
SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 1

Iterative MILP Methods for Vehicle Control Problems
Matthew G. Earl and Raffaello D’Andrea

Abstract— Mixed integer linear programming (MILP) is a
powerful tool for planning and control problems because of its
modeling capability and the availability of good solvers. However,
for large models, MILP methods suffer computationally. In
this paper, we present iterative MILP algorithms that address
this issue. We consider trajectory generation problems with
obstacle avoidance requirements and minimum time trajectory
generation problems. The algorithms use fewer binary variables
than standard MILP methods and require less computational
effort.

I. INTRODUCTION

Mixed integer linear programming (MILP) methods have
attracted attention because of their modeling capability and
because powerful solvers are available commercially. The
utilization of MILP for modeling and control problems is
described in [2] and for hybrid systems and practical applica-
tions in [17]. MILP methods are used in [19] for cooperative
reconnaissance, in [20] for spacecraft path planning, and in [1],
[10], [11] for cooperative control problems.

Powerful software packages such as CPLEX [15] solve
MILPs efficiently for problems in which the number of binary
variables is of reasonable size. However, a major disadvantage
of MILP is its computational complexity. Because MILP is
NP-hard in the number of binary variables used in the problem
formulation [14], computational requirements grow signifi-
cantly as the number of binary variables needed to model
the problem increases. Motivated to generate efficient MILP
problem formulations, we have developed several iterative
techniques that require fewer binary variables than standard
MILP methods.

The MILP obstacle avoidance methods from [20] and those
from [10], [11], developed independently, specify a uniformly
distributed set of discrete times at which obstacle avoidance
is enforced. We call this approach uniform gridding. In this
approach, there is no avoidance guarantee between time steps.
In addition, many of the avoidance times are unnecessary, re-
sulting in large MILPs that require a significant computational
effort to solve. Here, we present an iterative MILP obstacle
avoidance algorithm that can be used alone or in combination
with the uniform gridding approach. The algorithm guarantees
obstacle avoidance over the entire trajectory and distributes
avoidance times efficiently, resulting in smaller MILPs that
can be solved faster. We also present an iterative MILP
obstacle growing algorithm that allows the use of a coarse
set of uniformly distributed obstacle avoidance times. In this
approach, collision free trajectories are found by artificially
increasing the size of the obstacles that collide with the

M. Earl is with the Department of Theoretical and Applied Mechanics,
Cornell University, Ithaca, New York mge1@cornell.edu

R. D’Andrea is with the Department Mechanical and Aerospace Engineer-
ing, Cornell University, Ithaca, New York rd28@cornell.edu

trajectory generated by the MILP, iterating until the resulting
trajectory is collision free.

Next, we consider the minimum time trajectory generation
problem using MILP. The MILP approach to this problem
presented in [21], [22] generates an approximate solution.
Time is discretized uniformly, and an auxiliary binary variable
and a set of inequality constraints are added for each discrete
time. This approach gives an estimate to the time optimal
solution that depends on the sampling time chosen. For more
accuracy, the sampling time is reduced, which results in a
larger number of binary variables in the MILP formulation and
thus increases the computation time, possibly exponentially.
Here, we present an iterative MILP algorithm that solves for
the time optimal solution to the problem. The algorithm uses
binary search. At each iteration, the feasibility of a MILP
with only one discrete time (for the minimum time part of
the problem) needs to be determined.

The paper is organized as follows: In Section II, we describe
the dynamics of the vehicles we use to motivate our methods.
In Section III, we describe two iterative MILP algorithms
for obstacle avoidance, and we perform an average case
computational complexity study comparing the performance
of the iterative time step selection algorithm with the uniform
gridding approach. Finally, in Section IV, we describe an
iterative MILP algorithm for minimum time control problems.
All files for generating the plots found in this paper are
available online [12].

II. VEHICLE DYNAMICS

We motivate our methods using the wheeled robots of Cor-
nell’s RoboCup Team [5], [23]. In this section, we show how to
simplify their nonlinear governing equations using a procedure
from [18]. The result is a linear set of governing equations
coupled by a nonlinear constraint on the control input. This
procedure allows real-time calculation of many near-optimal
trajectories and is a major factor for Cornell’s success in the
RoboCup competition. We then show how to represent the
simplified system in a MILP problem formulation. The result
is a set of linear discrete time governing equations subject to
a set of linear inequality constraints.

Each vehicle is equipped with a three-motor omni-
directional drive, which allows it to move along any di-
rection irrespective of its orientation. This allows superior
maneuverability compared to traditional nonholonomic (car-
like) vehicles. The nondimensional governing equations of
each vehicle are given by



ẍ(t)
ÿ(t)

θ̈(t)


+




ẋ(t)
ẏ(t)

2mL2

I θ̇(t)


 = u(θ(t), t), (1)

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 2

where u(θ(t), t) = P(θ(t))U(t),

P(θ) =



− sin(θ) − sin(π3 − θ) sin(π3 + θ)
cos(θ) − cos(π3 − θ) − cos(π3 + θ)

1 1 1


 ,

and U(t) = (Ux(t), Uy(t), Uz(t)) ∈ U . In these equations
(x(t), y(t)) are the coordinates of the vehicle, θ(t) is its
orientation, u(θ(t), t) is the θ(t)-dependent control input, m
is the mass of the vehicle, I is its moment of inertia, L is the
distance from the drive to the center of mass, and Ui(t) is the
voltage applied to motor i. The set of admissible voltages U
is the unit cube, and the set of admissible control inputs is
given by P (θ)U .

These governing equations are coupled and nonlinear. To
simplify them, we replace the set P (θ)U with the maximal θ-
independent set found by taking the intersection of all possible
sets of admissible controls. The result is a θ-independent
control set defined by control input (ux(t), uy(t), uz(t)) and
the inequality constraints ux(t)2 + uy(t)2 ≤ (3− |uθ(t)|)2/4
and |uθ(t)| ≤ 3. Using the restricted set as the allowable
control set, the governing equations decouple and are given
by 


ẍ(t)
ÿ(t)

θ̈(t)


+




ẋ(t)
ẏ(t)

2mL2

I θ̇(t)


 =



ux(t)
uy(t)
uθ(t)


 . (2)

The constraints on the control input couple the degrees of
freedom.

To decouple the θ dynamics we set |uθ(t)| ≤ 1. Then, the
control input constraint becomes

ux(t)2 + uy(t)2 ≤ 1. (3)

Now, the equations of motion for the translational dynamics
of the vehicle are given by

ẍ(t) + ẋ(t) = ux(t),

ÿ(t) + ẏ(t) = uy(t), (4)

subject to equation (3). In state space form, equation (4) is
ẋ(t) = Acx(t) + Bcu(t), where x = (x, y, ẋ, ẏ) is the state
and u = (ux, uy) is the control input.

To represent the governing equations in a MILP framework,
we discretize the control input in time. We require the control
input be constant between time steps. The result is a set of
linear discrete time governing equations, which we derive next.

Let Nu be the number of discretization steps for the control
input u(t). Let tu[k] be the time at step k. Let Tu[k] > 0 be
the time between steps k and k+ 1, for k ∈ {0, . . . , Nu− 1}.
The discrete time governing equations are given by

xu[k + 1] = A[k]xu[k] + B[k]u[k], (5)

where xu[k] = x(tu[k]), u[k] = u(tu[k]), xu[k] =
(xu[k], yu[k], ẋu[k], ẏu[k]), and u[k] = (ux[k], uy[k]). The
coefficients A[k] and B[k] are functions of k because we
have allowed for nonuniform time discretizations. They can
be calculated explicitly in the usual way [8]. Because there
will be several different time discretizations used in this paper,
we use subscripts to differentiate them. In this section, we

use the subscript u to denote variables associated with the
discretization in the control input u(t).

The discrete time governing equations can be solved explic-
itly in the usual way [8]. In later sections of this paper, it will
be necessary to represent the position of the vehicle, at times
between control discretization steps, in terms of the control
input. Because the set of governing equations is linear, given
the discrete state xu[k] and the control input u[k], we can
calculate the vehicle’s state at any time t using the following
equations:

x(t) = xu[k] + (1− etu[k]−t)ẋu[k]

+ (t− tu[k]− 1 + etu[k]−t)ux[k],

ẋ(t) = (etu[k]−t)ẋu[k] + (1− etu[k]−t)ux[k], (6)

where k satisfies tu[k] ≤ t ≤ tu[k + 1]. If the time
discretization of the control input is uniform, Tu[ku] = Tu for
all ku, then ku = bt/Tuc. The components of the vehicle’s
state, y(t) and ẏ(t), can be calculated in a similar way.

The control input constraint given by equation (3) cannot
be expressed in a MILP framework because it is nonlinear.
To incorporate this constraint, we approximate it with a set of
linear inequalities that define a polygon. The polygon inscribes
the region defined by the nonlinear constraint. We take the
conservative inscribing polygon to guarantee that the set of
allowable controls defined by the region is feasible. Similar to
work in [21], we define the polygon by the set of Mu linear
inequality constraints

ux[k] sin
2πm

Mu
+ uy[k] cos

2πm

Mu
≤ cos

π

Mu

∀m ∈ {1, . . . ,Mu}, (7)

for each step k ∈ {1, . . . , Nu}.
To illustrate the approach, consider the following minimum

control effort trajectory generation problem. Given a vehicle
governed by equations (5) and (7), find the sequence of control
inputs {u[k]}Nu−1

k=0 that transfers the vehicle from starting state
x(0) = xs to finishing state x(tf) = xf and minimizes the
cost function

J =

Nu−1∑

k=0

(|ux[k]|+ |uy[k]|) . (8)

To convert the absolute values in the cost function to linear
form, we introduce auxiliary continuous variables zx[k] and
zy[k] and the inequality constraints

−zx[k] ≤ ux[k] ≤ zx[k]

−zy[k] ≤ uy[k] ≤ zy[k]. (9)

Minimizing zx[k] subject to the inequalities ux[k] ≤ zx[k] and
ux[k] ≥ −zx[k] is equivalent to minimizing |ux[k]| (similarly
for |uy[k]|) [3]. Using the auxiliary variables, the cost function
can be written as a linear function,

J =

Nu−1∑

k=0

(zx[k] + zy[k]) . (10)

The resulting optimization problem (minimize (10) subject
to (5), (7), (9), and the boundary conditions) is in MILP

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 3

form. Because binary variables do not appear in the problem
formulation, it is a linear program and is easily solved to obtain
the optimal sequence of control inputs.

III. OBSTACLE AVOIDANCE

In vehicle control, it is necessary to avoid other vehicles,
stationary and moving obstacles, and restricted regions. In
this section, we show how to use MILP to solve obstacle
avoidance problems, we present two iterative MILP obstacle
avoidance algorithms that are more computationally efficient
than standard methods, and we perform an average case
computational complexity study.

A. MILP formulation

We start by showing a MILP method to guarantee circular
obstacle avoidance at No discrete times. A version of this
method for uniformly distributed obstacle avoidance times is
presented in [20], and a similar method is presented inde-
pendently in [10], [11]. The method we present here allows
nonuniform distributions of obstacle avoidance times [8],
which we take advantage of in our iterative algorithm pre-
sented in the next section. We use subscript o to denote
variables associated with the time discretization for obstacle
avoidance. For step k, taken to be an element of the set
{1, . . . , No}, let to[k] be the time at which obstacle avoidance
is enforced. Let Robst denote the radius of the obstacle, and let
(xobst[k], yobst[k]) denote the coordinates of its center at time
to[k]. We approximate the obstacle with a polygon, denoted
O[k], defined by a set of Mo inequalities. The polygon is given
by

O[k] = { (x̄, ȳ) : (x̄− xobst[k]) sin 2πm
Mo

+ (ȳ − yobst[k]) cos 2πm
Mo
≤ Robst,

∀m ∈ {1, . . . ,Mo} }.
(11)

To guarantee obstacle avoidance at time to[k] the coordi-
nates of the vehicle must be outside the region O[k]. This
avoidance condition can be written as (xo[k], yo[k]) /∈ O[k],
where (xo[k], yo[k]) are the coordinates of the vehicle at
time to[k]. Here xo[k] = x(to[k]) and yo[k] = y(to[k]) are
expressed in terms of the control inputs using equation (6).

Because at least one constraint defining the region O[k]
must be violated in order to avoid the obstacle, the avoid-
ance condition is equivalent to the following condition: there
exists an m such that (xo[k] − xobst[k]) sin 2πm

Mo
+ (yo[k] −

yobst[k]) cos 2πm
Mo

> Robst.
To express this avoidance constraint in a MILP problem

formulation, it must be converted to an equivalent set of linear
inequality constraints. We do so by introducing auxiliary bi-
nary variable bm[k] ∈ {0, 1} and the following Mo inequality
constraints:

(xo[k]− xobst[k]) sin 2πm
Mo

+ (yo[k]− yobst[k]) cos 2πm
Mo

> Robst −Hbm[k], ∀m ∈ {1, . . . ,Mo},
(12)

where H is a large positive number taken to be larger than the
maximum dimension of the vehicle’s operating environment
plus the radius of the obstacle. If bm[k] = 1, the right side
of the inequality is a large, negative number that is always

less than the left side. In this case, the inequality is inactive
because it is trivially satisfied. If bm[k] = 0, the inequality is
said to be active because it reduces to an inequality from the
existence condition above. For obstacle avoidance, at least one
of the constraints in equation (12) must be active. To enforce
this, we introduce the following inequality constraint into the
problem formulation:

Mo∑

m=1

bm[k] ≤Mo − 1. (13)

Therefore, to enforce obstacle avoidance at time to[k], the
set of binary variables {bm[k]}Mo

m=1 and the constraints given
by equations (12) and (13) are added to the MILP problem
formulation.

Consider the example problem from Section II, adding
obstacles that must be avoided. In this problem, we want to
transfer the vehicle from start state xs to finish state xf in
time tf using minimal control effort and avoiding obstacles. To
enforce obstacle avoidance at each time in the set {to[k]}Nok=1,
we augment the MILP formulation in Section II with the
set of binary variables {bm[k]}Mo

m=1, constraints (12), and
constraint (13) for all k in the set {1, . . . , No}.

Distributing the avoidance times uniformly (uniform grid-
ding) results in a trajectory that avoids obstacles at each
discrete time in the set. However, the trajectory can collide
with obstacles between avoidance times. This is shown for an
example instance in Figure 1(a).

A simple method to reduce this behavior is to take a finer
discretization, which increases the number avoidance times,
as shown in Figure 1(b). However, this is not desirable in
MILP because an increase in the number of avoidance times
increases the number of binary variables in the problem.

B. Iterative MILP time step selection algorithm

It is advantageous to use as few avoidance times as possible.
Next, we propose an iterative algorithm to do so. The method
distributes avoidance times where they are needed most, as
shown in Figure 1(c), and guarantees obstacle avoidance if
an obstacle free trajectory exists. The idea is to first solve
the MILP with no obstacle avoidance times (or with a coarse
set of avoidance times) and check the resulting trajectory for
collisions. Then, if there are collisions, augment the MILP for-
mulation with an avoidance time (and the corresponding binary
variables and constraints) for each collision. The avoidance
time for each collision is taken from the interval of time that
the trajectory is within the obstacle. Next, solve the augmented
MILP and check the resulting trajectory for collisions, repeat-
ing the procedure until a collision free trajectory is found.

The algorithm is outlined in Table I and proceeds as follows:
First, formulate the vehicle control problem as a MILP and
choose an initial set of avoidance times {to[k]}Nok=1. This set
is usually taken to be the empty set or a coarsely distributed
set of times. Next, introduce a buffer zone for each obstacle j
with radius R(j)

buff = αR
(j)
obst, where α > 1 is the buffer factor.

Radius R
(j)
buff is larger than R

(j)
obst (usually taken slightly

larger) and is used as the radius of obstacle j in the MILP
formulation. This is done to guarantee obstacle avoidance and

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 4

−0.5 0 0.5

−0.2

0

0.2

0.4

(a)

−0.5 0 0.5

−0.2

0

0.2

0.4

(b)

−0.5 0 0.5

−0.2

0

0.2

0.4

(c)

Fig. 1. Figure (a) shows the resulting trajectory using uniform gridding
(No = 10), Figure (b) shows the trajectory using a finer uniform gridding
(No = 50), and Figure (c) shows the trajectory using iterative MILP avoid-
ance (No = 9). The circles denote obstacles, and the polygons denote the
buffer regions used in the MILP formulation. The values of the parameters are
Mo = 6, Mu = 4, Nu = 4, (xs, ys, ẋs, ẏs) = (−0.25,−0.2,−0.5, 0.3),
and (xf , yf , ẋf , ẏf) = (0.4, 0.3, 0, 0).

termination of the algorithm, which we show later in this
section. Next, solve the MILP using the buffer regions as the
obstacles. Then, check the resulting trajectory for collisions
using each obstacle’s true radius, R(j)

obst for each obstacle j. To
check for collisions, sample the trajectory and check whether
or not each sample point is inside any of the obstacles.

If there are no collisions, terminate the algorithm. Other-
wise, for each collision i, compute the time interval [t

(i)
1 , t

(i)
2]

in which the trajectory is within the obstacle. This interval
can be computed efficiently using a bisection routine and the
collision check routine. Then, for each collision i, augment the
MILP problem formulation with avoidance constraints at time
tnewo taken to be in the interval [t

(i)
1 , t

(i)
2]. In this paper, we

take tnewo = (t
(i)
1 + t

(i)
2)/2. Next, solve the augmented MILP

and check the resulting trajectory for collisions. If there are

TABLE I
ITERATIVE MILP TIME STEP SELECTION ALGORITHM

1: Formulate vehicle control problem as a MILP with the set of
obstacle avoidance times {to[k]}No

k=1
.

2: Set obstacle buffer zone for each obstacle j, R(j)
buff

:= αR
(j)
obst

where α > 1.
3: Solve MILP with obstacles of radius R(j)

buff
for each obstacle j.

4: Check resulting trajectory for collisions with obstacles of radius
R

(j)
obst for each obstacle j.

5: while there are collisions do
6: For each collision i, compute time interval [t

(i)
1 , t

(i)
2].

7: For each collision i, augment the MILP formulation with obstacle
avoidance constraints at time tnewo ∈ [t

(i)
1 , t

(i)
2].

8: Solve augmented MILP with obstacles of radius R(j)
buff

for each
obstacle j.

9: Check resulting trajectory for collisions with obstacles of radius
R

(j)
obst for each obstacle j.

10: end while

−0.5 0 0.5

−0.2

0

0.2

0.4

iteration 0

−0.5 0 0.5

−0.2

0

0.2

0.4

iteration 1

−0.5 0 0.5

−0.2

0

0.2

0.4

iteration 2

−0.5 0 0.5

−0.2

0

0.2

0.4

iteration 5

−0.5 0 0.5

−0.2

0

0.2

0.4

iteration 6

−0.5 0 0.5

−0.2

0

0.2

0.4

iteration 8

Fig. 2. Snapshots of the iterative MILP obstacle avoidance algorithm. The
circular regions denote obstacles, and the polygons denote the buffer regions
used in the MILP formulation. Each cross ‘×’ denotes a time at which
obstacle avoidance is enforced. The values of the parameters are Mo = 6,
Mu = 4, Nu = 4, (xs, ys, ẋs, ẏs) = (−0.25,−0.2,−0.5, 0.3), and
(xf , yf , ẋf , ẏf) = (0.4, 0.3, 0, 0).

no collisions, terminate the algorithm. Otherwise, repeat the
procedure until there are no collisions.

Snapshots of intermediate steps in the iterative algorithm
are shown in Figure 2. The procedure adds obstacle avoidance
points where they are needed most, thus avoiding unnecessary
and computationally costly constraints and binary variables.

Now we show that the iterative algorithm in Table I ter-
minates. The minimum distance between the boundary of a
buffer zone and the boundary of the obstacle it surrounds is
d = Rbuff −Robst = (α− 1)Robst. For a problem involving
multiple obstacles, the minimum of these distances is given by
dmin = (α−1)Rmin

obst, where Rmin
obst is the radius of the smallest

obstacle in the environment. The minimum time it takes the
vehicle to travel between the boundary of a buffer zone and

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 5

to[k]

to[k+1]

to[k]

to[k+1]
tonew

to[k + 1]− to[k] ≥ 2∆tmin to[k + 1]− to[k] < 2∆tmin

Fig. 3. These diagrams help show that the iterative MILP time selection
algorithm terminates. If the difference between consecutive obstacle avoidance
times, denoted to[k + 1]− to[k], is greater than 2∆tmin, the trajectory can
intersect the obstacle as shown in the figure on the left. In this case, the
algorithm will add a new avoidance constraint at time tnewo . If the difference
is less than 2∆tmin, the trajectory can not intersect the obstacle, and a new
avoidance constraint can not be added in between.

its corresponding obstacle is given by ∆tmin = dmin/vmax =
(α − 1)Rmin

obst/vmax, where vmax is the maximum velocity
of the vehicle. Consider two consecutive obstacle avoidance
times denoted to[k] and to[k+1]. The vehicle must be located
outside all buffer zones at these two times because we have
enforced this as a hard constraint in the MILP. If the difference
to[k + 1] − to[k] is less than 2∆tmin, the vehicle’s trajectory
can not intersect the obstacle because there is not enough time
to enter the buffer zone, collide with the obstacle, then exit
the buffer zone (see Figure 3). In order for the trajectory to
intersect the obstacle in the interval between these two times,
the difference to[k + 1]− to[k] must be greater than 2∆tmin.
In summary, the algorithm will not add an obstacle avoidance
time in the interval if to[k + 1] − to[k] < 2∆tmin, but it can
add an obstacle avoidance time if to[k+ 1]− to[k] ≥ 2∆tmin.
Therefore, in the worst case, once the algorithm reaches a point
where the time interval between each obstacle avoidance time
is less than 2∆tmin, the algorithm must terminate.

Next we bound the number of steps it takes for the algorithm
to terminate. The smallest possible time interval between
consecutive obstacle avoidance times is ∆tmin. This can be
seen by looking at Figure 4, where to[k + 1] and to[k] are
two consecutive avoidance times and t1 is the time at which
the trajectory enters the obstacle and t2 is the time it exits
the obstacle. Suppose the vehicle is moving at its maximum
velocity from time to[k] to t1. The algorithm will detect
this intersection, compute times t1 and t2, and pick a new
obstacle avoidance time tnewo in the interval [t1, t2]. Suppose
the algorithm picks tnewo = t1, then tnewo −to[k] = ∆tmin. The
time interval can not be any less because the vehicle can not
pass through the buffer zone in time less than ∆tmin. In the
trajectory generation problem, if ts is the vehicle’s starting
time and tf is its finishing time, the maximum number of
time intervals added by the algorithm is b(tf − ts)/∆tminc.
Therefore, the algorithm will terminate in a maximum of
b(tf−ts)/∆tminc steps. This is a worst case result. In practice
the algorithm terminates in fewer steps.

C. Iterative MILP obstacle growing algorithm

Being consistent with our goal to reduce the number of
obstacle avoidance times in our MILP problem formulations,
we propose another iterative MILP algorithm for obstacle

R
obst
min

d
min

t
o
[k]

t
o
[k+1]

t
1

t
2

Fig. 4. This diagram helps show the minimum time step that can be added
by the iterative MILP time step selection algorithm. The trajectory intersects
the obstacle in the interval [t1, t2]. Assume the vehicle is moving at vmax

between times to[k] and t1. If the algorithm selects t1 as the new obstacle
avoidance time, the difference t1 − to[k] is equal to ∆tmin. This is the
minimum possible time interval between avoidance times because the vehicle
can not move any faster.

avoidance. This algorithm iteratively grows the buffer zones
surrounding the obstacles until a collision free trajectory is
found. The idea is to first solve the MILP with a coarse
set of avoidance times and an initial set of buffer zones
surrounding each obstacle. Then, check the resulting trajectory
for collisions. If there are collisions, increase the size of
each buffer zone that surrounds an obstacle with which the
trajectory collides. Next, solve the MILP with these new buffer
zones and check the resulting trajectory for collisions. This
process is repeated until there are no collisions.

The details of the algorithm are listed in Table II. Snapshots
of intermediate steps of the algorithm are shown in Figure 5.
The crosses denote the coarse set of times at which obstacle
avoidance is enforced in the MILP. As the figure shows,
the size of the buffer regions surrounding the obstacles with
which the trajectory intersects is increased until the resulting
trajectory, generated by the MILP, avoids all obstacles.

The situation in which this algorithm is most useful is when
uniform gridding is used and the resulting trajectory clips
an obstacle, barely intersecting it. In this case, the algorithm
pushes the trajectory away from the clipped obstacle in a few
iterations, resulting in a collision free trajectory. However, if
the initial distribution of avoidance times is too coarse, the
algorithm could have problems. In this case, the buffer regions
could grow to be large and engulf the initial or final position,
which results in an infeasible MILP.

D. Average case complexity

In this section, we explore the average case computational
complexity of the iterative MILP obstacle avoidance algorithm
by solving randomly generated problem instances. Each in-
stance is generated by randomly picking parameters from a
uniform distribution over the intervals defined below. Each
MILP is solved using AMPL [13] and CPLEX [15] on a
PC with Intel PIII 550MHz processor, 1024KB cache, 3.8GB
RAM, and Red Hat Linux. For all instances solved, processor
speed was the limiting factor, not memory.

For comparison, we solve the same instances using uniform
gridding with sample time ∆tc = 2Rmin

obst

√
α2 − 1/vmax. This

sample time is the maximum sample time that guarantees
obstacle avoidance, assuming the vehicle travels in a straight

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 6

TABLE II
ITERATIVE MILP OBSTACLE GROWING ALGORITHM

1: Formulate vehicle control problem as a MILP with the set of
obstacle avoidance times {to[k]}No

k=1
.

2: Set obstacle buffer zone for each obstacle j, R(j)
buff

:= αR
(j)
obst

where α > 1.
3: Solve MILP with obstacles of radius R(j)

buff
for each obstacle j.

4: Check resulting trajectory for collisions with obstacles of radius
R

(j)
obst for each obstacle j.

5: while there are collisions do
6: For each obstacle j that collides with the trajectory, increase

buffer region by setting R(j)
buff

:= αR
(j)
buff

.

7: Solve MILP with obstacles of radius R(j)
buff

for each obstacle
j.

8: Check resulting trajectory for collisions with obstacles of radius
R

(j)
obst

for each obstacle j.
9: end while

iteration 0 iteration 3

iteration 4 iteration 6

Fig. 5. Snapshots of the iterative MILP obstacle growing algorithm. The
circular regions denote obstacles, and the polygons denote the buffer regions
used in the MILP formulation. Each cross denotes a time at which obstacle
avoidance is enforced.

line between sample times. This is a good approximation since
∆tc is small for the instances we solve. See Appendix I for
details. Each obstacle avoidance time is given by to[k] =
k∆tc, where k = 1, . . . , No and No = dtf/∆tce.

The instances are generated as follows: The start state is
taken to be xs = (xs, ys, rv cos θv, rv sin θv), where (xs, ys) is
constant, and rv and θv are random variables chosen uniformly
from the intervals [rmin

v , rmax
v] and (0, 2π], respectively. The

final state is fixed with zero velocity, xf = (xf , yf , 0, 0). We
generate Nobst obstacles each with position (xobst, yobst) =
(r cos θ, r sin θ) and radius Robst. The parameters Robst, r,
and θ are random variables chosen uniformly from the re-
spective intervals [Rmin, Rmax], [rmin, rmax], and (0, 2π] such
that no obstacle overlaps the circle of radius Rs with position
(xs, ys) or the circle of radius Rf with position (xf , yf).

For the instances generated in this paper, we set the intervals
to be rv ∈ [0.5, 1.0], Robst ∈ [0.2, 0.3], and r ∈ [0.0, 1.0]. The

(a) (b)

(c) (d)

Fig. 6. Solutions to an instance of the obstacle avoidance problem using:
(a) uniform gridding with sample time 2∆tmin (No = 115), (b) uniform
gridding with sample time ∆tc (No = 25), (c) iterative time step selection
(No = 4), and (d) iterative obstacle growing (No = 5). The straight line
segment denotes the initial velocity (ẋs, ẏs) = (0.497, 0.172), the circular
regions denote obstacles, the dashed regions denote the polygonal buffer
zones, and each cross denotes a time along the trajectory at which obstacle
avoidance is enforced.

constant parameters are taken to be (xs, ys) = (−0.8,−0.8),
(xf , yf) = (1.0, 1.0), Rs = 0.5, and Rf = 0.1.

The solution to an instance of the obstacle avoidance
problem with three obstacles is shown in Figure 6 for the
the uniform gridding method and for the iterative MILP
methods. Each cross denotes the time along the trajectory at
which obstacle avoidance is enforced. The uniform gridding
method with sample time ∆tc requires No = 25 obstacle
avoidance times, shown in Figure 6(b), while the iterative
MILP time step selection algorithm requires only No = 4
avoidance times, shown in Figure 6(c). Notice the efficiency in
which the iterative algorithm distributes the avoidance times.
For comparison, we also solve this instance using uniform
gridding with sample time 2∆tmin (Figure 6(a)) and using the
iterative obstacle growing algorithm (Figure 6(d)). For uniform
gridding, choosing sample time 2∆tmin guarantees obstacle
avoidance as discussed in Section III-B. However, as shown
in the figure, this dense set of obstacle avoidance times is very
conservative.

In Figure 7, we plot the fraction of instances solved versus
computation time for the two methods. As these figures show,
the iterative MILP method is less computationally intensive
than the uniform gridding method for the instances solved.
For example, 70% of the instances are solved in 0.4 seconds
or less using the iterative MILP algorithm for the 3 obstacle
case. In contrast, no instances are solved in 0.4 seconds or
less using uniform gridding for the 3 obstacle case.

In Figure 8, we plot the computation time necessary to solve
70% of the randomly generated instances versus the number of
obstacles on the field. Data is plotted for the uniform gridding
method and for the iterative MILP method. The computational

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 7

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

computation time (sec)

fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed
uniform gridding

2 obstacles
3 obstacles
4 obstacles

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

computation time (sec)

fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed

iterative algorithm

2 obstacles
3 obstacles
4 obstacles

Fig. 7. Fraction of instances solved versus computation time for uniform
gridding (top) and the iterative MILP obstacle avoidance (bottom). We
consider Nobst = 2, 3, 4. For each curve, 500 random instances were solved.
The values of the parameters are Nu = 10, Mu = 10, and Mo = 10.

requirements for both methods grow exponentially with the
number of obstacles. However, as the figure shows, the iter-
ative MILP method is less computationally intensive and the
computation time grows at a slower rate.

IV. MINIMUM TIME PROBLEMS

In this section, we present an iterative MILP algorithm
for solving minimum time problems using a vehicle trajec-
tory generation problem as motivation. In [21], [22], MILP
methods for this problem are presented. Time is discretized
uniformly and the sampling interval that contains the optimal
time is found using MILP. To get better bounds on the
optimal time, the sample time of the discretization must be
reduced, which results in a larger number of binary variables.
In Appendix II, this method is outlined in the context of the
vehicle considered in this paper.

Here we propose an iterative algorithm that converges to
the optimal time using binary search. At each iteration the
feasibility of a MILP is determined using a solver such as
CPLEX [15]. In each MILP, the number of binary variables
and the number of constraints are much fewer than those for
other techniques because only one discrete time step is needed.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10−1

100

101

102

obstacles

co
m

pu
ta

tio
n

tim
e

(s
ec

)

uniform gridding
iterative algorithm

Fig. 8. Computation time necessary to solve 70% of the randomly generated
instances versus the number of obstacles. Each square denotes a data point
for the uniform gridding method. Each asterisk denotes a data point for the
iterative MILP method. The solid lines denote curves fitted to these data.

To motivate the iterative algorithm we consider a minimum
time vehicle control problem. Given a vehicle governed by
equations (5) and (7), find the sequence of control inputs
{u[k]}Nu−1

k=0 that transfers the vehicle from initial state x(0) =
xs to final state x(tf) = xf in minimum time.

Suppose we know that the optimal time, denoted t∗, is
within the time interval (tL, tR]. Let time tM = (tL + tR)/2.
Consider the MILP given by equation (5), equation (7),
constraint x(0) = xs, and constraint x(tf) = xf with final
time taken to be tf = tM . We use equation (6) to express
x(tf) in terms of the control inputs. To determine if there
exists a sequence of control inputs that transfers the vehicle
from start state to finish state, we solve the MILP without an
objective function (this is a feasibility problem).

If the MILP is feasible, t∗ must be within the interval
(tL, tM]. Otherwise, the MILP is infeasible and t∗ must be
within the interval (tM , tR]. By determining the feasibility of
the MILP, we have cut the bound on the optimal time t∗ in
half. This suggests an iterative binary search procedure that
converges to t∗.

The iterative algorithm is outlined in Table III and proceeds
as follows: First, pick a time interval (tlb, tub] that bounds
the optimal time t∗. The lower bound is taken to be tlb =
dmin/vmax, where dmin is the straight line distance from the
initial position to the final position and vmax is the maximum
velocity of the vehicle. The upper bound is taken to be a
feasible time in which the vehicle can reach the destination.
A simple way to compute a feasible time is to try time αtlb,
where α > 1, increasing α until a feasible time is found. Set
tL := tlb, tR := tub, and tM := (tR + tL)/2.

Next, set the final time in the MILP problem formulation to
be tf = tM , and determine if the resulting MILP is feasible
using the MILP solver. If the MILP is feasible, the optimal
time t∗ must be within the interval (tL, tM]. In this case,
set tR := tM . Otherwise, the MILP is infeasible and the
vehicle can not reach the destination in time tM . The optimal
time t∗ must be within the interval (tM , tR]. In this case, set
tL := tM . Then, update tM by setting tM := (tR + tL)/2.

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 8

TABLE III
ITERATIVE MINIMUM TIME MILP ALGORITHM

1: Formulate problem as a MILP without objective function.
2: Set tL := tlb and tR := tub.
3: Set tM := (tR + tL)/2.
4: while (tR − tL) > ε do
5: Determine feasibility of MILP with final time tf = tM .
6: if feasible then set tR := tM .
7: else set tL := tM .
8: Set tM := (tR + tL)/2.
9: end while

If the difference tR − tL is less than some desired tolerance
for our calculation of t∗, denoted ε, the algorithm terminates.
Otherwise, repeat the process by setting the final time to
tf = tM and continue with the steps outlined previously until
the computed value of t∗ is within the desired tolerance ε.

After the kth iteration, the time interval containing optimal
time t∗ has length (tub − tlb)/2k.

The solid lines of Figure 9 show the solution to an instance
of the minimum time problem. The iterative procedure was
stopped after thirteen iterations, which took approximately one
second on our Pentium III 550 MHz computer. To achieve the
same accuracy using the uniform time discretization method,
solving one large MILP with a small sampling time, it took
five minutes on the same computer.

Our iterative procedure converges to the time optimal so-
lution of the problem stated in the beginning of this section.
This solution is an approximate solution to the continuous
time version of the minimum time vehicle control problem.
In the continuous time version of the problem, the vehicle
is governed by equations (4) and (3). We wish to transfer the
vehicle from starting state xs to finishing state xf in minimum
time. In Figure 9, we compare our near optimal solution to
the continuous time problem (solid lines) to another technique
(dotted lines) for generating near optimal solutions from [18],
which was used successfully in the RoboCup competition.

In addition to being used on its own, our iterative approach
can be combined with the uniform discretization approach.
In this case, the uniform approach is run first with a coarse
discretization (large sampling time T). The output is a time
interval of size T , which contains the optimal time t∗. We use
this time interval as the input to our iterative algorithm. The
kth step of the iterative algorithm outputs a time interval of
length T/2k containing the optimal time t∗, and thus quickly
converges to the optimal time.

V. DISCUSSION

We have presented iterative MILP algorithms for obstacle
avoidance and for minimum time control problems. The iter-
ative MILP time selection algorithm picks obstacle avoidance
times and intelligently distributes them where they are needed
most. The iterative MILP obstacle growing algorithm allows
a course set of obstacle avoidance times to be used instead
of a dense distribution, which is required to guarantee ob-
stacle avoidance for standard MILP methods. Both of these
algorithms reduce the number of binary variables needed to

−0.2 0 0.2 0.4
−0.2

−0.1

0

0.1

0.2

0.3

x

y

(a)

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

time

co
nt

ro
l i

np
ut

(b)

0 0.5 1 1.5 2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time

po
si

tio
n

(c)

0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

0.6

time

ve
lo

ci
ty

(d)

Fig. 9. Time optimal solution (solid lines) to an instance of the minimum
time vehicle control problem of Section IV given by the iterative MILP
algorithm. For comparison we plot the near optimal solution (dotted lines)
for the continuous time version of the problem obtained using techniques
from [18]. The parameters are: Mu = 20, Nu = 10, (xs, ys, ẋs, ẏs) =
(−0.25,−0.2,−0.5, 0.3), (xf , yf , ẋf , ẏf) = (0.4, 0.3, 0, 0).

formulate and solve obstacle avoidance trajectory generation
problems using MILP. To demonstrate the computational ben-
efits of the iterative MILP time step selection algorithm, we
performed an average case computational complexity analy-
sis. For comparison, we also performed the analysis on the
standard uniform gridding method. The iterative algorithm
significantly outperformed the uniform gridding method. In
addition, we also present an iterative algorithm for solving
minimum time problems using MILP. We found that the
algorithm significantly outperforms standard techniques for
minimum time problems using MILP.

Due to the reduced computational requirements of these
methods, they can be applied more widely in practice. Com-
putational efficiency is especially important for real time
control in dynamically changing environments where new
control plans need to be generated often and in real time
using a strategy such as model predictive control [16]. In our
research [8], [9], we use these methods to solve cooperative
control problems such as those described in [4], [6], [7].
However, there is much room for improvement, including
decreasing computation time further and developing methods
that scale better with increased numbers of obstacles and
vehicles. In [8] we discuss ideas to further decrease the
computational requirements of MILP methods. We feel that
intelligent time step selection methods, such as those presented
in this paper, can be very useful in reducing computational
requirements and should be pursued further. One aspect that
needs inspection is the intelligent selection of the discretization
for the control input to the vehicle.

APPENDIX I

Here we derive the minimum sample time, denoted ∆tc,
that guarantees obstacle avoidance between sample times,
assuming the vehicle moves in a straight line path between

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 9

sample times. This is a good approximation, because ∆tc is
small for the problems we solve.

Let d be the straight line distance the vehicle can travel
between any two consecutive avoidance times. The cord of
the smallest buffer region that is tangent to the obstacle it
surrounds is denoted the critical cord. The critical cord length
is given by dc = 2((Rmin

buff)2−(Rmin
obst)

2)1/2 = 2Rmin
obst

√
α2 − 1

because Rmin
buff = αRmin

obst.
If d < dc, the vehicle is guaranteed to avoid the obstacle

between avoidance times. If d ≥ dc, the vehicle can collide
with the obstacle between avoidance times. The critical time
interval ∆tc is given by

∆tc =
dc
vmax

=
2Rmin

obst

√
α2 − 1

vmax
, (14)

where vmax is the maximum velocity of the vehicle.

APPENDIX II
MINIMUM TIME MILP FORMULATION

Here we consider a minimum time trajectory generation
problem. We are given a vehicle governed by the discrete time
system (5) and subject to the constraints (7). The objective is to
find the sequence of control inputs {u[k]}Nu−1

k=0 that transfers
the system from the initial state x(0) = xs to the final state
x(tf) = xf in minimum time.

Applying the techniques of [21], [22], we introduce a
uniform time discretization with constant sampling time T .
The solution of the resulting MILP gives a feasible time that
is within T of the optimal time.

Discretize time into NT times given by tT [k] = kT , where
k is an element of the set {1, . . . , NT }. The discretization must
be chosen so that tT [NT] = NTT is larger than the optimal
time.

Next, introduce auxiliary binary variable δ[k] ∈ {0, 1} and
the inequality constraints,

x(tT [k])− xf ≤ H(1− δ[k])

x(tT [k])− xf ≥ −H(1− δ[k])

y(tT [k])− yf ≤ H(1− δ[k])

y(tT [k])− yf ≥ −H(1− δ[k])

ẋ(tT [k])− ẋf ≤ H(1− δ[k])

ẋ(tT [k])− ẋf ≥ −H(1− δ[k])

ẏ(tT [k])− ẏf ≤ H(1− δ[k])

ẏ(tT [k])− ẏf ≥ −H(1− δ[k]), (15)

for each k in the set {1, . . . , NT }. Here, the state x(tT [k])
is written in terms of the control inputs using equation (6),
and H is a large positive constant taken to be greater than the
largest dimension of the operating environment.

If δ[k] = 0, every constraint in equation (15) is trivially
satisfied because, for example, x(tT [k]) − xf is always less
than H . Otherwise, δ[k] = 1 and the constraints in equa-
tion (15) enforce the condition x(tT [k] = xf). To require that
the final condition be satisfied at only one discrete time tT [k]
the following constraint is introduced,

NT∑

i=1

δ[i] = 1. (16)

Finally, we introduce the cost function to be minimized,

J =

NT∑

i=1

iδ[i]. (17)

By minimizing this cost the final state xf is reached at the
earliest discrete time, tT [k], possible. The output after solving
the resulting MILP is a single ksol such that δ[ksol] = 1.
The optimal time is therefore within the interval (tT [ksol −
1], tT [ksol]].

REFERENCES

[1] J. S. Bellingham, M. Tillerson, M. Alighanbari, and J. P. How, “Co-
operative Path Planning for Multiple UAVs in Dynamic and Uncertain
Environments,” Proc. IEEE Conf. Decision and Control, Las Vegas,
Neveda, Dec. 2002, pp. 2816–2822.

[2] A. Bemporad and M. Morari, “Control of Systems Integrating Logic,
Dynamics, and Constraints,” Automatica, vol. 35, pp. 407–428, 1999.

[3] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization,
Athena Scientific, Belmont, Massachusetts, 1997.

[4] M. Campbell, R. D’Andrea, D. Schneider, A. Chaudhry, S. Waydo,
J. Sullivan, J. Veverka, and A. Klochko, “RoboFlag Games Using Sys-
tems Based, Hierarchical Control,” Proceedings of the American Control
Conference, June 4–6, 2003, pp. 661–666.

[5] R. D’Andrea, T. Kalmár-Nagy, P. Ganguly, and M. Babish, “The Cornell
RoboCup Team,” In G. Kraetzschmar, P. Stone, T. Balch Eds., Robot
Soccer WorldCup IV, Lecture Notes in Artificial Intelligence, Springer,
2001.

[6] R. D’Andrea and R. M. Murray, “The RoboFlag Competition,” Proceed-
ings of the American Control Conference, June 4–6, 2003, pp. 650–655.

[7] R. D’Andrea and M. Babish, “The RoboFlag Testbed,” Proceedings of
the American Control Conference, June 4–6, 2003, pp. 656–660.

[8] M. G. Earl and R. D’Andrea, “Multi-vehicle Cooperative Control
Using Mixed Integer Linear Programming,” submitted to the
IEEE Transactions on Robotics. A preprint is available at
http://control.mae.cornell.edu/earl/milp1

[9] M. G. Earl and R. D’Andrea, “A Decomposition Approach to Multi-
vehicle Cooperative Control,” to be submitted. A preprint is available at
http://control.mae.cornell.edu/earl/decomp

[10] M. G. Earl and R. D’Andrea, “A Study in Cooperative Control: The
RoboFlag Drill,” Proceedings of the American Control Conference, An-
chorage, Alaska May 8–10, 2002, pp. 1811–1812.

[11] M. G. Earl and R. D’Andrea, “Modeling and Control of a Multi-agent
System Using Mixed Integer Linear Programming,” Proc. IEEE Conf.
Decision and Control, Las Vegas, Nevada, Dec. 2002, pp. 107–111.

[12] All files for generating the plots found in this paper are available online
at http://control.mae.cornell.edu/earl/milp2

[13] R. Fourer, D. M. Gay, B. W. Kernighan, “AMPL–A Modeling
Language For Mathematical Programming,” Boyd & Fraser, 1993.
http://www.ampl.com

[14] M. R. Garey and D. S. Johnson. Computers And Intractability: A guide
to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.

[15] ILOG AMPL CPLEX System Version 7.0 User’s Guide, 2000.
http://www.ilog.com/products/cplex

[16] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained Model Predictive Control: Stability and Optimality,” Automatica,
vol. 36, pp. 789–814, 2000.

[17] M. Morari, M. Baotic, and F. Borrelli, “Hybrid Systems Modeling and
Control,” European Journal of Control, Vol. 9, No. 2-3, pp. 177-189,
2003.

[18] T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly. “Near-Optimal Dy-
namic Trajectory Generation and Control of an Omnidirectional Vehicle,”
Robotics and Autonomous Systems, vol. 46, pp. 47–64, 2004.

[19] J. Ousingsawat and M. E. Campbell, “Establishing Optimal Trajecto-
ries for Multi-vehicle Reconnaissance,” AIAA Guidance, Navigation and
Control Conference, 2004.

[20] A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
Trajectory Planning with Avoidance Constraints Using Mixed-Integer
Linear Programming,” Journal of Guidance, Control, and Dynamics, Vol.
25, pp. 755–764, July–August 2002.

[21] A. Richards and J. P. How, “Aircraft Trajectory Planning With Collision
Avoidance Using Mixed Integer Linear Programming,” Proc. American
Control Conf., Anchorage, Alaska May 8–10, 2002.

SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS 10

[22] H. P. Rothwangl, “Numerical Synthesis of the Time Optimal Nonlin-
ear State Controller via Mixed Integer Programming,” Proc. American
Control Conf., Arlington, VA, June 2001, pp. 3201–3205.

[23] P. Stone, M. Asada, T. Balch, R. D’Andrea, M. Fujita, B. Hengst, G.
Kraetzschmar, P. Lima, N. Lau, H. Lund, D. Polani, P. Scerri, S. Tadokoro,
T. Weigel, and G. Wyeth, “RoboCup-2000: The Fourth Robotic Soccer
World Championships,” AI MAGAZINE, vol. 22(1), pp. 11–38, Spring
2001.

