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Abstract. We examine the scalability of multi-robot algorithms. In particular, we
attempt to capture the idea that the less coordination a multi-robot system requires,
the better it should scale to large numbers of robots. To that end, we introduce a
notion of communication complexity of multi-robot (or more generally, distributed
control) systems as a surrogate for coordination. We describe a formalism, called
CCL, for specifying multi-robot systems and algorithms for which the definition
of communication complexity arises naturally. We then analyze the communication
complexity of several, in some cases novel, multi-robot communication schemes each
representative of one of several natural complexity classes.

1 Introduction

Research in multi-robot systems has matured to the point where systems with
tens, hundreds or even thousands of robots are being proposed. Usually, to
achieve a given task, the robots must share information — about what they
are sensing, for example. Because more sharing requires more resources (time,
sensory effort and communication bandwidth), the amount of information
that must be shared determines how coordinated a task is.

The adverse effects of coordination are well known to researchers in par-
allel processing: Often, increasing the number of processors results in a corre-
sponding decrease in the amount of time needed to perform a given computa-
tion only up to a point, after which the time spent coordinating inter-process
communication outweighs the benefits of having more processors.

In contrast, multiple robots are not usually used to increase the speed
of a computation. Rather, such systems are designed to cover a large area
with sensors; or achieve fault tolerance by using large numbers of cheap,
expendable units; or manipulate an object in parallel with vast numbers
of tiny, relatively independent actuators. Nevertheless roboticists are faced
with problems similar to those of the parallel algorithm designer: If the task
charged to a multi-robot system by necessity requires a great deal of coordi-
nation, then the performance of the system will necessarily degrade as more
robots are employed.

Thus a measure of coordination complexity is needed to evaluate proposed
algorithms. Ideally such a measure should be a function of the minimal in-
formation flow required to perform a given task and be independent of how
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that flow is mediated (by sensors, communication networks, etc.). It should,
furthermore, account for how that information changes (becomes obsolete)
as a result of the dynamics of the environment. We do not yet have a way
to characterize arbitrary information flow, however, so we use the more basic
notion of communication complexity (Definition 4) to capture coordination
complexity. The model we assume is that each robot knows its own state
and can communicate directly with any other other robot via some (unspeci-
fied) communication system.1 The cost of a communication event, in terms of
bandwidth used, latency or time spent waiting, is summarized into a single,
abstract cost (denoted by γ in Definition 4). At every step of a multi-robot
algorithm, we sum the costs of the communication events that occurred in
that step and then take the average over all the (infinitely many) steps in the
control algorithm.

With this definition, it turns out that the worst case complexity of any
reasonable algorithm is O(n2): all robots must communicate constantly with
all other robots. With O(n2) complexity, the bandwidth of the communication
system must increase with the square of the number of robots. For this reason,
an O(n2) complexity algorithm or task is not considered scalable. In an O(n)
complexity algorithm, on the other hand, bandwidth need only scale linearly
with the number of robots. In this case we imagine that, for example, for
every 100 robots, we add one new communication node, and do not suffer a
decrease in performance.

Ultimately, the question we would like to answer is: Given a task what
is the minimum amount of communication required to achieve the task —
for any number of robots? Such results are usually difficult to obtain in com-
plexity theory. Thus, for now we examine algorithms we believe to be repre-
sentative of various natural complexity classes, leaving the above question to
future work. In particular, we explore communication schemes that depend
on some minimal information about the motion of the robots – for example,
how the distances between robots change. These schemes are intended to
be used as components of higher level control algorithms, which we do not
address here.

The communication schemes we investigate range from full communica-
tion to no communication. Two of the schemes are new. The first, Distance
Modulated Communication (DMC), uses the idea that a robot might need
a very accurate estimate of the position of nearby robots (to avoid collid-
ing with them, for example) while needing only a coarse estimate of more
distant robots. Thus, the scheme has any two robots communicating at a fre-
quency proportional to the distance between them. We show that DMC has
communication complexity O(n log n) or O(n1.5) depending on assumptions
about the dynamics of the robots. The second, the Wandering Communi-
cation Scheme (WCS), defines a protocol by which only a (small) constant
number of “wandering” robots are allowed to move and communicate, while

1 TCP/IP is an example of a protocol that, at a certain level of abstraction, can
be supposed to provide point to point communication.
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others must remain immobile. A wanderer may transfer its right to move,
and its information about the world, to an immobile robot in a short burst of
communication. It is shown that WCS has communication complexity O(n)
or O(1) depending on assumptions about how certain higher level decisions
are made by the robots.

In this paper, systems are specified in a variant of the UNITY language
[1] which we call CCL (for Computation and Control Language) [6]. UNITY
is a popular language for describing parallel algorithms in a way amenable
to analysis. CCL is quite similar to UNITY, but modified for real time sys-
tems. In CCL, it is easy to both model the environment (e.g. the physics
of the robotic systems involved) and represent the algorithms that operate
on the environment as defined in Section 2.1. The definition of communi-
cation complexity (Definition 4), which is similar to that used in parallel
algorithms, arises quite naturally in CCL. However, the definition can cer-
tainly be adapted to other formalisms. The reader is advised, in this paper,
to consider CCL as merely a convenient and formal specification language.

Related Work We are primarily interested in scalable algorithms for for-
mation forming [3] and other cooperative tasks for multi-vehicle systems [2]
as well as distributed and self assembly [5]. The specification language CCL
that we describe in Section 2.1 is very similar to the UNITY language [1].
Our main goal with CCL (not addressed here) is to develop a modeling,
synthesis and verification tool for multi-robot and decentralized control sys-
tems, as described in [6]. Our notion of communication complexity borrows
heavily from notions of communication complexity defined in the analysis of
parallel algorithms as in, for example, [8] — the difference being that in the
control systems we design we are concerned with maintaining some invariant
indefinitely, as opposed to performing some finite computation. The idea of
examining communication complexity was inspired by, but only superficially
related to, the sort of communication complexity developed in [7]. Bandwidth-
aware control and communication schemes are receiving increased attention
in the controls literature [9], but scalability as addressed in this paper has
not been addressed elsewhere.

2 Definitions

2.1 CCL: The Computation and Control Language

We describe CCL briefly here, details can be found in [6]. We suppose we
have a set V of variable symbols and define a state s to be a function
from V into some universe U of values: s : V → U . We let S denote the set
of all states.

Definition 1. A clause is a pair g : r where g : S → Bool is called the
guard and r : S × S → Bool is called the rule. If c is a clause, then the
guard of c is denoted c.g and the rule is denoted c.r.
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Guards are expressed syntactically as logical expressions over V and rules
are expressed syntactically as logical expressions over V ∪ V ′ where V ′ =
{v′ : v ∈ V } is the set of primed variable symbols from V . A primed variable
symbol refers to the next value of a variable while an unprimed variable
symbol refers to the present value. For example, if c is the clause

x > 0 : y′ = z ∧ x′ < 0

then c(s1, s2) essentially means

(s1(x) > 0 → s2(y) = s1(z) ∧ s2(x) > 0) ∧ (s1(x) ≤ 0 → s2 = s1).

A variable v ∈ V is said to occur in a clause g : r if v appears in the
expression for either g or r. It is said to occur primed in g : r if v′ occurs
in r. If c.g(s) = true we say that c is applicable in state s. A specification
is essentially a collection of clauses, along with an initial condition, a special
clause that describes the dynamics of the environment, and a communication
cost function.

Definition 2. A specification is a quadruple Π = (I, C,∆, γ) where

1. I : S → Bool is the initial condition
2. C is a set of clauses
3. ∆ is a clause called the dynamics clause
4. γ : C → R

+ ∪ {0} gives the communication cost of each clause.

Definition 3. Let Π = (I, C,∆, γ) be a specification. An execution of Π
is a sequence {sk} for k ∈ N such that I(s0) and for all k ≥ 0

1. for all c ∈ C, if c.g(sk) then c.r(sk, sk+1)
2. ∆.r(sk, sk+1)
3. if v ∈ V does not occur primed in any clause applicable in state sk, then

sk+1(v) = sk(v).

We denote the set of all executions of Π by E(Π).

2.2 Communication Complexity of Specifications

We have already defined the cost of a clause. We next define the communi-
cation complexity of a step in an execution, of an execution, and finally of
a specification. For each of these notions of complexity we use the polymor-
phic symbol cc(·), the exact meaning of which should always be clear from
context.

Definition 4. Assume a fixed specification Π = (I, C,∆, γ) is given. The
communication complexity of a state s ∈ S is

cc(s) ,
∑

c∈C∧c.g(s)

γ(c).
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The communication complexity of an execution {sk} ∈ E(Π) is

cc({sk}) = lim
T→∞

1

T

T∑

k=1

cc(sk).

The (worst case) communication complexity of the specification Π is

cc(Π) = max
{sk}∈E(Π)

cc({sk}).

2.3 Basic Properties and Proof Methods

We next supply some basic results that can aid in determining the commu-
nication complexity of a particular specification. Generally, to prove that a
given specification has a certain communication complexity, we determine the
frequency with which each clause is applicable in any execution. This may
be done deterministically (Lemma 1) or probabilistically (Lemmas 2 and 3).
The proofs of these properties are given in the Appendix to this paper. The
first lemma allows us to easily compute the cost of a specification that has
periodic executions.

Lemma 1. Let Π = (I, C,∆, γ) be a specification and suppose that each
clause ci ∈ C is applicable every ri steps in any execution of Π. Then

cc(Π) =

|C|
∑

i=1

γ(ci)

ri

.

Next suppose that the cost of each step k of any execution is modeled by
a non-negative real valued random variable Ck with expectation E[Ck]. In
the proofs of Theorems 3 and 4, Ck is essentially a function of a probabilistic
model of the frequencies with which clauses in the corresponding specifica-
tions are applicable. The probabilistic models arise from either assumptions
about the relative locations of the robots (e.g. their locations may be uni-
formly distributed in their workspace) or assumptions on the frequency with
which certain guards are true (e.g. a guard may be true at some step if a flip
of a biased coin comes up heads at that step). Given Ck, we would like to
compute the expected cost of the specification which, in general, is

E[cc(Π)] = lim
T→∞

1

T

T∑

k=1

E[Ck].

We begin with the case where each Ck is independent and identically dis-
tributed.

Lemma 2. Let Π = (I, C,∆, γ) be a specification and suppose the cost of
executing each step k is modeled by the random variable C. Then E[cc(Π)] =
E[C].
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The next lemma allows us to compute the communication complexity of
a specification if we know what the limit of the step cost is. It will be useful
when we consider specifications modeled by Markov chains (as in Theorem
4). Of course, Lemma 2 is a special case of Lemma 3.

Lemma 3. Let Π = (I, C,∆, γ) be a specification and suppose the cost of
each step k in any execution is Ck. If limk→∞ Ck = κ then cc(Π) = κ.
Furthermore, if each Ck is a random variable and limk→∞ E[Ck] = κ, then
E[cc(Π)] = κ.

Remark: Observe that the definition of communication complexity is an
infinite average. A finite, initial period of O(n2) communication will not affect
an ultimately less complex algorithm. Thus, in the specifications in this paper,
we may assume that the global state is known initially since this could have
been obtained by a brief period of total communication.

2.4 Specifications of Multi-Robot Systems

In the sequel we consider systems with n robots with locations (xi, yi) ∈ R
2

for each i ∈ {1, ..., n}. We suppose (implicitly) that certain variables in V
and certain clauses in C are owned by particular robots. Variables owned by
robot i are denoted as such via an initial subscript i, as in xi or ei,j . The cost
γ(c) of a clause c is generally the result of an explicit reference to a variable
vj in a clause owned by robot i where i 6= j. Variables not sub-scripted are
not owned (i.e. they are global) and the dynamics clause has no cost, being
executed, as it is, by the environment (which by definition includes all of the
robots).

In the dynamics clause we will generally be non-committal about the
details of the system specified. For example, we will make use of the clause
∆(n) defined by

true : t′ = t + δ ∧ ∀i. (||x′
i − xi|| < δvmax) (1)

that simply states that time goes forward by some constant 0 < δ � 1 and
the velocity of any robot is bounded by some constant vmax > 0.2 Note that
we have defined a family of dynamics clauses, one for each n ∈ N and have
used the parameter n implicitly in the rule for ∆(n) by assuming that i is
quantified over {1, ..., n}.

3 Multiple Robot Communication Schemes

In this section we present multi-robot communication schemes for several
natural complexity classes: O(n2), O(n1.5), O(n log n), O(n) and O(1). We

2 This constraint on the velocity can be considered as a crude discretization of the
actual continuous dynamics. We assume that 1/δ is greater than the frequency
of the actual dynamics so that aliasing problems do not occur.
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usually assume the dynamics of the robots are given by (1) or some vari-
ant of it. A discussion of how these schemes may be used, augmented and
extended appears in Section 4. The scheme we omit is the empty commu-
nication scheme where no communication occurs at all. This scheme clearly
has communication complexity O(0).

3.1 The Worst Case: O(n2) Complexity

Many simple multi-robot algorithms treat a group of robots as a single (albeit
disconnected) robot. Assuming there is no leader (a fragility one might wish
to avoid), such algorithms usually require that a good estimate of the global
state of the system be known by each robot. Thus, each robot i must maintain,
for each j, an estimate of xj which we denote ei,j . Furthermore we require
that the property

||ei,j − xj || < ε (2)

hold at any time, for some constant ε > δvmax which may be, for example,
required for the stability of whatever control algorithm the system is using.
If we assume the dynamics are given by (1), the best that can be achieved is
for each robot i to include the clause ci,j defined by

(t + δ − li,j)vmax > ε : e′i,j = xj ∧ l′i,j = t (3)

for i, j ∈ {1, ..., n} and i 6= j. We set γ(ci,j) = 1. In (3), li,j represents the
time at which the last update to ei,j took place. The inequality in the guard
assumes the worst case movement (a velocity of exactly vmax ) by robot j —
that is, (t + δ − li,j)vmax represents the worst case value for ||ei,j − xj || in
the next step (at time t + δ). If this exceeds ε, then the estimate ei,j and the
time of last update li,j are updated.

Supposing that the guard in ci,j is an equality and solving for t− li,j gives

that the clause will be applied every ri,j , ε−δvmax

vmax
steps. Using Lemma 1 we

obtain the simple result

Theorem 1. Let I(n) = ∀i, j . ei,j = xj ∧ li,j = 0 and C = {ci,j | 1 ≤ i 6=
j ≤ n} and put

Πglobal (n) = (I(n), C(n),∆(n), γ)

where ci,j is as in (3) and ∆ is as in (1). Then cc(Πglobal (n)) = O(n2).

We use the fact that |C| = n(n−1). Note that the result is independent of the
constants δ, vmax and ε which essentially determine (the constant) ri,j . Thus,
even techniques which increase the period ri,j of communication significantly,
by having each robot use a sophisticated estimator of all other robot’s posi-
tions, for example [9], ultimately do not scale in the sense introduced in this
paper.
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Define ci,j by

(t − li,j)vmax ≥ k (||ei,j − xi|| − (t − li,j)vmax) :
e′i,j = xj ∧ l′i,j = t

γ(ci,j) = 1

I(n) ≡ ∀i, j ∈ {1, ..., n} ( ei,j = xj ∧ li,j = 0 ∧ t = 0 )

C(n) = {ci,j | i, j ∈ {1, ..., n} ∧ i 6= j}

Then ΠDMC (n) = (I(n), C(n), ∆(n), γ)

Fig.1: The specification of the distance modulated communication scheme ΠDMC .
∆(n) refers to the dynamics clause in equation (1).

3.2 Sub-O(n2) Complexity

In this section we introduce distance modulated communication (DMC). The
specification, shown in Figure 1, is based on the idea that closer robots should
communicate their positions more frequently than distant ones. The goal is
to maintain the invariant

||ei,j − xj || ≤ k||xi − xj || (4)

for each i 6= j. Here ei,j is the ith robot’s estimate of the jth robot’s position
and k > 0 is a constant. The behavior of each robot i is specified by the clause
ci,j , for j ∈ {1, ..., n} − {i}. The variable li,j is used by robot i to keep track
of the last time robot i updated its estimate ei,j , thereby accruing 1 unit
of communication cost. The quantity (t − li,j)vmax in the guard represents
the maximum possible difference between ei,j and xj . The quantity ||ei,j −
xi|| − (t − li,j)vmax represents the minimum possible distance between the
two robots. That is

||ei,j − xj || ≤ (t − li,j)vmax and ||ei,j − xi|| − (t − li,j)vmax ≤ ||xi − xj ||.

Each of these bounds can be computed by agent i without reference to xj

and so require no communication. When the bound on the estimate error
exceeds k times the bound on the distance, the guard becomes true and ei,j

and li,j are updated.
The communication complexity of ΠDMC , of course, depends on the rel-

ative locations of the robots while the specification is enforced. We will show
that under two different reasonable assumptions about the robot locations,
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that cc(ΠDMC (n)) is better than O(n2). First we suppose that the robots
are arranged in a line. We specify this in the initial condition and by using a
trivial dynamics clause. Of course, the theorem holds for any spacing and any
dynamics clause that (even approximately) preserves it, and the extremely
simple dynamics clause in the statement of the theorem below is used merely
for simplicity in presentation.

Theorem 2. Let J (n) = ∀i ∈ {1, ..., n}(xi = (i, 0)) and ∆ = true : t′ = t+δ
and put

ΠDMC (n) = (I(n) ∧ J (n), C(n),∆, γ)

where I(n), C(n) and γ are as in Figure 1. Then cc(ΠDMC (n)) = O(n log n).

Proof: Let di,j , ||xi − xj || = |i − j|. Solving tvmax = k(di,j − tvmax) for t
shows that clause ci,j will be applicable every

ri,j ,
kdi,j

(1 + k)δvmax

= α|i − j|

steps where α , k
(1+k)δvmax

. By Lemma 1, the communication complexity is

thus

cc(ΠDMC(n)) =
∑

1≤i6=j≤n

1

α|i − j| =
2

α

n∑

i=1

n∑

j=i+1

1

j − i
.

It is straightforward to show that this sum evaluates to 2
α

(nH(n) − n) =
O(n log n) where H(n) is the nth harmonic number. 2

We next explore the somewhat more natural assumption that the robots
are randomly distributed in a square on the plane with an average density
of ρ robots per square meter and determine the expected value of the com-
munication complexity of ΠDMC(n). We therefore suppose that the position
of robot i is given by a pair of independent identically distributed random
variables, (Xi, Yi), with the common density function

fm(x) ,







1
2m

if x ∈ [−m,m]

0 otherwise.

For some m ∈ R yet to be determined. We then have

Theorem 3. Let J (n) = ∀i ∈ {1, ..., n}((xi, yi) ∈ [−m,m]2) where m =
√

n
4ρ

and let ∆ be as in Theorem 2 and let

ΠDMC (n) = (I(n) ∧ J (n), C(n),∆(n), γ)

where I(n), C(n) and γ are as in Figure 1. Then E[cc(ΠDMC (n))] = O(n1.5).
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This result suggests that a uniform distribution of robots in a square of
density ρ is less sparse than an equal spacing of the robots in a line. In fact,
one expects that the complexity of ΠDMC approaches O(n2) as the dimension
of the workspace grows.

Proof: For each i 6= j, define the random variable Di,j = ||Xi − Xj ||. Then
clause ci,j will be applicable every Ri,j = αDi,j steps, where α is the same
as in the proof of Theorem 2. The cost of a single step is then

C ,
∑

1≤i6=j≤n

1

Ri,j

units. Using Lemma 2 we have that E[cc(ΠDMC (n))] = E[C]. Next we make
use of the following lemma (proved in the Appendix).

Lemma 4. The expected cost at each step is E[C] = β
α

1
16m

n(n − 1) where

β = 8
3 (4 − 4

√
2 − 9 ln(

√
2 − 1) + 3 ln(

√
2 + 1)).

The area of the square in which the robots are placed is 4m2. Taking m =
√

n
4ρ

gives an area of n/ρ so that there are ρ robots per square meter. We

then have

E[cc(ΠDMC (n))] = E[C] = 2
β
√

ρ

16α

√
n(n − 1) = O(n1.5)

as desired. 2

The conditions under which the DMC protocol can be used are much
broader than the two situations we have analyzed in Theorems 2 and 3.
However, we believe these two cases to be typical. The first represents a
common formation and other formations likely produce similar complexity
results. The second represents the reasonable assumption that many multi-
robot algorithms would tend to keep the robots more or less evenly distributed
in the workspace: i.e. that the workspace would grow if the number of robots
were increased.

3.3 O(n) Complexity

In [8] it is shown (in a slightly somewhat different model than that presently
considered) that the communication complexity of systems with n processors
arranged in a graph with constant degree is O(n). We can easily obtain a
similar result here with respect to multi-robot systems. In particular, suppose
we have a graph G = ({1, ..., n}, E) where E ⊆ V × V and that we wish to
maintain the property (i, j) ∈ E ⇒ ||ei,j − xj || < ε in place of (2). Then the
obvious corollary can be shown:

Corollary 1. Let I(n) = ∀i, j . ei,j = xj ∧ li,j = 0 and C = {ci,j |(i, j) ∈ E}
and put

Πnbr (n) = (I(n), C(n),∆(n), γ)

where ∆(n) is as in (1) and ci,j is as in (3). Then cc(Πnbr (n)) = O(n).
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Another commonly used scheme for controlling a group of robots is to
have each robot transmit its location to a leader robot (or control computer)
with some frequency. The leader then sends to each robot a command based
on the collected global state. The communication complexity of this scheme
is also O(n), assuming the size of the commands does not depend on n. This
scheme (in its simplest form) is not robust to failures in the leader, however.

3.4 Better Than O(n) Complexity

The obvious way to get better than O(n) complexity is to have no communica-
tion at all. The subject of how to do anything useful without communication
has been investigated by others and is beyond the scope of this paper. In-
stead, in this section, we examine a task similar to that explored in Section
3.1: to maintain the invariant ||ei,j − xj || < ε for some constant ε for any
currently moving robot. This is possible with lower than O(n2) communica-
tion complexity if we restrict the motions of the robots, allowing only certain
robots to move at any given time (the dynamics clause in Figure 2, for exam-
ple, enforces this constraint). In particular, we present a communication and
movement scheme that has either O(n) or O(1) communication complexity
for any number of robots, depending on our assumptions. The scheme takes
advantage of the presumption that any robot that is not moving does not
need to know any other robot’s states. In particular, we choose a constant
κ and only allow, for any number of robots n, that κ of them can move at
any time. A robot can give up its right to move by stopping and uploading
its estimates of the other robot locations to a newly chosen and formerly idle
robot.

The specification of the scheme, called the Wandering Communication
Scheme (WCS), is shown in Figure 2. The meanings of the variables are as
follows. The variable qi denotes the state of the robots as either wandering
(qi = 1), uploading (qi = 2) or idle (qi = 3). The variable ei,j is the ith robot’s
estimate of xj . Setting the “reservation” variable ri to j specifies that robot
j is uploading to robot i and its appearance in ci,3 prevents two robots from
uploading to a same new robot.

Clause ci,1 is used to keep a wandering robot’s estimate of the other
moving robots accurate. Clause ci,2 is used to decide whether to switch from
wandering to idle. It uses the random number generator coin(p, t), which is
true at time t with probability p. Clause ci,3 is used by robot i to choose a
new robot j, to whom it will hand over its “right” to move: uploading its
state estimates to j and switching j’s state to wandering and its own state
to idle.

For a given n and κ we model an execution of ΠWCS (n) as a Markov
Chain whose states Xm correspond to the possible number of robots in each
specification state qi ∈ {1, 2, 3} at step m. The number of robots that are in
state 3 is always n−κ. Thus Xm is just the number of robots in state 1. The
number of robots in state 2 is just κ minus the number of robots in state 1.



12 Eric Klavins

For i ∈ {1, ..., n} define clauses ci,1, ci,2 and ci,3 by

qi = 1 : ∀j(qj 6= 3 → e′i,j = xj)
qi = 1 ∧ coin(p, t) : q′

i = 2
qi = 2 : q′i = 3 ∧ r′i = ⊥∧

∃j
[
qj = 3 ∧ q′j = 1 ∧ r′j = i ∧ ∀k(e′j,k = ei,k)

]

respectively. Then set

γ(ci,1) = κ − 1
γ(ci,2) = 0
γ(ci,3) = n

I(n) ≡ ∀i[(i ≤ κ → qi = 1) ∧ (i > κ → qi = 3)
∧ri = ⊥ ∧ ∀j(ei,j = xj)]

C(n) =
⋃n

i=1
{ci,1, ci,2, ci,3}

∆(n) = true : t′ = t + δ∧
∀i[(qi = 1 → ||x′

i − xi|| ≤ δvmax

∧(qi 6= 1 → x′

i = xi)]

ΠWCS (n) = (I(n), C(n), ∆(n), γ)

Fig.2: The specification of the Wandering Communication Scheme (WCS).
coin(p, t) is a random number generator that is true at time t with probability
p. We assume quantification over {1, ..., n} in the notation.

The transition probabilities are, for each i and j,

P [Xm+1 = κ−j | Xm = κ−i] =







(
κ − i

j

)

pj(1 − p)κ−i−j if 1 ≤ j ≤ κ − i

0 otherwise.

(5)

We define the κ + 1 dimensional transition matrix P to be the matrix whose
jth row and ith column is given by (5). Next, we determine the cost of each
step Xm. The communication cost of a robot in state 1 is κ − 1 and the the
communication cost of a robot in state 2 is n. In state 3, a robot does not
communicate. Thus, the cost at step m is

Cm , (κ − 1)Xm + n(κ − Xm).
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And the expected total cost at step m is

E[Cm] = (1 0 ... 0
︸ ︷︷ ︸

κ times

)Pmr (6)

where r is the cost vector

r , ((κ − 1)κ + 0n, (κ − 1)(κ − 1) + 1n, ..., (κ − 1)0 + nκ)
T

.

We show, by straightforward analysis (as described in many texts [4] on the
subject) in the Appendix that

Lemma 5. Let x be the κ + 1 dimensional vector whose ith element is(
κ
i

)

pi−κ for i ∈ {0, ..., κ}. Then as m goes to infinity, P m goes to the

matrix whose rows are all given by

x̃T ,

(
p

p + 1

)κ

xT .

Using this result we can show that

Theorem 4. If the value of p in ΠWCS (n) is constant, then E[cc(ΠWCS (n))] =

O(n) and if p , 1/n then E[cc(ΠWCS (n))] = O(1).

Proof: The limit of the expected value of the cost (6) as m → ∞ is

x̃T r =

(
p

1 + p

)κ κ∑

j=0

[(κ − 1)j + (κ − j)n]

(
κ
j

)

pj−k =
κ

1 + p
(κ − 1 + np).

We use Lemma 3 to conclude that if p is constant, that E[cc(ΠWCS (n))] =

O(n). If, on the other hand, p , 1/n, then

lim
m→∞

E[Cm(n)] =
κ

1 + 1
n

κ < κ2 = O(1).

Once again using Lemma 3 yields the desired result. 2

4 Discussion

Control Pairing a communication scheme with a high level controller de-
pends on the requirements of the controller and the guarantees of the scheme.
Using DMC, for example, a reactive planner for each robot may be con-
structed as follows. Consider two robots with indices i and j and suppose
that i has last communicated with j at time li,j . It can easily be determined,
from the guard in clause ci,j in Figure 1, at what time li,j + ∆t it will com-
municate with j again. Thus, vehicle i can simply avoid the region

Rj = { x : ||ei,j − x|| < ∆t vmax }
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while planning its route through the workspace. Furthermore, to make the
path planning problem easier, other distance metrics can be used in DMC
such as the distance between robot j and the line segment connecting robot
i with its goal position.

Assumptions The analyses in Section 3 make assumptions that are cer-
tainly not as general as they could be. For example, Theorem 2 should hold
for any formation that increases in size linearly with the number of robots
used. Theorem 2 could be extended to allow motions that are guaranteed
to preserve a certain expected distance between robots. The WCS has many
variants, each of which affect the expected communication complexity. For
example, constant communication complexity can be obtained by requiring
that all idle robots be positioned in one of some large number of (sparsely
placed) “island regions”. The wandering robots wouldn’t necessarily know
where an idle robot was, but they would know at least that it was located in
some island region. The transfers of position estimates in clause ci,3 in Figure
2 would then have cost κ resulting in O(1) complexity overall.

Sensing Although sensing is not really mentioned in Section 3, it is modeled.
For example, the assumption that robots know their own locations implies
a certain amount of sensing. Also, clause ci,3 where it states “∃j[qj = 3...”
assumes that robot i can find another robot whose state is 3 (idle). This
information can not be obtained from the scheme itself and adding the com-
munication required to make the discrete states of the robots global would
increase the communication complexity of the algorithm. The original intent,
however, was to have wanderers find idle robots using their local sensors and
then upload their estimates to them. More generally, however, incorporat-
ing sensing assumptions into CCL specifications remains an art and no clear
path toward investigating, say, sensing vs. communication trade-offs has yet
emerged.

Variants There are many possible variants of Definition 4. For example,
suppose that the cost of communication γ were proportional to the distance
between the communicating robots, as is the case with low power sensor nets,
or “smart dust”. With this definition, communicating indirectly via hops in
a network instead of directly may give a lower overall complexity. A power
aware communication scheme could be devised that determines the lowest
energy route from one robot to another based on current estimates (possibly
obtained by a variant of DMC or WCS) of the vehicle locations.

5 Conclusion

We introduced a notion of communication complexity as a means of inves-
tigating the scalability of multi-robot algorithms in terms of how much co-
ordination they require and presented several communication schemes, two
of which are (to the best of our knowledge) new, that maintain estimates
of the global state of varying accuracies in the face of simply-modeled pos-
sible changes in the environment. By analyzing their complexities, we show
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that these schemes cover several natural communication complexity classes
from O(n2) communication to O(1) communication. It is our hope that tech-
niques similar to these will be used to check the scalability of newly proposed
multi-robot or distributed control algorithms.

We have not included a model of possible sensing modalities and costs.
Nor have we described the actual control algorithms and higher level planners
that could be used in conjunction with the schemes we have presented. More
importantly, we have only analyzed instances of algorithms that achieve a
given task but have not answered the question: For a given task, what is
the minimum communication complexity of any algorithm that achieves the
task? It is simple to show that the algorithms we supply for maintaining (2)
and (4) respectively are the best possible, but for more complex tasks the
question appears to be more difficult and we plan to attempt address it in a
future paper.
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number F49620-01-1-0361.

A Appendix

A.1 Proof of Lemma 1

In T steps, clause i is executed T
ri

times. Thus,

T∑

k=1

cc(sk) = T

|C|
∑

i=1

γ(ci)

ri

.

Multiplying by 1/T and taking the limit yields the desired result. 2.

A.2 Proof of Lemma 2

Suppose the cost of each step in any execution of Π can be modeled as a
random variable C and that the costs at each step are independent. Then

E[cc(Π)] = lim
T→∞

1

T

T∑

k=1

E[C] = lim
T→∞

1

T
TE[C] = E[C]. 2

A.3 Proof of Lemma 3

Suppose limk→∞ Ck = κ. Then for any ε > 0, a positive integer T0 can be
found so that κ − ε < Ck < κ + ε for all k > T0. Thus,

1

T

T∑

k=1

Ck =
1

T

(
T0∑

k=1

Ck +

T∑

k=T0+1

Ck

)

<
1

T
[α + (T − T0 − 1)(κ + ε)]
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where α =
∑T0

k=1 Ck. Similarly,

1

T

T∑

k=1

Ck >
1

T
[α + (T − T0 − 1)(κ − ε)] .

Taking limits, we arrive at

κ − ε < lim
T→∞

1

T

T∑

k=1

Ck < κ + ε.

This argument holds for any ε and thus we may conclude, by the squeeze
theorem, that

lim
T→∞

1

T

T∑

k=1

Ck = κ.

The rest of the lemma follows. 2

A.4 Proof of Lemma 4

Let g(x1, y1, x2, y2) =
(
(x2 − x1)

2 + (y2 − y1)
2
)− 1

2 . Straightforward integra-
tion shows that

∫ m

−m

∫ m

−m

∫ m

−m

∫ m

−m

g(x1, y1, x2, y2) dx1dy1dx2dy2

=
8

3
m3
(

4 − 4
√

2 − 9 ln(
√

2 − 1) + 3 ln(
√

2 + 1)
)

, βm3.

The expected value E[C] is given by

1

α

(
1

2m

)2n ∫ m

−m

...

∫ m

−m
︸ ︷︷ ︸

n(n−1) times

∑

1≤i6=j≤n

g(xi, yi, xj , yj) dx1...dyn =
β

α

1

16m
n(n−1). 2

A.5 Proof of Lemma 5

It is known that the matrix P T has 1 as an eigenvalue and that the steady
state of the system yT Pm (for any given y 6= 0) is given by (any nonzero
multiple of) the eigenvector corresponding to 1 [4]. We first show that xT P =
xT is one such eigenvector,where x is as in the statement of the lemma. By
the definition of matrix multiplication, the ith element of xT P is

κ−i∑

j=0

(
k
j

)

pj−κ

(
κ − j

i

)

pi(1 − p)κ−i−j .
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Define s , κ − i. Then the sum becomes

p−s

s∑

j=0

(
k
j

)(
κ − j
κ − s

)

pj(1 − p)s−j .

It is straightforward to show that sum part of this expression is

(
κ
s

)

. Thus,

the ith element of xT P is

p−s

(
κ
s

)

=

(
κ

κ − i

)

pi−κ =

(
κ
i

)

pi−κ

as desired.We now have that for any y 6= 0 that yT Pm → αx for some α 6= 0.
In particular, (1 0 ... 0) limm→∞ Pm = αx so that the first row of the limit
of Pm is given by αx. Since each row of P m must sum to 1, we obtain that

α =
1

||x|| =

(
κ∑

i=0

(
κ
i

)

pi−κ

)−1

=

(
p

p + 1

)κ

using the binomial theorem. 2.
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