Computation and Control

Jason Hickey Eric Klavins
Richard Murray
Adam Granicz
Cristian Tapus
Justin Smith
— Xin Yu
;;@ k) Nathan Gray

Caltech

Computation and reaction

- A reactive system is a system that describes how
to react to events
- “moving left” > “steer right”
- “slowing down” 2 “increase thrust”
- Algorithms are a set of rules to apply repeatedly
- while(i'=0) { k *=i; i-- }

Computing/Control
http://mojave.cs.caltech.edu June 4, 2002

Rewriting systems

A rewriting system us a language £, together with
a set of rules s; — t; for some s;,t; € L.

s; 1s called a redex (a pattern or set of terms)
t; is called a contractum

A computation is a sequence of rewrite applica-
tionse; - eé» —» - -+ - ¢y,

Computing/Control 3
http://mojave.cs.caltech.edu June 4, 2002

Lambda calculus (canonical example)

Language /:
e = v variables
| e; e> function application
| Av.e function abstraction
Rewrites:

(Av.e1) ex —peylex/v]

(Ax.Ay.x+vy)12
- (Ay.1+y)?2
- 142
- 3

Computing/Control
http://mojave.cs.caltech.edu June 4, 2002

Example: vehicle formation/assembly

- Assemble a set of vehicle/parts into a formation

O Q o
N/

Computing/Control 5
http://mojave.cs.caltech.edu June 4, 2002

Formation rules

1@ 2
———
1@ 2
30 30 6c® 6O
6

Computing/Control
http://mojave.cs.caltech.edu

June 4, 2002

Rewriting rules

Rule classes

- Progress: getting closer to a goal
- Dynamics

- Adversaries: destructive actions

Technical questions

- Determinism (Church-Rosser)
- Progress (liveness)

- Termination

- Locality

Computing/Control
http://mojave.cs.caltech.edu

June 4, 2002

Determinism (Church-Rosser)

Does the order of
evaluation matter? .

Often the answer is o o
no .

- There may be reasons °
to have more than one
result

Proofs are quite
difficult

Computing/Control
http://mojave.cs.caltech.edu

/
\

June 4, 2002

)»-4(

Deadlock/progress

Is it possible to build a
partial, final, formation?

- Show that: if a formation is O
not final, at least one rule is
always enabled

Easy to prevent

- Add more rules to make
progress from partial o
formations \

- Add “undo” to reverse bogus \
computations o

Computing/Control
http://mojave.cs.caltech.edu June 4, 2002

Termination

Does every reduction
sequence terminate?

Termination proofs
require the formation
of a metric

- Often infeasible, if not it
can be extremely hard

- In many cases it doesn’t
matter

Computing/Control
http://mojave.cs.caltech.edu

June 4, 2002

10

Locality

Is it possible to make
decisions locally?

- Locality is determined
by the scope of the
rewrite

Methods
- Optimize the program
to limit the scope

- Introduce
communication

Computing/Control
http://mojave.cs.caltech.edu

! !
20 3¢

[
1® 3@

June 4, 2002

11

Languages

Rewriting languages UNITY-like languages:

- Determinism(*) G1 — P; decisions and actions
- Termination(*) G, — P

- Progress :

- Locality G, — P,

G, — P. physics, control
. G, — P, adversaries
- (*) hard to prove, not “ “
always useful
Computing/Control -I 2

http://mojave.cs.caltech.edu June 4, 2002

Logical Programming Environments

— - The LPE is a framework
for supporting formal
Control Development desi gn .

automation and - Type theory is a common
heuristics language for specification
and synthesis
Il Lse‘u”ggg‘?te — Enables collaborative

development of verified
control libraries and

Control compiler/ design automation tools
theorem prover - The compiler is an

assistant, and the link to

executable code

Computing/Control 'I 3
http://mojave.cs.caltech.edu June 4, 2002

Logical Programming Environments

Definitions of languages,
syntax, rewrite rules

________ [
\ Phobos . DRL !

I l
~(planned)
Moave | | ' Formal, digital |
Compiler MetaPRL | Library :
1 AN _
Machine Formal reasoning using

code term rewriting and custom logics

Computing/Control -l 4
http://mojave.cs.caltech.edu June 4, 2002

Phobos

Phobos is a
front-end for

Phobos

domain-specific

languages

- Programs are
translated to
one of a set of
“standard”
languages

- or to a theorem
prover

Computing/Control
http://mojave.cs.caltech.edu

Formal IR

Backend

#

MetaPRL

June 4, 2002

15

Language definitions

Each language has a lexicon

Tokens -longest {
NUM = "[0-9]+" { _token__[p:s]{'pos} -> num[p:s]{'pos} }

% SPACE = " " {3
}

And a grammar

%left PLUS MINUS
%left TIMES DIV
%left LPAREN RPAREN

Grammar -start exp {
exp ::= NUM { num[p:s]{'pos} -> exp{num[p:s]; 'pos}}
| ID { ...}
| exp PLUS exp { 'el PLUS 'e2 -> exp{sum{'el; 'e2};
union_exp_pos{'el; 'e2} }

Computing/Control -l 6
http://mojave.cs.caltech.edu June 4, 2002

Logical Programming Environments

— - Parts
Application devel opment

- Phobos language support

Development comp lete
automation and - DRL language design and
heuristics . T
control primitives
[y Lenguege - Code compiler complete
L2 Support
Control compiler/
theorem prover
Computing/Control 'I 7

http://mojave.cs.caltech.edu June 4, 2002

