TABLE V
LOWER BOUND ALGORITHM

1: Given a partial assignment: intercept sequence αd for each d ∈ D, a
nonempty set of unassigned attackers Au, td(md) for each d ∈ D,
and γa for each a ∈ (A−Au).

2: Calculate the elements of matrix C. For all d ∈ D and a ∈ Au, set

c(d, a) := td(md) + ∆tint(d, a, td(md)).

3: for all a ∈ Au do
4: Find minimum element of ath column of C given by

c(d∗, a) = min
d∈D

c(d, a).

5: if c(d∗, a) =∞ then set γa := 1.
6: else set γa := 0.
7: end for
8: Set

Jlb :=
∑

a∈A

γa + ε max
{a∈A:γa=0}

(
min
d∈D

c(d, a)

)
.

for all d in D and a in Au. Element c(d, a) is equal to the time
it takes d to intercept the attackers in its intercept sequence αd
plus the time it would take to subsequently intercept attacker
a. For each a in Au, find the defender, denoted d∗, that can
intercept a in minimal time

c(d∗, a) = min
d∈D

c(d, a). (17)

If c(d∗, a) = ∞, we set γa := 1 because no defender
can intercept attacker a before it enters the Defense Zone.
Otherwise, we set γa := 0 because defender d∗ can intercept
attacker a before it enters the Defense Zone. The lower bound
is therefore give by

Jlb :=
∑

a∈A
γa + ε max

{a∈A:γa=0}

(
min
d∈D

c(d, a)

)
. (18)

V. ANALYSIS OF THE SOLVER

In this section, we explore the average case computational
complexity of the branch and bound algorithm by solving
randomly generated instances. Each instance is generated by
randomly selecting parameters from a uniform distribution
over the intervals defined below. The computations were
performed on a PC with Intel PIII 550MHz processor, 1024KB
cache, 3.8GB RAM, and Linux. For all instances solved,
processor speed was the limiting factor, not memory.

A. Generating random instances

The initial position of each attacker is taken to be in an
annulus centered on the playing field. The radius of the initial
position, denoted ra, is chosen at random from a uniform dis-
tribution over the interval [rmin

a , rmax
a ]. The angle of the initial

position, denoted θa, is chosen from a uniform distribution
over the interval (0, 2π] (all other angles used in this section
φa, θd, and φd are also chosen from a uniform distribution over
the interval (0, 2π]). The magnitude of attacker a’s velocity,

denoted va, is chosen at random from a uniform distribution
over the interval [vmin

a , vmax
a ]. The initial state of the attacker

is given by

p(0) = ra cos(θa), q(0) = ra sin(θa)

ṗ = va cos(φa), q̇ = va sin(φa). (19)

The initial position of each defender is taken to be in a
smaller annulus, also centered on the playing field. The radius
of the initial position, denoted rd, is chosen at random from a
uniform distribution over the interval [rmin

d , rmax
d ]. The magni-

tude of defender d’s velocity, denoted vd, is chosen at random
from a uniform distribution over the interval [vmin

d , vmax
d ]. The

initial state of the defender is given by

x(0) = rd cos(θd), y(0) = rd sin(θd)

ẋ(0) = vd cos(φd), ẏ(0) = vd sin(φd). (20)

For the instances generated in this paper, we set Rdz =
2.0 and take the parameters from the following intervals:
ra ∈ [7.5, 15.0], vd = 1.0, rd ∈ [

√
2Rdz, 2

√
2Rdz], and

vd ∈ [0.5, 1.0]. In Section V-C, we study the RDTA problem
with variations in the velocity parameters va and vmax

d .

B. Average case computational complexity

In this section, we present the results of an average case
computational complexity study on the branch and bound
solver. A particular problem instance is considered solved
when the strategy that minimizes the cost is found. In
Figure 11, we plot the fraction of instances solved versus
computation time. In the figure on top, the cost function is
the number of attackers that enter the Defense Zone (ε = 0
in equation (10)). Solving these instances becomes compu-
tationally intensive for modest size problems. For example,
when n = 3 and m = 5, 80% of the instances are solved
in 60 seconds or less. In the figure on bottom, in addition to
the primary component of the cost function, the cost function
includes a secondary component (ε = 0.01 in equation (10)).
The secondary component is the time it takes to intercept all
attackers that can be intercepted. Solving these instances of
the problem is more computationally intensive than the ε = 0
case. For example, when n = 3 and m = 5, only 40% of the
problems are solved in 60 seconds or less.

The increase in average case computational complexity for
the ε > 0 case is expected because the cost function has an
additional component to be minimized, which is independent
of the primary component. In a case where the primary
component is at a minimum, the algorithm will proceed until
it proves that the combination of primary and secondary
components is minimized.

If it is given enough time, the branch and bound solver
finds the optimal assignment, but the average case computa-
tional complexity is high. Therefore, using the algorithm to
solve for the optimal assignment in real-time is infeasible for
most applications. However, the best assignment found in the
allotted time window for planning could be used in place of
the optimal assignment. In this case, it is desirable that the
algorithm converge to a near-optimal solution quickly.
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Fig. 11. The fraction of instances solved versus computation time for the
branch and bound solver. On top, the cost is the number of attackers that
enter the Defense Zone (ε = 0 in equation (10)), and on bottom, the cost
includes a secondary component (ε = 0.01 in equation (10)). For each curve,
400 random instances of the RDTA problem were solved. The values of the
parameters are n = 3 and m = 3, 4, 5.

To learn more about the convergence rate of the branch and
bound solver, we look at the rate at which the best upper bound
Jbestub decreases with branches taken in the search tree. Because
the branch and bound algorithm is an exact method, J bestub

eventually converges to Jopt. We define the percent difference
from optimal as follows: Let J (i)

opt be the optimal cost for
instance i. Let J (i)

ub (k) be the best upper bound found after
k branches for instance i. Let Ĵopt be the mean of the set
{J (i)
opt : i = 1, . . . , N}, and let Ĵub(k) be the mean of the set

{J (i)
ub (k) : i = 1, . . . , N}, where N is the number of instances.

The percent difference from optimal is given by

PD(k) = 100
Ĵub(k)− Ĵopt

Ĵopt
. (21)

In Figure 12, we plot PD(k) versus the number of branches
(k) for instances involving three defenders (n = 3) and five
attackers (m = 5). At the root node (k = 1), the greedy
algorithm is applied. Exploration of the tree does not occur at
this point. Therefore, the three branching routines produce the
same result, PD(1) = 33%. This means that Ĵub(1)− Ĵopt =
0.33Ĵopt, or Ĵub(1) = 1.33Ĵopt. In other words, the average
cost of the assignment generated by the greedy algorithm is
1.33 times the average optimal cost. At one branch into the
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Fig. 12. The average convergence rate for the branch and bound solver
using each of the three branching routines BFS, DFS, and A* search. We plot
the percent difference from optimal PD(k) versus the number of branches k
explored. For each curve 400 random instances of RDTA were solved. The
parameters values are ε = 0.01, n = 3, and m = 5.

tree (k = 2), both DFS and BFS generate assignments with
PD(2) = 28%, and the A* search generates assignments with
PD(2) = 5%. Therefore, after only two steps, the branch and
bound algorithm using A* search generates an assignment that,
on average, has cost only 1.05 times the cost of the optimal
assignment.

For the instances solved here, the branch and bound solver
with A* search converges to the optimal assignment in an
average of 8 branches, and it takes an average of 740 branches
to prove that the assignment is optimal. Therefore, the solver
converges to the optimal solution quickly, and the computa-
tional complexity that we observed (Figure 11) is due to the
time needed to prove optimality.

These results are encouraging for real-time implementation
of the algorithm. The results show that a very good assignment
is generated after a short number of branches. There is a
trade-off between optimality and computation time that can
be tuned by deciding how deep into the tree to explore.
Going deeper into the tree will generate assignments that
are closer to optimal, but at the same time, results in an
increased computational burden. The parameter to be tuned
is the maximum number of branches to allow the search
procedure to explore, denoted kMax.

To study the computational complexity as kMax is tuned,
we look at versions of the algorithm (using A*) with kMax =
1 (greedy algorithm), kMax = 2, and kMax = ∞ (exact
algorithm). These three cases generate assignments with av-
erage percent difference from optimal given by PD(1)=33%,
PD(2)=5%, and PD(∞)=0% respectively. The results are
shown in Figure 13. The algorithm with kMax = 2 gives a
good balance between optimality and computation time.

C. Phase Transitions

The RDTA problem is NP-hard [18], which can be shown by
reduction using the traveling salesman problem. This is a worst
case result that says nothing about the average case complexity
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Fig. 13. The fraction of instances solved versus computation time for the
branch and bound solver (using A*) with kMax = 1, 2, and ∞. The kMax
variable controls the maximum number of branches explored. We vary it from
kMax = 1, which is a greedy search, to kMax = ∞, which is exhaustive
search. For each curve, 400 random instances of the RDTA problem was
solved. For these problems the parameter values are ε = 0.01, n = 3, and
m = 5.

of the algorithm or the complexity with parameter variations.
In this section, we study the complexity of the RDTA problem
as parameters are varied. We perform this study on the decision
version of the problem.

RoboFlag Drill Decision Problem (RDD): Given a set of
defenders D and a set of attackers A, is there a complete
assignment such that no attacker enters the Defense Zone?

First, we consider variations in the ratio of attacker velocity
to maximum defender velocity, denoted vA/vD in this section.
When the ratio is small, the defenders are much faster than
the attackers. It should be easy to quickly find an assignment
such that all attackers are intercepted. When the ratio is large,
the attackers are much faster than the defenders. In this case,
it is difficult for the defenders to intercept all of the attackers,
which should be easy to determine.

The interesting question is whether there is a transition from
being able to intercept all the attackers (all yes answers to the
RDD problem) to not being able to intercept all attackers (all
no answers to the RDD problem). Is this transition sharp? Are
there values of the ratio for which solving the RDD is difficult?

For each value of the velocity ratio, we generated random
instances of the RDD problem and solved them with the
branch and bound solver. The results are shown in Figure 14.
The figure on top shows the fraction of instances that evaluate
to yes versus the velocity ratio. The figure on bottom shows the
mean number of branches required to solve an instance versus
the velocity ratio. There is a sharp transition from all instances
yes to all instances no. This transition occurs approximately
at vA/vD = 1 for the n = 3, m = 5 case. At this value of
the ratio, there is a spike in computational complexity. This
easy-hard-easy behavior is indicative of a phase transition [5],
[28].

We also study the RDD problem with variations in the ratio
of defenders to attackers, denoted n/m, with vD = vA = 1.
For small values of n/m, the number of attackers is much
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Fig. 14. The phase transition of the RDD problem in the ratio of attacker
velocity to maximum defender velocity (vA/vD). The figure on top shows
the fraction of instances that evaluate to yes versus the velocity ratio. The
figure on bottom shows the mean number of branches needed to solve the
problem versus the velocity ratio. The phase transition occurs at a velocity
ration of approximately 1. For each curve, 100 random instances of the RDD
problem were solved. In these figures, n = 3.

larger than the number of defenders, and it should be easy
to determine that the team of defenders cannot intercept all
of the attackers. In this case, most instances should evaluate
to no. For large values of n/m, the number of defenders is
much larger than the number of attackers, and it should be
easy to find an assignment in which all attackers are denied
from the Defense Zone. In this case, most instances should
evaluate to yes. The results are shown in Figure 15, where it
is clear that our expectations proved correct. In between the
extremes of the n/m ratio, there is a phase transition at a ratio
of approximately n/m = 0.65.

In general, these experiments show that when one side
dominates the other (in terms of the number of vehicles or
in terms of the capabilities of the vehicles) the RDD problem
is easy to solve. When the capabilities are comparable (similar
numbers of vehicles, similar performance of the vehicles), the
RDD is much harder to solve. This behavior is similar to the
complexity of balanced games like chess [20]. In Section VII,
we discuss how knowledge of the phase transition can be
exploited to reduce computational complexity.
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Fig. 15. The phase transition of the RDD problem in the ratio of defenders to
attackers (n/m). The solid line shows the fraction of instances that evaluate
to yes versus the ratio. The dashed line shows the mean number of branches
needed to solve the problem versus the ratio. For each curve, 100 random
instances of the RDD problem were solved. The velocities are vD = vA = 1.

RTA

RTC

Fig. 16. The multi-level architecture for the defending vehicles used in our
implementation.

VI. MULTI-LEVEL IMPLEMENTATION

Now that we have a fast solver that generates near-optimal
assignments, we test it in a dynamically changing environment.
We consider the RoboFlag Drill problem with attackers that
have a simple noncooperative strategy built in, which is un-
known to the defenders. The hope is that frequent replanning,
at all levels of the hierarchical decomposition, will mitigate
our assumption that the attackers move with constant velocity.

We use a multi-level receding horizon architecture, shown
in Figure 16, to generate the defenders’ strategy. The task
assignment module at the top level implements the branch
and bound algorithm presented in this paper. It generates the
assignment αd for each defender d, sending new assignments
to the middle level of the hierarchy at the rate RTA. Therefore,
the algorithm returns the best assignment computed in the time
window 1/RTA.

There is a task completion module for each defender at
the middle level of the hierarchy, which receives an updated
assignment αd from the task assignment module at the rate
RTA. At a rate RTC , the task completion module generates
a trajectory from defender d’s current state to a point that
will intercept attacker αd(1) assuming the attacker moves at
constant velocity. If attacker αd(1) is intercepted, a trajectory
to intercept attacker αd(2) is generated, and so on.

RI

RTG

Fig. 17. The multi-vehicle architecture for the attackers used to test the
defender architecture.

The vehicle module at the bottom of the hierarchy receives
an updated trajectory from the task completion module at the
rate RTC . The module propels the vehicle along this trajectory
until it receives an update.

The attackers are taken to be the same vehicles as the
defenders (described in Appendix I). For the attacker intel-
ligence, we use the architecture shown in Figure 17. The
levels of the hierarchy are decoupled, so each attacker acts
independently. The simple intelligence for each attacker is
contained in the top level of the hierarchy. The primary
objective is to arrive at the origin of the field in minimum time.
However, the attacker tries to avoid the defenders if they get
too close. The radius of each defender is artificially enlarged
by a factor β > 1. If the artificially enlarged defenders obstruct
an attacker’s path toward the origin, the attacker treats them as
obstacles, finding a destination that results in an obstacle free
path. The destination is found using a simple reactive obstacle
avoidance routine used in RoboCup [10], [39]. The attacker
intelligence module runs at the rate RI .

The trajectory generation module at the middle of the
hierarchy receives an updated destination at the rate RI . The
module generates a trajectory from the current state of the
attacker to the destination with zero final velocity at the rate
RTG, using techniques from [30]. The vehicle module at the
bottom level of the hierarchy is the same as that for the
defenders.

Because the algorithms are more computationally intensive
for the higher levels of the hierarchy than the lower levels, the
rates are constrained as follows: RTA < RTC and RI < RTG.
In the simulations that follow, we take RTC = RTG because
the middle levels of the two hierarchies are comparative
computationally. We also set RI = RTG/10. Therefore, if
the trajectory generation module replans every time unit, the
attacker intelligence module replans every ten time units.

First, note that when both RTA and RTC are zero, there
is no replanning. In this case, all attackers usually enter the
Defense Zone. They easily avoid the defenders because the
defenders execute a fixed plan, which becomes obsolete once
the attackers start using their intelligence.

Next, we present simulation results of the RoboFlag Drill
with intelligent attackers and defenders. We consider problems
with eight defenders (n = 8), four attackers (n = 4), vA =
vD, RTC = RTG > 0, and RI = RTG/10. We consider
several different values of the rate at which the task assignment
module replans (RTA). For each value, we solve 200 randomly
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generated instances of the problem. As an evaluation metric,
we use the average number of attackers that enter the Defense
Zone during play.

For the case RTA = 0, there is no replanning at the
task assignment level. Replanning only occurs at the task
completion level. The defenders are given a plan from the task
assignment module at the beginning of play. Each defender
executes its assignment throughout, periodically recalculating
the trajectory it must follow to intercept the next attacker in
its sequence. For this case, on average, 58% of the attackers
enter the Defense Zone during play.

For the case RTA > 0, replanning occurs at both the
task assignment level and the task completion level of the
hierarchy. In addition to recomputing trajectories to intercept
the next attacker in each defender’s assignment, the defender
assignments are recomputed. This redistributes tasks based on
the current state of the dynamically changing environment,
providing feedback. For RTA = RTC/40, RTC/20, and
RTC/15, an average of 38%, 34%, and 32.5% of the attackers
enter the Defense Zone during play, respectively. Therefore,
replanning at the task assignment level has helped increase the
utility of the strategies generated for the team of defenders.

In Figure 18, we show snapshots of an instance of the
RoboFlag Drill simulation for the case where the defenders
do not replan at the task assignment level. In this case, all
attackers enter the Defense Zone. In Figure 19, we show snap-
shots of the same instance of the RoboFlag Drill simulation,
but in this case, the defenders replan at the task assignment
level (RTA = RTC/15). The defenders cooperate to deny
all attackers from the Defense Zone. For example, the two
defenders at the lower left of the field cooperate to intercept
an attacker.

VII. DISCUSSION

We developed a decomposition approach that generates
cooperative strategies for multi-vehicle control problems, and
we motivated the approach using an adversarial game called
RoboFlag. In the game, we fixed the strategy for one team and
used our approach to generate strategies for the other team.
By introducing a set of tasks to be completed by the team and
a task completion method for each vehicle, we decomposed
the problem into a high level task assignment problem and
a low level task completion problem. We presented a branch
and bound solver for task assignment, which uses upper and
lower bounds on the optimal assignment to prune the search
space. The upper bound algorithm is a greedy algorithm that
generates feasible assignments. The best greedy assignment is
stored in memory during the search, so the algorithm can be
stopped at any point in the search and a feasible assignment
is available.

In our computational complexity study, we found that
solving the task assignment problem is computationally in-
tensive, which was expected because the problem is NP-hard.
However, we showed that the solver converges to the optimal
assignment quickly, and takes much more time to prove the
assignment is optimal. Therefore, the solver can be run in a
time window to generate near-optimal assignments for real-
time multi-vehicle strategy generation. To increase the speed
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t = 12.9 t = 39.4 

Fig. 18. Snapshots of the RoboFlag Drill simulation with defender replanning
at the task completion level only (RTA = 0). In this case, all attackers enter
the Defense Zone. The large circles are the defenders, and the small circles
are the attackers. The solid lines are trajectories. Each cross connected to a
dashed line is an attacker’s desired destination.
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Fig. 19. Snapshots of the RoboFlag Drill simulation with defender replanning
at the task completion level and task assignment level (RTA = RTC/15).
Because there is replanning at both levels, the defenders cooperate to intercept
all attackers. The large circles are the defenders, and the small circles are the
attackers. The solid lines are trajectories. Each cross connected to a dashed
line is an attacker’s desired destination.
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of the algorithm, it may be advantageous to distribute the
computation over the set of vehicles [33], taking advantage
of the distributed structure of the problem.

We also studied the computational complexity of the solver
as parameters were varied. We varied the ratio of the maximum
velocities of the opposing vehicles, and we varied the ratio of
the number of vehicles per team. We found that when one
team has a capability advantage over the other, such as a
higher maximum velocity or more vehicles, the solution to the
task assignment problem is easy to generate. However, when
the teams are comparable in capability, finding the optimal
assignment to the problem is much more computationally
intensive. This type of analysis can help in deciding how
many vehicles to deploy in an adversarial game and what
capabilities the vehicles should have. In addition, knowledge
of the phase transition may be exploited to reduce computa-
tional complexity. In [35], [36], phase transition ‘backbones’
are exploited to decompose combinatorial problems into many
separate subproblems, which are much less computationally
intensive. This decomposition is amenable to parallel compu-
tation. In [19], it is shown that the hardness of a problem
depends on the parameters of the problem (as we showed
above) and the details of the algorithm used to solve the
problem. Therefore, it is possible that the hard instances of our
problem, which lie along the phase transition, may be solved
faster if we use a different solution algorithm. The authors
in [19] suggest adding randomization to the algorithm and
using a rapid restart policy. The restart policy selects a new
random seed for the algorithm and restarts it if the algorithm
is not making sufficient progress with the current seed.

Finally, we demonstrated the effectiveness of our approach
in an environment where the adversaries had a noncooperative
intelligence that was unknown. We found that the simple
model used for the adversaries in the solver could be mitigated
by a multi-level replanning architecture. In this architecture,
there are two levels: low level task completion and high level
task assignment. When replanning does not occur at either
level, the solver fails because it generates a plan that becomes
obsolete as the adversaries use their intelligence. When re-
planning occurs at the task completion level, an assignment
is generated once by the solver. As the adversaries use their
intelligence, the task completion component is run periodically
for each vehicle, generating a new trajectory to complete the
tasks in the vehicle’s assignment. This was somewhat effec-
tive at handling the unknown intelligence. When replanning
occurs at both levels, the task assignment component is run
periodically in addition to the task completion component.
We found this replanning architecture effective at retasking
in the dynamically changing environment. It is advantageous
to replan frequently, on average, but there are instances where
replanning frequently is not advantageous. In these cases, the
vehicles are retasked so frequently that their productivity is
reduced. Therefore, it may be desirable to place a penalty on
changing each vehicle’s current task.

In general, we feel the multi-level replanning approach
is a natural way to handle multi-vehicle cooperative control
problems. There are many different directions for further
research, including the addition of a high level learning

module to generate better models of the adversaries through
experience [40].

APPENDIX I

The wheeled robots of Cornell’s RoboCup Team [39] are
the defenders in the RoboFlag problems we consider in this
paper. We state their governing equations and simplify them
by restricting the allowable control inputs [30]. The result is
a linear set of governing equations coupled by a nonlinear
constraint on the control input. This procedure allows real-
time calculation of many near-optimal trajectories and has
been successfully used by Cornell’s RoboCup team [39], [30].

Each vehicle has a three-motor omni-directional drive which
allows it to move along any direction irrespective of its
orientation. This allows for superior maneuverability compared
to traditional nonholonomic (car-like) vehicles. The nondimen-
sional governing equations for each vehicle are given by



ẍ(t)
ÿ(t)

θ̈(t)


+




ẋ(t)
ẏ(t)

2mL2

J θ̇(t)


 = u(θ(t), t), (22)

where (x(t), y(t)) are the coordinates of the robot on the play-
ing field, θ(t) is the orientation of the robot, and u(θ(t), t) =
P(θ(t))U(t) can be thought of as a θ(t)-dependent control
input, where

P(θ) =



− sin(θ) − sin(π3 − θ) sin(π3 + θ)
cos(θ) − cos(π3 − θ) − cos(π3 + θ)

1 1 1


 ,

(23)
and

U(t) =



U1(t)
U2(t)
U3(t)


 . (24)

In the equations above, m is the mass of the vehicle, J is the
vehicle’s moment of inertia, L is the distance from the drive to
the center of mass, and Ui(t) is the voltage applied to motor
i.

By restricting the admissible control inputs we simplify
the governing equations in a way that allows near-optimal
performance. The set of admissible voltages U is given by
the unit cube and the set of admissible control inputs is
given by P (θ)U . The restriction involves replacing the set
P (θ)U with the maximal θ-independent set found by taking
the intersection of all possible sets of admissible controls. This
set is characterized by the inequalities

ux(t)2 + uy(t)2 ≤
(

3− |uθ(t)|
2

)2

(25)

and
|uθ(t)| ≤ 3, (26)

where the θ-independent control is given by
(ux(t), uy(t), uz(t)). The equations of motion become



ẍ(t)
ÿ(t)

θ̈(t)


+




ẋ(t)
ẏ(t)

2mL2

J θ̇(t)


 =



ux(t)
uy(t)
uθ(t)


 , (27)
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subject to constraints (25) and (26), which couple the degrees
of freedom. To decouple the θ dynamics we set |uθ(t)| ≤ 1.
Then constraint (25) becomes

ux(t)2 + uy(t)2 ≤ 1. (28)

Now the equations of motion for the translational dynamics
of the vehicle are given by

ẍ(t) + ẋ(t) = ux(t)

ÿ(t) + ẏ(t) = uy(t), (29)

subject to constraint (28). In state space form we have

ẋ(t) = Acx(t) + Bcu(t), (30)

where x = (x, y, ẋ, ẏ) is the state and u = (ux, uy) is the
control input.
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