
A List-Decoding Approach to Low-Complexity Soft
Maximum-Likelihood Decoding of Cyclic Codes
Hengjie Yang∗, Ethan Liang∗, Hanwen Yao†, Alexander Vardy†, Dariush Divsalar‡, and Richard D. Wesel∗

∗University of California, Los Angeles, Los Angeles, CA 90095, USA
†University of California, San Diego, La Jolla, CA 92093, USA

‡Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Email: {hengjie.yang, emliang}@ucla.edu, {hwyao, avardy}@ucsd.edu, Dariush.Divsalar@jpl.nasa.gov, wesel@ucla.edu

Abstract—This paper provides a reduced-complexity approach
to maximum likelihood (ML) decoding of cyclic codes. A cyclic
code with generator polynomial gcyclic(x) may be considered a
terminated convolutional code with a nominal rate of 1. The
trellis termination redundancy lowers the rate from 1 to the
actual rate of the cyclic code. The proposed decoder represents
gcyclic(x) as the product of two polynomials, a convolutional
code (CC) polynomial gcc(x) and a cyclic redundancy check
(CRC) polynomial gcrc(x), i.e., gcyclic(x) = gcc(x)gcrc(x). This
representation facilitates serial list Viterbi algorithm (S-LVA)
decoding. Viterbi decoding is performed on the natural trellis for
gcc(x), and gcrc(x) is used as a CRC to determine when the S-LVA
should conclude. At typical target frame error rates, the expected
list size of S-LVA is small, and the average decoding complexity
is dominated by the trellis complexity of gcc(x) rather than
gcyclic(x). Some high-rate binary Bose-Chaudhuri-Hocquenghem
(BCH) examples show that the proposed use of S-LVA via
factorization significantly lowers complexity as compared to
using the minimum-complexity trellis representation of gcyclic(x)
for soft ML decoding.

I. INTRODUCTION

The Berlekamp-Massey [1], [2] and Euclidean [3] algo-
rithms provide bounded-distance hard decoding for Bose-
Chaudhuri-Hocquenghem (BCH) codes [4]. For soft decod-
ing, Guruswami and Sudan developed a ground-breaking (but
complex) list decoding approach for Reed-Solomon codes in
[5] that identifies all codewords within a defined Hamming
distance of the received word.

Separately, maximum-likelihood (ML) decoding can be
performed by the Viterbi algorithm [6] on any trellis repre-
sentation of the cyclic code. The natural trellis implied by the
generator polynomial gcyclic(x) has 2r states where r is the
degree of gcyclic(x). Decoding on the natural trellis essentially
treats the BCH generator polynomial as the generator polyno-
mial of a terminated convolutional code. However, for most
cyclic codes of interest, the number of states in the natural
trellis induces a complexity that is not practical.

This research is supported in part by National Science Foundation (NSF)
grant CCF-1618272 and a grant from the Physical Optics Corporation (POC).
Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the NSF or POC. The work of H. Yao and A. Vardy was supported
in part by the NSF under grants CCF-1719139 and CCF-1764104. Research
was carried out in part at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with NASA.

Trellises with lower complexity than the natural trellis can
be found using techniques developed in [7]–[9] that identify
minimum complexity trellis representations. Such trellises
are often time varying and can have a complex structure.
Furthermore, at least for the high-rate binary BCH code
examples [10] in this paper, the minimum complexity trellis
representations turn out to have complexity similar to the
natural trellis.

As a main contribution, this paper presents serial list
Viterbi algorithm (S-LVA) as an ML decoder for composite
cyclic codes that, at least for our high-rate BCH examples,
has complexity similar to that of the Viterbi decoder used
in communication devices today. The proposed decoding
algorithm also supports complete hard decoding as opposed
to the bounded distance decoding of the Berlekamp-Massey
and Euclidean algorithms.

In [11] the concatenation of a convolutional code with an
outer cyclic redundancy check (CRC) was recognized as being
a new convolutional code with a larger constraint length.
This paper makes the dual observation: when a cyclic code
has a composite a generator polynomial gcyclic(x), it can be
factored into a “convolutional encoder” polynomial gcc(x) and
an “outer CRC” polynomial gcrc(x). Factoring gcyclic(x) into
gcc(x) and gcrc(x) facilitates S-LVA decoding.

The paper also studies the complexity of the S-LVA decoder
and shows that for high-rate binary BCH examples S-LVA has
lower complexity than soft decoding based on the minimal-
complexity trellis of the original cyclic code.

This paper is organized as follows: Section II describes
the decoding approach and presents examples and simulations
for several high-rate binary BCH codes. Section III explores
the complexity of the new decoding approach, showing that
decoding complexity for S-LVA depends on the expected list
size, which decreases as signal-to-noise ratio improves. At
typical frame error rate (FER) operating points, the expected
list size is small and the average decoding complexity is
dominated by the complexity of the natural trellis for gcc(x).
Section IV investigates the minimal trellis representations for
our high-rate BCH examples and shows that these minimal
trellises will not have significantly lower complexity than
the natural trellises. In our examples, S-LVA achieves a
complexity much lower than Viterbi decoding on the minimal
trellis. Section V concludes the paper.

TABLE I
EXAMPLE BINARY BCH CODES THAT CAN BE VIEWED AS BINARY

CONVOLUTIONAL CODES

m r Conjugate δ gcyclic(x) K N R

6 6 α 3 (103)8 57 63 0.90
7 7 α 3 (211)8 120 127 0.94
8 8 α 3 (435)8 247 255 0.97
9 9 α 3 (1021)8 502 511 0.98
10 10 α 3 (2011)8 1013 1023 0.99

II. SERIAL LIST VITERBI ON FACTORED CYCLIC CODES

This section describes how a cyclic code can be represented
as a rate-1 terminated convolutional code and how factoring
the cyclic code generator polynomial into the product of two
polynomials facilitates S-LVA decoding. This section also
presents examples and simulations for several high-rate binary
BCH codes.

A. Cyclic Codes as Rate-1 Convolutional Codes

It is well known that a natural trellis that has 2r states exists
for each degree-r generator polynomial gcyclic(x). See, for
example, [12]. The decoder design proposed in this paper can
be best understood by using this result to view the cyclic code
as a terminated rate-1 convolutional code. This is presented
below as a theorem.

Theorem 1. Every cyclic code is a terminated convolutional
code.

Proof: Consider the cyclic code with degree-r generator
polynomial gcyclic(x) and codewords c(x) = w(x)gcyclic(x)
where w(x) is the message polynomial. The codeword pro-
duced by multiplying the polynomials w(x) and gcyclic(x) is
identical to the codeword produced by passing w(x) followed
by r zeros through the rate-1 feedforward convolutional
encoder circuit defined by gcyclic(x).

We use the term BCH convolutional code to refer to a BCH
code represented as a terminated rate-1 convolutional code,
i.e., a convolutional code where the number of input symbols
k per encoder operation and the number of output symbols
n per encoder operation are both 1. The trellis termination
redundancy lowers the rate from 1 to the actual rate of the
cyclic code. This is distinct from the notion in [13] of a
BCH convolutional code as a standard rate-k/n (k < n)
convolutional code designed using ideas from BCH theory.

We focus on binary BCH codes, but the approach general-
izes to non-binary BCH codes such as Reed-Solomon codes.
Although we refer to the convolutional code as having rate
one, the rate is, of course, actually below one because of
the termination bits. For a degree-r binary BCH generator
polynomial gcyclic(x) for a code with blocklength 2m − 1
over Galois field GF(2m), the actual rate is R = 1− r

2m−1 .
Viewing the BCH code as a convolutional code, there exists a
natural trellis structure for every BCH code, which facilitates
soft Viterbi decoding.

6 6.5 7 7.5 8 8.5 9 9.5 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 1. FER performance of BCH convolutional codes of degree m =
6, 7, . . . , 10 decoded using the Viterbi algorithm. Both soft decoding and
complete hard decoding are shown.

Table I presents example high-rate binary BCH codes
where each gcyclic(x) is a minimal polynomial of degree
m = 6, 7, . . . , 10. Note that the polynomials are described
in octal form with degree decreasing from left to right. For
example, x6 + x + 1 is represented by (103)8. The rate R
is greater than or equal to 0.9 for all these examples. For
each code, m is the base-2 logarithm of the field size over
which the binary BCH code was designed. The degree r of
gcyclic(x) for these examples is also equal to m. In each case,
gcyclic(x) is the minimal polynomial for the conjugate element
provided in the column identified as “Conjugate”, where α is
a primitive element that is a root of the primitive polynomial
used to define the Galois field. The designed distance of the
BCH code is denoted δ.

Fig. 1 provides simulation results from applying the Viterbi
algorithm to the BCH convolutional codes of Table I. The
system model is as follows: Let w(x) be the K-bit infor-
mation sequence, and c(x) = w(x)gcyclic(x) is the N -bit
BCH convolutional codeword. After BPSK modulation, the
constellation points are transmitted over the additive white
Gaussian noise (AWGN) channel. The signal-to-noise ratio
(SNR) is defined as the amplitude of a single BPSK signal
divided by the variance of a one-dimensional, zero-mean
Gaussian.

If hard Viterbi decoding is employed, the noisy constel-
lation points are first hard decoded to the nearest BPSK
symbol and the corresponding bits are used by the hard
Viterbi decoder. Unlike Berlekamp-Massey or the Euclidean
algorithm, this is a complete decoder. If soft Viterbi decod-
ing is employed, the received noisy constellation points are
directly used by the soft Viterbi decoder. As expected, soft
decoding provides a significant benefit over hard decoding.
For example, for m = 6 case, the FER can be improved by
2 orders of magnitude at 10 dB.

TABLE II
EXAMPLE BINARY BCH CODES FACTORED SUCH THAT THE GENERATOR

POLYNOMIAL gCYCLIC(x) = gCC(x)gCRC(x).

m r rcc rcrc δ gcc(x) gcrc(x) K N R

6 12 6 6 5 (103)8 (127)8 51 63 0.81
7 14 7 7 5 (211)8 (217)8 113 127 0.89
8 16 8 8 5 (435)8 (567)8 239 255 0.94
9 18 9 9 5 (1021)8 (1131)8 493 511 0.96
10 20 10 10 5 (2011)8 (2017)8 1003 1023 0.98

TABLE III
BCH EXAMPLES WITH gCYCLIC(x) = g1(x)g2(x)g3(x), gCC(x) = g1(x),

AND gCRC(x) = g2(x)g3(x)

m δ r g1(x) g2(x) g3(x) K N R

6 7 18 (103)8 (127)8 (147)8 45 63 0.71
7 7 21 (211)8 (217)8 (235)8 106 127 0.84
8 7 24 (435)8 (567)8 (763)8 231 255 0.91
9 7 27 (1021)8 (1131)8 (1461)8 484 511 0.95
10 7 30 (2011)8 (2017)8 (2415)8 993 1023 0.97

B. Simplifying the Trellis by Factoring out a CRC Polynomial

In [11] the concatenation of a convolutional code with an
outer CRC was recognized as being a new convolutional code
of a larger constraint length. This new convolutional code is
catastrophic because all convolutional polynomials share the
CRC polynomial as a factor, but this is not a significant issue
for FER performance of finite blocklength codes. This paper
simplifies decoding of cyclic codes by applying the dual of
this result to the rate-1 convolutional code representation of
cyclic codes. This is stated below as a theorem:

Theorem 2. If a cyclic code generator polynomial gcyclic(x)
is the product of multiple minimal polynomials and thus can
be factored as

gcyclic(x) = gcc(x)gcrc(x) , (1)

then ML decoding of the cyclic code is achieved by using S-
LVA (with a sufficiently large list) to identify a convolutional
codeword of gcc(x) that also passes the CRC check using
gcrc(x).

Proof: ML decoding of the cyclic code is certainly
achieved by Viterbi decoding on the natural trellis for
gcyclic(x). The set of admissible codewords for the cyclic code
with generator polynomial gcyclic(x) is the set of paths on the
natural trellis for gcyclic(x). This set is a strict subset of the
set of paths on the natural trellis for gcc(x). Specifically, the
set of paths on the natural trellis for gcyclic(x) is the set of
paths on the natural trellis for gcc(x) whose associated input
sequences also pass the CRC check based on gcrc(x). Thus,
the most likely codeword according to Viterbi decoding on
the trellis for gcc(x) that also passes the CRC check based on
gcrc(x) is also the most likely codeword for Viterbi decoding
on the trellis for gcyclic(x), i.e. it is the ML codeword for the
cyclic code.

Note that, of course, the codewords produced by gcyclic(x)
and the concatenation of gcc(x) and gcrc(x) are the same

Message w(x)
CRC Encoder

gcrc(x)

Convolutional
Encoder
gcc(x)

BPSK
Modulator

AWGN
Channel

Output
ŵ(x) L = j

CRC
checks?

CRC Decoder
gcrc(x)

Viterbi on
gcc(x) Trellis

Declare
Erasure

L = Lmax

j ≥
Lmax?

j = j + 1

w(x) w(x)gcrc(x) c(x) = w(x)gcrc(x)gcc(x)

Set j = 1.

Does gcrc(x) divide ŵj(x)?

ŵj(x)

No

Yes

Yes

No

1

Fig. 2. System model for a cyclic code transmitted over the AWGN channel
and decoded using the S-LVA algorithm.

0 1 2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 3. FER for the codes described in Table II decoded using Theorem 2
with gcyclic(x) factored into gcrc(x) and gcc(x) as described in Table II.

codewords and have the same length. The natural trellis for
gcyclic(x) is traversed by applying the input sequence w(x)
plus terminating zeros to the encoder described by gcyclic(x).
The natural trellis for gcc(x) is traversed by applying input
sequences of the lengths of w(x)gcrc(x) plus terminating zeros
to the encoder described by gcc(x).

C. Binary BCH example

Theorem 2 provides an ML decoder that implements S-LVA
by factoring the cyclic code generator polynomial into gcrc(x)
and gcc(x). Tables II and III provide examples of binary BCH
codes for which gcyclic(x) = gcc(x)gcrc(x) using Theorem 2.

Fig. 2 shows the overall system used for simulation, includ-
ing the S-LVA decoding algorithm. ML decoding is achieved
by performing list decoding [14]–[16] on the convolutional
code defined by gcc(x), which has significantly fewer states
than the natural trellis of the generator polynomial gcyclic(x)
of the cyclic code. The polynomial gcrc(x) is used as a CRC
polynomial to determine when the S-LVA can be concluded.
This approach allows for soft ML decoding (or complete hard
decoding) of the cyclic code. Figs. 3 and 4 show the FER

1 2 3 4 5 6 7 8 9
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 4. FER for the codes described in Table III decoded using Theorem 2
with gcyclic(x) factored into gcrc(x) and gcc(x) as described in Table II.

performance vs. SNR for the codes described in Tables II
and III, respectively, decoded according to Theorem 2 and
Figure 2.

Define Mcc to be the total number of valid terminated
convolutional codewords for gcc(x). As illustrated in Fig.
2, define Lmax to be the maximum number of codeword
candidates S-LVA will consider before terminating, regardless
of whether a valid codeword is identified. There may be times
when L = Lmax without S-LVA identifying a CC codeword
that also passes the CRC. In these cases, the decoder will
declare an erasure, and is therefore not a complete decoder.

The phrase “with a sufficiently large list” in Theorem 2 is
certainly met when Lmax = M cc. The decoder will also be
complete if Lmax =M cc.

For the decoder to be complete and ML as in Theorem 2,
Lmax should be When Lmax < M cc, Regardless of the size L,
if the decoder does not declare an erasure it will identify the
ML codeword. Lmax is 104 in Figs. 3, 4, and 5.

III. COMPLEXITY OF SERIAL LIST VITERBI DECODING

In [17], the authors present tables that compare the time
and space complexity for different implementations of the
LVA. Although the multiple-list tree-trellis algorithm (ml-
TTA) achieves linear time complexity for the backward passes
of the S-LVA, the implementation does not support floating
point precision without the use of quantization. The red-
black tree tree-trellis algorithm (T-TTA) is another imple-
mentation of the S-LVA that uses a red-black tree to store
the metric differences during the traceback operation. The
time complexity results in [17] indicate that T-TTA achieves
the best performance among algorithms that support floating
point precision. Our simulation results in Section II-C and
the complexity analysis in this section both use the T-TTA of
[17].

As observed in [17] as well as in [18], [19], the complexity
of S-LVA depends on the size L of the list that had to be
explored before identifying a codeword that satisfies the CRC.
This paper is interested in the average complexity of S-LVA,

0 1 2 3 4 5 6 7 8 9 10
2

0

2
2

2
4

2
6

2
8

2
10

Fig. 5. Expected list size E[L] as a function of SNR for decoding the binary
BCH codes defined in Table II. Also shown for each code are the upper
bound of (3) and the approximation of (5).

which depends on E[L] and is a function of Es/N0. As shown
in [18], E[L] converges to 2rcrc for very low values of SNR and
to one for very large values of SNR. This general behavior is
illustrated in Fig. 5, which shows E[L] as a function of SNR
for S-LVA for the binary BCH codes described in Table II.

The overall complexity as a function of list size L is
explored more fully in [19] (See especially Fig. 12 of [19]),
but there are two primary conclusions. The first conclusion is
that when the list size is small, S-LVA adds very little overall
complexity to the complexity of the Viterbi decoder for the
convolutional code, about 10% for a list size of L = 10 and
essentially no complexity increase for L = 1. The second
conclusion is that for typical operating points of target FER,
the list size is small enough that the overall complexity is
similar to that of Viterbi decoding on the convolutional trellis.

The second conclusion is demonstrated by examining Fig.
5 and Fig. 3 together. From Fig. 3, the operating points of the
codes at FER 10−3 are in the range of 7−9.5 dB. Examining
Fig. 5 we see that the actual expected list size is always below
10 at this operating point.

Let ε denote FER, and let εcc denote the FER of the
convolutional code defined by gcc(x), i.e., the FER of using
Viterbi decoding on the natural trellis of gcc(x) with no CRC
check. The following theorem provides an upper bound on
the average list size E[L] as a function of εcc:

Theorem 3. Let L be the random variable describing the list
size associated with S-LVA based on a particular factorization

gcyclic(x) = gcc(x)gcrc(x) . (2)

The average list size E[L] has the following upper bound:

E[L] ≤ 1− εcc + εcc2
rcrc (3)

≤ 1 + εcc2
rcrc . (4)

Proof: The set of admissible codewords using the natural
trellis for gcyclic(x) is a strict subset of the set of admissible

codewords using the natural trellis for gcc(x). Whenever the
Viterbi decoder using the natural trellis for gcc(x) identifies
the correct codeword on the first attempt, i.e. it does not make
a frame error, the CRC checks immediately and the list size is
L = 1. If the first attempt using the natural trellis for gcc(x)
causes a frame error, the list size is greater than 1 but the
conditional expected list size in that case is upper bounded
by 2rcrc as shown in [18]. This proves the bound.

Theorem 3 is illustrated in Fig. 5, but turns out to be
somewhat loose in practice. A tighter approximation, for
which an analytic justification remains a topic of ongoing
investigation, uses εcyclic, the overall FER of the cyclic code:

E[L] ≈ 1− εcyclic + εcyclic2
rcrc . (5)

As seen in Fig. 5 and in all of our other simulations, (5) is
an excellent approximation of actual expected list size.

Using (5), the factorization of gcyclic(x) can be chosen in
practice so that the expected list size is small, e.g. by choosing
rcrc so that the approximation of (5) is close to two at the
target value ε∗ of εcyclic, i.e. by choosing rcrc ≈ − log2 ε

∗ This
ensures that the average complexity at the operating point ε∗

is close to the complexity of Viterbi decoding on the trellis
of gcc(x). In the examples of Table II, the trellis of gcc(x) has
2

r
2 states when the BCH generator polynomial has a natural

trellis with 2r states.

IV. MINIMAL TRELLISES FOR CYCLIC CODES

The value of the complexity reduction benefit of the S-
LVA approach described in Secs. II and III depends on how
much complexity reduction it provides as compared to other
approaches. The natural trellis associated with the generator
polynomial gcyclic(x) may not be the lowest complexity trellis
representation. Thus, to properly assess the advantage of the
proposed S-LVA approach over its alternatives, it should be
compared with Viterbi decoding on the lowest-complexity
trellis representation for the original cyclic code [20], [21].

This section analyzes the trellis complexity for the example
BCH codes in Table II. The results of this analysis show that
the S-LVA approach has significantly lower complexity than
that of Viterbi algorithm using the minimal trellis.

It is well known that for linear block codes, a reduction in
trellis complexity may be achieved by permuting the code
coordinates [12]. For any given order of the code coordinates,
one can construct the canonical minimal trellis representing
the code, using one of several methods described in [12,
Section 4.2]. Such trellises are usually time-varying. That is,
unlike the natural trellis, they do not have the same number
of states at all times. Let Vi denote the set of states in the
minimal trellis at time i, for i = 0, 1, ..., N , where N is
the dimension of the code. It is well known [12] that, for
any linear block code, |Vi| is a power of 2 for all i. The
sequence s0, s1, . . . , sN , where si = log2 |Vi|, is called the
state-complexity profile of the trellis.

The computational complexity of Viterbi decoding on a
trellis is governed by its state-complexity profile s0, s1,

TABLE IV
THE SET OF CODEWORD WEIGHTS D(C⊥) FOR C⊥ AND NUMBER OF
STATES smax IN THE MINIMAL TRELLIS FOR BCH CODES IN TABLE II

m gcyclic(x) K⊥ D(C⊥) smax

6 (103)8(127)8 12 {0, 24, 28, 32, 36, 40} 12
7 (211)8(217)8 14 {0, 56, 64, 72} 14
8 (435)8(567)8 16 {0, 112, 120, 128, 136, 144} 16
9 (1021)8(1131)8 18 {0, 240, 256, 272} 18
10 (2011)8(2017)8 20 {0, 480, 496, 512, 528, 544} 20

. . . , sN . In turn, the values of s0, s1, . . . , sN depend on the
order in which the code coordinates are arranged. Unfortu-
nately, the problem of finding the optimal permutation of code
coordinates is wide open — there are precious few codes for
which such permutations are known [12, Section 5.2]. In fact,
most of the work in the literature is concerned with finding
the permutation that minimizes the maximum number of states
in the trellis, namely

smax
def
= max{s0, s1, ..., sN},

rather than the entire state-complexity profile. This is still a di-
fficult problem. For general linear codes, finding a coordinate
permutation that minimizes smax is NP-hard [22], [23]. For
most structured codes (including most BCH codes) only upper
and lower bounds on smax are known.

However, in this section, we determine the precise value of
smax for all the BCH codes in Table II. In fact, we prove that
for every one of these codes smax = N −K = K⊥. That is,
for these BCH codes, the maximum number of states in the
minimal trellis is equal to the number of states in the natural
trellis. In order to establish this result, we make use of the
following theorem of Ytrehus [24].

Theorem 4 (Ytrehus). For an (N,K, d) binary linear
code, define its distance set (or weight set) as follows:

D(C) = {0 ≤ w ≤ N : ∃ c, c′ ∈ C such that d(c, c′) = w}

If D(C) ⊆ {0}∪{d, d+1, · · · , 2d−3} then smax = K under
all permutations of code coordinates.

It is well known that the minimal trellis of any linear code
and the minimal trellis of its dual code have the same number
of states at all times (this result was first established by Forney
in [25]). For the BCH codes in Table II, the dimensions K⊥

of their dual codes and the distance sets of the dual codes are
given in Table IV. Notably, all the distance sets in Table IV
satisfy the condition of Theorem 4. It follows that the trivial
upper bound smax ≤ K⊥ holds with equality for all these
codes, under all permutations of the code coordinates. This
suggests that the reduction in trellis complexity that can be
obtained for these BCH codes by permuting their coordinates
is very limited.

Let |V | and |E| denote, respectively, the number of states
and the number of branches in a trellis. Then the com-
plexity of Viterbi decoding on this trellis (the number of
operations required by the Viterbi algorithm) is given by

TABLE V
VITERBI DECODING COMPLEXITIES FOR NATURAL TRELLISES VS. OUR

PERMUTED TRELLISES FOR BCH CODES IN TABLE II

m gcyclic(x) QViterbi,natural QViterbi,permuted

6 (103)8(127)8 5.0× 105 3.2× 105

7 (211)8(217)8 4.9× 106 2.8× 106

8 (435)8(567)8 4.4× 107 2.4× 107

9 (1021)8(1131)8 3.7× 108 2.0× 108

10 (2011)8(2017)8 3.1× 109 1.6× 109

2|E| − |V | + 1 (see [12, Section 3.3]). For comparison, in
Table V we construct the minimum-complexity (permuted)
trellises we could find for the BCH codes in Table II, and
compare the resulting Viterbi decoding complexity with that
of the natural trellis. Here QViterbi,natural and QViterbi,permuted are
the number of operations required by the Viterbi algorithm
on the natural trellis and the trellis we found by permuting
the code coordinates, respectively.

From Table V, we see that by permuting the coordinates of
the example BCH codes, we can reduce the Viterbi decoding
complexity by a factor of about 2 at most. Thus the proposed
S-LVA decoding approach is significantly more efficient than
conventional Viterbi decoding on the minimal trellis these
BCH codes.

Moreover, we could also apply coordinate permutations to
optimize the trellis complexity of the trellis used by Viterbi
decoding of gcc(x). In this way, both the S-LVA decoding
approach and the trellis theory of linear block codes, in
combination, can be used to reduce the decoding complexity
even further.

V. CONCLUSION

This paper presents a low complexity approach for ML
decoding of cyclic codes that is based on factoring the
generator polynomial gcyclic(x) into a convolutional encoder
polynomial gcc(x) and a CRC polynomial gcrc(x). This fac-
torization facilitates S-LVA decoding which, with rcrc chosen
appropriately for the target FER, has a complexity that is
similar to the complexity of performing Viterbi decoding on
the natural trellis for gcc(x).

When the two factors have equal degree, the trellis used for
Viterbi decoding has a number of states equal to the square
root of the number of states in the natural trellis for the cyclic
code. For the binary BCH examples in this paper, the minimal
trellis associated with the cyclic code was not significantly
smaller than the natural trellis so that the factoring approach
described by Theorem 2 and Figure 2 leads to a significant
practical complexity reduction.

REFERENCES

[1] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill,
1968.

[2] J. Massey, “Shift-register synthesis and bch decoding,” IEEE Trans. Inf.
Theory, vol. 15, no. 1, pp. 122–127, Jan 1969.

[3] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method
for solving key equation for decoding goppa codes,” Information and
Control, vol. 27, no. 1, pp. 87–99, January 1975.

[4] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge,
UK: Cambridge University Press, 2003.

[5] V. Guruswami and M. Sudan, “Improved decoding of reed-solomon and
algebraic-geometric codes,” Proc. 39th Annu. Symp. on Foundations of
Comput. Sci. (Cat. No.98CB36280), 1998.

[6] A. J. Viterbi, “Error bounds for convolutional codes and an asymptot-
ically optimal decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13,
pp. 260–269, 1967.

[7] J. Wolf, “Efficient maximum likelihood decoding of linear block codes
using a trellis,” IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 76–80, Jan
1978.

[8] D. Muder, “Minimal trellises for block codes,” IEEE Trans. Inf. Theory,
vol. 34, no. 5, pp. 1049–1053, 1988.

[9] A. Vardy and Y. Be’ery, “Maximum-likelihood soft decision decoding
of bch codes,” IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 546–554,
Mar 1994.

[10] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting
binary group codes,” Information and Control, vol. 3, pp. 68–79, 1960.

[11] C. Y. Lou, B. Daneshrad, and R. D. Wesel, “Convolutional-code-specific
CRC code design,” IEEE Trans. Commun., vol. 63, no. 10, pp. 3459–
3470, Oct. 2015.

[12] A. Vardy, Handbook of Coding Theory. Elsevier, 1998, ch. Trellis
structure of codes.

[13] J. Rosenthal and F. York, “Bch convolutional codes,” IEEE Trans. Inf.
Theory, vol. 45, no. 6, pp. 1833–1844, 1999.

[14] N. Seshadri and C. E. W. Sundberg, “List viterbi decoding algorithms
with applications,” IEEE Trans. Commun., vol. 42, no. 234, pp. 313–
323, Feb. 1994.

[15] C. Nill and C. E. W. Sundberg, “List and soft symbol output viterbi al-
gorithms: extensions and comparisons,” IEEE Trans. Commun., vol. 43,
no. 2/3/4, pp. 277–287, Feb. 1995.

[16] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding, J. B. Anderson, Ed. New Jersey, USA: IEEE Press, 1999.

[17] M. Roder and R. Hamzaoui, “Fast tree-trellis list viterbi decoding,”
IEEE Trans. Commun., vol. 54, no. 3, pp. 453–461, Mar. 2006.

[18] H. Yang, S. V. S. Ranganathan, and R. D. Wesel, “Serial list viterbi
decoding with crc: Managing errors, erasures, and complexity,” in 2018
IEEE Global Commun. Conf. (GLOBECOM), Dec 2018, pp. 1–6.

[19] H. Yang, E. Liang, and R. D. Wesel, “Joint design of convolutional
code and crc under serial list viterbi decoding.” [Online]. Available:
http://arxiv.org/abs/1811.11932v1

[20] A. B. Kiely, S. Dolinar, L. Ekroot, R. J. McEliece, and W. Lin,
“Minimal trellises for linear block codes and their duals,” in Telecom-
munications and Data Acquisition Report, J. H. Yuen, Ed., May 1995.

[21] A. B. Kiely, S. J. Dolinar, R. J. McEliece, L. L. Ekroot, and Wei Lin,
“Trellis decoding complexity of linear block codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 1687–1697, Nov 1996.

[22] F. R. Kschischang and G. B. Horn, “A heuristic for ordering a linear
block code to minimize trellis state complexity,” in 32nd Allerton Conf.
on Communication, Control, and Comput., 1994, pp. 75–84.

[23] N. Kashyap, “Matroid pathwidth and code trellis complexity.” [Online].
Available: http://arxiv.org/abs/0705.1384v1

[24] O. Ytrehus, “On the trellis complexity of certain binary linear block
codes,” IEEE Trans. Inf. Theory, vol. 41, pp. 559–560, 1995.

[25] J. G. D. Forney, “Coset codes ii: Binary lattices and related codes,”
IEEE Trans. Inf. Theory, vol. 34, pp. 1152–1187, 1988.

http://arxiv.org/abs/1811.11932v1
http://arxiv.org/abs/0705.1384v1

	Introduction
	Serial List Viterbi on Factored Cyclic Codes
	Cyclic Codes as Rate-1 Convolutional Codes
	Simplifying the Trellis by Factoring out a CRC Polynomial
	Binary BCH example

	Complexity of Serial List Viterbi Decoding
	Minimal Trellises for Cyclic Codes
	Conclusion
	References

