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Abstract— In this paper we tackle the problem of estimating
the mode of switching systems. From the theoretical point of view,
our contribution is twofold: creating a framework that has a clear
parallel with a communication paradigm and deriving an analysis
of performance. In particular, our work is restricted to the class of
systems that randomly switch among a finite alphabet of discrete-
time finite impulse response linear operators, therein designated
as modes. In our approach, the switching system is viewed as
an encoder of the mode, which is interpreted as the message,
while an external excitation process establishes a random code.
Accordingly, the estimator, which observes the code and uses
noisy measurements of the output, is constructed as a decoder
whose properties can be studied by means of a modification
of Shannon’s theory. Using a distance function, we define an
uncertainty ball where the estimates are guaranteed to lie with
probability arbitrarily close to 1. The radius of the uncertainty
ball is directly related to the rate of the switching process. It is
shown that lower rates lead to smaller uncertainty. Such distance
also reflects the informativity of the external excitation (code) and
as such can be used as a guide on its choice.

I. INTRODUCTION

The implications of modal estimation of hybrid systems
span applications [8] [15] in Adaptive Control and fault detec-
tion. Dating back to more than 25 years [16], the investigation
of such problems has generated a vast portfolio of algorithms
and methods [13]. In this paper, we focus on the modal
estimation of systems that randomly switch among a set of
finite impulse response, or moving average, filters. A discrete
stochastic process drives the switching, while the system is
excited by a white Gaussian process.

By using finite impulse response filters, we expect to
make our analysis and methods applicable to other classes
of uniformly (over the switching sequences) stable [20] or
stochastically stable switching systems [21]. As for the mode
estimation, we recognize that there is a parallel with a commu-
nication setup that uses randomly generated codes [9]. Under
that framework, the input defines a constrained code and the
system is perceived as an encoder of the mode (message).
Consequently, we adopt a decoder structure for the mode
estimator. That allows the use of Shanon’s theory in the
analytical formulation of performance measures. In [10], it
is mentioned the difficulty of computing measures of perfor-
mance for the available suboptimal algorithms. In practice,
such quality evaluation may have to resort to Monte Carlo
simulations. We address that problem by defining a measure
of distance

�
and computing the probability that a sequence of

mode estimates � ������ 	 (generated by the decoder) is in a ball, of
radius 
 , around the real one �� ��� 	 . Explicit bounds are derived
that depend on � , the size of the memory of the decoder, 
����� �������

, the rate of the switching process, and the covariance
matrices of the noise and the input. An interesting feature of
this framework is that, for fixed 
���
���� ��! "$# , the probability
of

�&% �� ��� 	 � � ��'��� 	�(*) 
 converges to 1 as � tends to infinity.
In that sense, as a theoretical result, our work relates to [19],
where it is proven that the uncertainty [18] in identifying time-
varying systems is directly related to the speed of variation.
In our case, such quantity is given by the rate 
��+� ��, "$# .
Information theoretically inspired distances, have been widely
used in system identification and parameter estimation [3], [4],
[5]. Further examples are the channel identification with finite
observations, for a finite model set, studied in [7], and the
identification of finite alphabet information sources[6]. The
optimal solution to the mode estimation problem can be cast
as a Bayesian Hypothesis testing. The search space of such
approach grows, in general [17], with - 	 , where - is the
number of modes and � is the number of observations. That
stimulated a quest for methods of merging and/or pruning
hypothesis as a way to reduce computational load [10], [14].
The computation complexity of the estimator proposed in this
paper grows with - 	�.�/ , where � (number of observations) is
selected as a function of the performance specifications. Such
dependence of the computational complexity on 
�� is a result
of restricting, the hypothesis testing, to a typical set [12]. If
the switching rate 
�� is low or � can be taken small, then such
estimator is suitable for computer implementation. If that is not
the case, we claim that, since the estimation scheme presented
in this paper can be made arbitrarily close to the optimal, its
performance analysis can be useful as a benchmark measure
of other suboptimal methods. Also, the distance

�
can be used

as a quality measure on the design of probing signals and can
be viewed as a first step to the proper study of the effect of
observed inputs on the mode observability of linear hybrid
systems.

The paper is organized as follows: Section I-A introduces
the notation used throughout the text. The problem is stated
and its information theoretic equivalence established in section
II, while section II-A provides a guide through the main
results. The method is described in section III, while the
performance analysis is carried out in section IV. Numerical
examples are provided in [1].



A. Notation

The following notation is adopted: Large caps letters are
used to indicate vectors and matrices. Small caps letters are
reserved for real scalars and discrete variables. In addition, �
is reserved to represent probability distributions. Discrete-time
sequences are indexed by time using integer subscripts, such
as ��� , ��� �

. Finite segments of discrete-time sequences are
indicated with a bar on the top, e.g. �� . Whenever it is relevant,
the range of their time-indexing must be indicated as in the
following example:

�� � � 		� % � � ��
�
�
 � � 	 ( (1)

Superscripts are reserved for distinguishing different variables
and functions according to their meaning. Random variables
are represented using boldface letters and follow the conven-
tions above. As an illustration, 
 is a valid representation for
a scalar random variable, while a sample (or realization) is
written as � . Also, a finite segment of a discrete-time sequence
of random variables, would be �� ��� � . A realization of such
process would be indicated as �� ��� � . The probability of an event
is indicated by � %������ ��� ( . We use the entropy function, of a
random variable � , given by:� � � � ��� �������! # �#" % � ( � (2)

where - �%$ , � " is the p.d.f. of � and � �'& � is the expected
value, taken over � . Similarly, the conditional entropy is given
by
� � � �)( � � � � � � � � � � � �*� � � � � � where, in this case, the

expectation is taken with respect to � � and � � . The covariance
matrix of a random variable � , with + �-, 	 , is given by:

. " �/�10 % � � � � � � ( % � � � � � � (32�4 (3)

II. PROBLEM STATEMENT

Consider the mode alphabet 5 �76 ����
�
�
 � -98 and the
random process : � , with ; � ��, 	!< , described by:

:=� ��> � �1?@� � �A�CB (4)

> � � DE F�G�HJI F % �� ��K D � � (ML ��K
F

(5)

where � � B �N$ and
I FPO 5 D!Q �SR , 	!<UT�	)V are matrices

that specify the switching system. The stochastic processesL � (test signal), ?@� and � � are mutually independent and
satisfy:W L � and ? � are Gaussian zero mean i.i.d. processes,

with X � �Y, 	)V and Z � �Y, 	)< . In order to avoid
degeneracy problems, we assume

.\[ � �
. In contrast to? � , the test signal L � is assumed to be observed by the

estimator. Examples where this is a realistic assumption
are: when L � is generated by the estimator; when it is an
exogenous process that can be observed by the estimator
or a combination of both.

W � � is a discrete stationary stochastic process with al-
phabet 5 �]6 ���_^ ��
�
�
 � -98 . Although our results are
valid for Markovian � � (see subsection IV-A), we reduce
the technical complexity of this paper by considering
the i.i.d. case. While keeping the same structure, such
simplification makes proofs more clear. For a given � �$ , we write the p.d.f. of �� ��� 	 as � � % �� ��� 	 ( , regardless of
� . The rate [12] of � � , designated by 
�� , is computed as:


 � ��� �'�=`�a�b # � � % � ( � (6)

For a given � , we wish to use a test signal L � and a decision
system that, by means of the measurement of : ��� 	 , produces
an estimate � ������ 	 of �� ��� 	 . The estimation method must have an
associated measure of distance

�&% �� ��� 	 � � �� ��� 	 ( that allows the
specification of a ball around �� ��� 	 where the estimates � ��'��� 	
will lie with a given probability. In particular, for a given 
 ��

, we are interested in computing � % �&% �� ��� 	 � � �� ��� 	 ( ��
 ( . Such
probability is expected to depend on 
 and � . By using an
information theoretic formulation, this characterization must
also reflect the informativity of L � and 
�� , the rate of the
switching process.

We would like to stress that, without loss of generality,
we develop our analysis using the origin of time as � � �

.
In real applications, this setup can be used in a sliding
window scheme (see figure 1) and � should be viewed as
the memory of the estimator. This way, once we determine all
the parameters of the estimation process, for every �*� � we
use measurements �:=��K 	 Q ��� � to produce � �� �cK 	 Q ��� � .
A. Main results and Implementation Issues

Among the results presented in this paper, the following are
central to answering the questions posed above: In definition
4.1 a measure of distance

�
is introduced. It is through

this function that the informativity of L � can be gauged. IfL � , or only part of it, are generated by the estimator then
that generated portion of

.=d
may be tuned to achieve a

desired distance function. Similar methods for the distance-
based design of probing functions were derived in [2]. In
lemma 5.8 we show that, as � increases, � % �&% �� ��� 	 � � ��'��� 	�( �
 ( decreases. Theorem 4.1 proves that if 
 � 
�� � ��, " #
then � % � % �� ��� 	 � � ������ 	�( � 
 ( can be made arbitrarily small
by increasing � . The explicit bounds given in lemma 5.8
answer the question: “given 
 � �

and e � �
, what is � that

guarantee that � % �&% �� ��� 	 � � ��'��� 	�( ��
 ( ) e “. In [1] we address
these issues in the more general setting where observations
are generated through:

: � �/> � �gf> � �%? � % � � ( � �A�hB (7)

where, for any given � �i5 , ? � % ��( is a zero-mean white
Gaussian process, with covariance matrix depending on � ,
independent of L � and � � . Moreover, in [1], we assume thatf> � is the output observation of another autonomous moving
average switching process whose switching is governed by � � .



B. Posing the Problem Statement as a Coding Paradigm

As the generality of the estimation paradigms [3], the esti-
mation of the mode of (4)-(5) can be interpreted as a problem
of communication through a noisy channel (see Figure 1). The
message to be transmitted is � � , the test signal L � specifies the
code while the measurement noise ? � completes the setup
of such channel. The decoder is bound to use �L ��� 	 and the
noisy measurements �: ��� 	 to make a decision as to which is
the best estimate � ������ 	 .

System 1

System mqk

DECODER+

Wk

Vk

qk
^

.… Fk+1 …… Fk+n ….

.…Vk+1 …… Vk+n ….
Sequence of Noisy Measurements

Sequence of Codes

qk+1,k+n
^Sliding window of size n

Fk

ENCODER

PARAMETERS

ε ΣV n

Fig. 1. Depiction of the communications setup interpretation for mode
estimation.

III. CHANNEL INTERPRETATION AND DECODING

A specific feature of this communications setup is that the
encoder does not know the message to be transmitted. This is
a problem if one wants to adopt the approach of coding long
words as a way to reduce the probability of error (channel
coding theorem). In order to circumvent this difficulty, we
follow the procedure in the proof of Shannon’s channel coding
theorem, i.e., the use of random coding [9]. Consequently, we
consider the process L � as establishing a constrained random
code specified by

.=d
.

In the decoding process we will use the following estimate:

�> % � �� � � K D � ��� ( �
��� � D
F'G H I F % � �� � � K D � � � (ML � � K

F
...� DF'G H I F % � �� � � K D � � � (ML � � K

F	��
� (8)

The decoding process has a hypothesis testing structure. The
likelihood of a given candidate sequence � ������ 	 is gauged by
means of the estimation error �: � Q*D � 	 � �> % � ������ 	�( . The following
definition, describing a conditional test random variable, will
facilitate the definition and the performance analysis of the
decoder.

Definition 3.1: Given � � � � � � $ , � � � � � � B and

�� � � K D � � � � � �� � � K D � ��� ��5 � � K�� � Q � Q D , define the random variable
 % �� � � K D � ��� � � �� � � K D � � � ( as:


 % �� � � K D � ��� � � �� � � K D � ��� ( ���� � D
F�G�H�� I F % �� � � K D � � � ( � I

F
% � �� � � K D � � � (���L � � K

F
�1? � �

...� DF�G�H � I F % �� � � K D � � � ( � I
F
% � �� � � K D � � � ( � L � � K

F
�1? � � � 
�

(9)

Notice that, in the previous definition, for any given indices� � , � � and �� � � � ��� � � �� � � � � � �-5 � � K�� � Q � , we have:� % �� � � � ��� � � �� � � � � � ( �-, 	!<�� � � K�� � Q � K D�� (10)

If � �� � � � ��� � �� � � � � � , then we write

 % �� � � � � � � � �� � � � ��� ( in abbrevi-

ate form as

 % � �� � � � � � ( .

A. Description of the estimator (decoder)

By following the approach that leads to a standard decoder
[12], in this section we construct a mode estimator.

In the subsequent analysis we use the following result:
Remark 3.1: If � is a Gaussian, zero mean random variable

with covariance matrix
.�� �-, 	�� T�	�� , then:

� % � ( � �^ ���! #�� % ^�� � ( 	�� ( . � (  (11)

The following is the definition of the estimation error rate

"!$# . Such quantity is important in the construction of the
estimator.

Definition 3.2: Define the estimation error rate 
 !$# as:


 !$# � � % ? � (
�&% � ���! #�� % ^�� � ( 	!< ( . [ (  ^ �&% (12)

The following definitions complete the list of mathematical
objects needed to describe the decoder.

Definition 3.3: Consider � ������ 	 � 5 	 and realizations �; ��� 	
and �'*% � �� ��� 	 ( . Given parameters � �%$ and ( � % ����� ( , define
the selection indicator )"* � 	 O 5 	SR 6 � 
,+ � � ;.- ` ) � 8 as:) * � 	 % � ������ 	�( � � 
,+ � , if( ���! # � 2 �0/ 1� �32 4 � % �; � Q*D � 	 � �'&% � ������ 	�( (

� % % � � B ( � 
 !$# ( ) ( (13)

and ),* � 	 % � ��,��� 	�( � ;.- ` ) � otherwise.
The decoding process is carried out by recognizing which

sequences, in the typical set defined bellow, can be invalidated.
Definition 3.4: Given the parameters � �-$ and ( � % ��� � ( ,

the set of typical sequences 5 * � 	 is defined as:

5 * � 	 � 6 � �� ��� 	 �-5 	 O ( �'�) # �$� % � �� ��� 	 (� ��
 � ( ) (�8 (14)

It is the cardinality of 56* � 	 that determines the computa-
tional complexity of the estimator. According to [12] such
quantity is bounded by - 	7� . / Q * � . The structure of the decoder
is the following:



Definition 3.5: (Decoder) Given the realizations �; ��� 	 and
�X ��� 	 , parameters ��� $ and ( � % ��� � ( , define the decoder as
a search in 56* � 	 that generates � ������ 	 satisfying:

� �� ��� 	 � 5 * � 	 and ) * � 	 % � �� ��� 	 ( � � 
,+ � (15)

If, for a given realization, there is no such � ������ 	 , then the
decoder generates an arbitrary � �� ��� 	 � 56* � 	 . The decoding
process defines a random variable, which we designate by
� ��'��� 	 .

IV. PERFORMANCE ANALYSIS: CHARACTERIZATION OF

THE UNCERTAINTY SETS BY MEANS OF A MEASURE OF

DISTANCE

The quality evaluation, of the coding/decoding process, is
carried out by computing the probability that � �� ��� 	 is in a ball
around �� ��� 	 . Such uncertainty set is specified by means of
the distance

�
defined bellow. This function is related to the

concept of divergence as in [2].
Definition 4.1: (Measure of Distance)The distance

�
O

5 	 � 5 	 R , is given by:

�&% �� ��� 	 � � ������ 	�( � � % 
 % �� ��� 	 � � ������ 	�( (� % % � � B ( � 
 !$# (16)

The following theorem is the main result of this paper.
Theorem 4.1: (Main result) Let � �� ��� 	 be determined ac-

cording to the decoding process described in the definition
3.5. For any given e � �

, there exists � �1$ and ( � % ����� (
such that:

� % �&% �� ��� 	 � � ��'��� 	�( ( � 
��
�&% �

�^ ��� - � e ( ) e � if 
 � � �
(17)

� % � % �� ��� 	 � � ������ 	�( ( �Ne ( ) e � if 
 � � �
(18)

Proof:
The result for 
��N� �

follows directly from lemma 5.8 in
section V, while (18) is proven in [1]. �

According to [1], if, for every �� ��� 	 � � ������ 	 �-5 	 and �&� ^ B ,
the following approximation holds:

��� 
 % �� ��K D � � � � �� ��K D � � ( ( 
 % �� ��� ��K � � � ������ �cK � (��
	��� 
 % �� �cK D � � � � �� �cK D � � ( ( 
 % �� ��K � D � ��K � � � �� ��K � D � �cK � (�� (19)

then, for large � , we can approximate the distance
�

as:

�&% �� ��� 	 � � ������ 	�(�	 	EF'G
� Q � D


 % �� F K � D �
F
� � �� F K � D �

F
( � 
 !$#

� �%^ B (20)

where

 O 5 � D�Q � � 5 � D�Q � R , , is given by 1:

1If ����� , then take ��� �������� � 2 ��� � �� � 2 �! ��� �#" .


 % �� � � �� � ( � �^ � % �'�) # $%
% ^�� � ( 	 <'&&& .)( � /� �32 ��*,+ � � / 1� �32 ��*,+ � � &&&&&& . ( � /� �32 ��* � / 1� �32 ��* � &&&

-.
(21)

with �� ��� � D)Q �	� �� � and � ������ � D!Q � � �� � . The determination of. ( �0/ �1/ � is a standard procedure, which is further simplified
by the fact that L � and ? � are independent. Also, the
resulting matrices are affine on the elements of

. d
. It is

through this decomposition that the informativity of the input
can be accessed. For any given subsequences �� � � �� � �-5 � D!Q � ,
the higher


 % �� � � �� � ( is the more efficiently the decoder can
distinguishing between �� � and �� � .
A. Extension to Markovian Switching

The main result of this paper (Theorem 4.1) holds if � � is
a Markovian process with rate 
�� � �

. The fact that theorem
4.1 remains valid can be obtained by continuity arguments [1].
In that situation, 2 /�� �43 � �4365 � �2 / � �4375 � � defines the transition probabilities
of the Markov process. The rate of � � , designated by 
�� , is
computed as 
�� �/� ���=` a�b # 2 /���8 3 � 8 365 � �2 / �98 375 � � �

.

V. AUXILIARY RESULTS LEADING TO THE PROOF OF

THEOREM 4.1

The main result of this section is lemma 5.8, where explicit
expressions are given to bound the probability (17).

In order guarantee notational simplicity, we start with the
following definitions:

Definition 5.1: For any given �� ��� 	 � � ������ 	 �-5 	 we define the
following random variable:: % �� ��� 	 � � ������ 	�( � � ���! # � 2 � /� � 2 4 � / 1� � 2 4 � % 
 % �� ��� 	 � � ������ 	�( (�&% % � � B ( (22)

Lemma 5.1: Given � �hB and �� ��� 	 � � ������ 	 �A5 	
� � : % �� ��� 	 � � ������ 	�( � � �&% �� ��� 	 � � ������ 	�( � 
 !$# (23)

Proof:
The proof follows the from:

� � 
 % �� ��� 	 � � �� ��� 	 ( � �/�10 ���'�) # � 2 � /� � 2 4 � / 1� �32 4 � � 
 % �� ��� 	 � � �� ��� 	 ( � 4
(24)

and the formula for
�

given in definition 4.1 . �
Lemma 5.2: For any given positive definite

. � � , 	�� ,
designate by � the zero-mean Gaussian random variable with
covariance matrix

. �
. Then, the following holds:) +)�; �=< H?> � �!@ ���! # � � % � (� � A � � �B@ � � ���! # � � % � (

� � � A ��C ) -
� �
(25)

where � � %0D ( � E 5 �� �GFIH 5 �� �% � �!J � 4 �LK ; � K ( �NM � and - � �� �  "$# � � .



Proof: The result is obtained by evaluating the expected values
in (25) and applying the change of variables fD � . K ��� �� D

.�
Lemma 5.3: Given ( � �

, � �hB and sequences �� ��� 	 � � ������ 	 �5 	 , the following holds:

� � && : % �� ��� 	 � � ������ 	�( � � � : % �� ��� 	 � � ������ 	�(4� && � ( � ) �� �  "$# � �( � �&% % � � B (
(26)

Proof:
Since ? � is i.i.d. and

.=[ � �
, we conclude that. ( � /� � 2 4 � / 1� � 2 4 � � �

, so that lemma 5.2 and the fact that� % �� ��� 	 � � ������ 	�( ��, 	!< � 	 K D�� lead to:

X.-,
 % : % �� ��� 	 � � ������ 	�( (�� �� �  " # � ��&% % � � B ( (27)

The proof is concluded by a direct application of the
Chebyshev-Bienaymé inequality [11]. �

Lemma 5.4: Given ( � �
and � �NB the following holds:

� � && : % �� ��� 	 � �� ��� 	 ( � 
 !$# ( && � ( � )
�� �  "$# � �( � �&% % � � B ( (28)

Proof: We start by noticing that:

: % �� ��� 	 � �� ��� 	 ( � 
 !$# �� : % �� ��� 	 � �� ��� 	 ( � � � : % �� ��� 	 � �� ��� 	 ( � � �&% �� ��� 	 � �� ��� 	 ( (29)

and as such, since
�&% �� ��� 	 � �� ��� 	 ( � �

:

� � && : % �� ��� 	 � �� ��� 	 ( � 
 !$# && � ( � �� � % ( : % �� ��� 	 � �� ��� 	 ( � � � : % �� ��� 	 � �� ��� 	 ( � ( � ( ( (30)

The final result follows by direct substitution of the expres-
sions of lemma 5.3. �

Definition 5.2: (Event � - The decoder’s search space is
empty) Given ( � % ����� ( and � � $ , define � as the event
that: 6 � ������ 	 � 5 * � 	 O ) * � 	 % � ������ 	�( � � 
,+ � 8 ��� (31)

Lemma 5.5: For any given (*� % ��� � ( , if � � B , then the
following holds:

� % � ( )	�
�

�&( � �
�� �  " # � �( � �&% % � � B ( (32)

where

� � 
���

����� � 2 / � � � �

G H ( `�a�b # � � % ��( � 
 � ( (33)

Proof:
Notice that, from definition 3.5, if a given realization �� ��� 	
satisfies �� ��� 	 � 5�* � 	 and ),* � 	 % �� ��� 	 ( � � 
,+ � , then � is false
because �� ��� 	 is itself a valid choice for � ������ 	 . That leads to the
following inequality:

� % � (�� � % ( : % �� ��� 	 � �� ��� 	 ( � 
 !$# ( � ( ( �1� % �� ��� 	��� 5 * � 	 (
(34)

The first term in the RHS of (34) can be bounded by means
of lemma 5.4. The second term can be analyzed through the
expansion: �'�) # � � % �� ��� 	 ( �

	E F'G
�
` a�b # � � % � F ( (35)

Standard results on the variance of bounded random vari-
ables, lead to:

X -,
 % ���! # � � % �� ��� 	 ( (�� � � � (36)

Using the Chebyshev-Bienaymé inequality [11], we get:

� % �� ��� 	 �� 5 * � 	 (�� � � �
� � ( � (37)�

Lemma 5.6: For any given �� ��� 	 � � ������ 	 �95 	 and � ��B the
following holds:


���
�
���
4 <�� 4 5 *�� � 2 � /� � 2 4 � / 1� � 2 4 � % D ( �� - 	!<$� 	 K D � � K � � /� � 2 4 � / 1� � 2 4 � K ."!�# Q ���$ %�& � (38)

Proof:
From the definition of the Gaussian distribution:


���
�
���
4 <�� 4 5 *�� � 2 � /� � 2 4 � / 1� � 2 4 � % D ( � &&& . 2 � /� �32 4 � / 1� �32 4 � &&& K ��� �% ^�� ( 4 < � 4 5 *'�� (39)

or equivalently, using (11), it can also be written as:


���
�
���
4 < � 4 5 *�� � 2 � /� � 2 4 � / 1� � 2 4 � % D ( �� - K ( % 2 � /� � 2 4 � / 1� � 2 4 � ( Q 4 < � 4 5 *���'$ %�& (40)

The final result is achieved once we recall that�&% �� ��� 	 � � ������ 	�( � ( % ( � /� �32 4 � / 1� �32 4 � (	 < � 	 K D � � 
 !$# . �
Lemma 5.7: Let � � B , ( � % ����� ( , �� ��� 	 �*)

	
and

� ������ 	 � 5�* � 	 . The following is an upper-bound for the con-
ditional probability 2 that � �� ��� 	 satisfies the decoding condition),* � 	 % � ������ 	�( � � 
,+ � .

2Assuming that +,.- � / is a realization of the switching process, this proba-
bility can be described in words as the probability that + 0, - � / is not rejected
by the decoder’s search process.



� %�� * � 	 % � �� ��� 	 ( � � 
 + � ( �� ��� 	 ( )) - 	!< � 	 K D�� � K � � /� �32 4 � / 1� �32 4 � Q ��'$ %�& Q * � (41)
Proof: The structure of the decoder leads to :

� %�� * � 	 % � �� ��� 	 ( � � 
 + � ( �� ��� 	 ( � ��� � 2 � /� � 2 4 � / 1� � 2 4 � % D (�� D (42)

where � , the set of realizations leading to (13), is given by:

� � 6 D �-, 	!< � 	 K D � O&&&&&
���! # � 2 � /� � 2 4 � / 1� � 2 4 � % D (�&% % � � B ( ��
 !$# &&&&& ) (�8 (43)

We can use lemma 5.6 to infer that:

� %�� * � 	 % � �� ��� 	 ( � � 
 + � ( �� ��� 	 (��� �
- 	!<$� 	 K D�� % K � � /� � 2 4 � / 1� � 2 4 � K ."!�# Q ���$ %�& ( � D �

� X a ` % � ( - 	)< � 	 K D � % K � � /� � 2 4 � / 1� � 2 4 � K . ! # Q ���$ %�& ( (44)

The proof is completed once we notice that the volume of� is upper-bounded [12] by:X a ` % � (�) - 	)< � 	 K D � � . ! # Q * � (45)�
Lemma 5.8: (Main lemma) Given 
 � , Q and ( � % � ��� ( ,

the following holds:

� % �&% �� ��� 	 � � ������ 	�( � 
 ( ) � % � ( �
��-

	!<&� 	 K D��	��
 /4 < K
� Q ���$ %�& Q � + 4 <4 < *�� Q*D � . / Q * � (46)

where � % � ( is given in lemma 5.5.
Proof:

We separate the two events that potentially generate�&% �� ��� 	 � � ������ 	�( � 
 , and write the following bound:� % �&% �� ��� 	 � � �� ��� 	 ( � 
 (�� � % � ( �
� E/� � 2 4 ��� 4 E/ 1� �32 4 ��� � /� �32 4 � � %�� *

� 	 % � ������ 	�( � � 
,+ � ( �� ��� 	 ( � � % �� ��� 	 (
(47)

where � % �� ��� 	 ( � 6 � �� ��� 	 � 5 * � 	 O �&% �� ��� 	 � � �� ��� 	 ( � 
J8 (48)

Using lemma 5.7 and the inequality above, we get:� % �&% �� ��� 	 � � �� ��� 	 ( � 
 (��%�� 5 * � 	 ( - 	!<&� 	 K D�� � K�� Q * Q ��'$ %�& � �%� % � ( (49)

The fact [12] that
� 56* � 	 � - 	7� . / Q * � concludes the proof.�
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