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Abstract—This paper uses convolutional codes (CCs) with
distance-spectrum optimal (DSO) cyclic redundancy checks
(CRCs) and the serial list Viterbi algorithm (S-LVA) to approach
the random coding union (RCU) bound with low decoding
complexity at the target FER. We show, for example, that a
64-state zero-terminated CC with a DSO CRC can achieve
performance within 0.5 dB of the RCU bound for information
blocklength k = 64 at FER of 10

−3. We also show that a tail-
biting CC with a DSO CRC can achieve even better performance,
within 0.05 dB of the RCU bound at FER of 10

−4 for a 256-
state CC with k = 64. This paper provides analysis of decoding
complexity, which for S-LVA depends on the expected list size.
We show that if the target FER is low enough, the expected list
size approaches one so that the average complexity of S-LVA
approaches that of standard soft Viterbi on the CC, i.e., with no
list decoding. We also provide DSO CRCs for CCs with k = 64

and rates of 1/2, 1/3, 1/6 and 1/12 for the 5G new radio control
channel and compare their performance with polar codes.

I. INTRODUCTION

For 3GPP LTE [1] a 64-state (v = 6), rate-1/3 tail-biting

convolutional code (CC) supports various rates with punc-

turing or repetition. Throughout this paper, v indicates the

number of memory elements in the convolutional encoder and

m indicates the degree of a cyclic redundancy check (CRC).

Tail-biting [2] avoids the overhead of zero-termination.

For 5G, polar coding [3] has received attention as a solu-

tion for short-blocklength communication. Polar codes with

standard successive cancellation decoding exhibit poor per-

formance at short blocklengths, but list decoding significantly

improves their performance [4]. The successive cancellation

list (SCL) decoder [4] maintains a list of L polar codewords

and selects the most likely codeword that passes a CRC.

A technical study group report [5] generalized the SCL

approach with a new class of polar codes for 5G known

as parity-check polar codes. These codes outperform the

previous CRC-aided polar codes [6]. Parity-check polar codes

also outperform the 3G tail-biting CCs at rates 1/2, 1/3, 1/6
and 1/12 for information blocklength k = 64, as shown in

[7], but the 3G codes did not have the benefit of list decoding.

CCs are good short-blocklength codes on their own. As

shown by Coskun et al. [8], a tail-biting CC with v = 14
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decoded using the wrap-around Viterbi algorithm (WAVA) can

achieve the random coding union (RCU) bound of Polyanskiy

[9] at FER of 10−3, but the complexity is significant. List

decoding significantly improves the performance of CCs,

as shown in [10] and [8]. Coskun et al. [8] demonstrated

performance within 0.6 dB of the RCU bound at FER of 10−3

using a tail-biting CC with v = 11 and a standard CRC of

m = 16 and a soft decoder that flips unreliable bits. In [10],

distance-spectrum-optimal (DSO) CRCs designed according

to Lou et al. [11] are concatenated with zero-terminated CCs

and decoded using the serial list Viterbi algorithm (S-LVA).

[12]–[16]. DSO CRCs significantly improve performance as

compared to off-the-shelf CRCs from, e.g., [17].

A. Contributions and Organization

This paper demonstrates that short-blocklength CCs con-

catenated with a DSO CRC and decoded by S-LVA approach

the RCU bound with low average complexity.

For zero-terminated CCs, Sec. II develops metrics validated

by actual decoder run-time to compare the complexity of

standard soft Viterbi (SSV) to that of S-LVA. For example,

these metrics show that for FERs below 10−2, the average

complexity of using S-LVA for a zero-terminated CC with

2v states and a CRC of m = 10 is within a factor of 2 of

the complexity of using SSV for the 2v-state zero-terminated

CC. These metrics show that a CC with a DSO CRC for

k = 64 can approach the RCU bound with significantly less

complexity than [8]. For rate-1/2 zero-terminated CCs with

v ≥ 5, list decoding using a DSO CRC of m = 10 achieves

performance within 0.5 dB of the RCU bound for FER of

10−3 with complexity similar to SSV on the 2v-state trellis.

For tail-biting CCs, Sec. III extends the list decoding of

[18] to accommodate a CRC and employs a DSO CRC to

approach the RCU bound even more closely. For example, a

tail-biting CC with v = 7 and DSO optimal CRC of m = 10
can perform within 0.05 dB of the RCU bound for FER of

10−3. S-LVA complexity for tail-biting can be significantly

higher than for zero-termination, but in both cases average

complexity is less than twice that of SSV on the 2v-state

trellis for sufficiently low FER. A good approximation for

the expected list size for both zero-termination and tail-biting

indicates the CRC size m for which S-LVA complexity is

close to that of SSV on the 2v-state trellis at the target FER.



TABLE I
POPULAR RATE-1/2 CCS AND CORRESPONDING

DISTANCE-SPECTRUM-OPTIMAL CRC CODES WITH k = 64

v Conv. Code gv
Distance-Spectrum-Optimal CRC Gen. Poly.
m = 3 4 5 6 7 8 9 10

3 (13, 17) 9 1B 2D 43 B5 107 313 50B
4 (27, 31) F 15 33 4F D3 13F 2AD 709
5 (53, 75) 9 11 25 49 EF 131 23F 73D
6 (133, 171) F 1B 23 41 8F 113 2EF 629
7 (247, 371) 9 13 3F 5B E9 17F 2A5 61D
8 (561, 753) F 11 33 49 8B 19D 27B 4CF
9 (1131, 1537) D 15 21 51 B7 1D5 20F 50D

10 (2473, 3217) F 13 3D 5B BB 105 20D 6BB

Section IV provides tail-biting CCs with DSO CRCs for

k = 64 that outperform the parity-check polar coding results

from [5], [7] for rates of 1/2, 1/3, 1/6, and 1/12. Section V

concludes the paper.

II. ZERO-TERMINATED CC WITH DSO CRC VIA S-LVA

For rate-1/2 zero-terminated CCs from [19] with DSO

CRCs designed according to [11], this section explores the

trade-off between complexity and the gap between the SNR

required to achieve a target FER and the SNR of the RCU

bound of Polyanskiy et al. [9]. SNR is defined as the squared

amplitude of a BPSK signal divided by the variance of a

one-dimensional, zero-mean Gaussian noise. Table I shows

the combinations of rate-1/2, zero-terminated CCs and DSO-

CRCs, with both m and v ranging from 3 to 10. The DSO

CRC can vary as a function of k, and Table I presents DSO

CRCs specifically for k = 64.

A. Complexity Increase of S-LVA over SSV

There are a variety of implementations of list decoding of

CCs as described in, e.g., [15], [20]–[23]. The implementation

of S-LVA studied in this paper maintains a list of path metric

differences by using a red-black tree as described in [15],

which provided the fastest run-time among the data structures

that support full floating-point precision.

Numerous papers including [15], [20]–[23] also analyze ei-

ther the number of bit operations or the asymptotic complexity

of the algorithms they present, but the complexity metrics are

not directly connected with actual run-time. To explore how

the additional complexity of the S-LVA relative to the SSV

varies as a function of SNR, this paper develops a complexity

expression that closely approximates empirical run-times.

Three components comprise the complexity of S-LVA as

shown in (1):

CS-LVA = CSSV + Ctrace + Clist . (1)

The first component CSSV is the complexity required to

perform the add-compare-select (ACS) operations on the

zero-terminated CC trellis and perform the initial traceback

associated with SSV:

CSSV =5(2v − 1) + 3(k +m− v) · 2v (2)

+ c1 · [2(k +m+ v) + 1.5(k +m)] . (3)

The complexity of ACS operations in the SSV algorithm

for a zero-terminated CC is represented by (2). Equation

(3) approximates the complexity of the traceback operation,

assigning 2 units of complexity for accessing the parent node

per trellis stage and 1.5 units of complexity per codeword

symbol for the CRC check on the decoded message.

The second component, Ctrace, is the complexity of

the traceback operations required by S-LVA. For a zero-

terminated CC,

Ctrace =c1(E[L]− 1) [2(k +m+ v) + 1.5(k +m)] , (4)

where L is the random variable describing the number of

traceback operations for S-LVA and E[L] is its expectation.

An ordered list of path metric differences must be main-

tained to select each candidate path for traceback. The third

constituent Clist represents the normalized complexity of in-

serting new elements to maintain the ordered list. Assuming

the use of a zero-terminated CC,

Clist =c2E[I] log(E[I]) . (5)

In the above equations, c1 and c2 are constants that charac-

terize implementation-specific differences in the implemented

complexity of traceback and list insertion (respectively) as

compared to the ACS operations of Viterbi decoding. For our

implementation we found c1 = 1.5 and c2 = 2.2. E[I] denotes

the expected number of insertions to maintain the sorted list

of path metric differences.

The additional complexity of the S-LVA over SSV decoding

is completely characterized by the additional tracebacks along

the trellis and the maintenance of an ordered list of path metric

differences. We define the normalized complexity C̄ as the

complexity divided by the complexity required to perform

the SSV, i.e.,

C̄S-LVA =
CS-LVA

CSSV

= 1 + C̄trace + C̄list . (6)

The normalized complexity provides a measure for the ad-

ditional complexity of operations associated with the S-LVA

relative that of the SSV algorithm.

We recorded the run-time TS-LVA, TSSV, Ttrace, and Tlist on

an Intel i7-4720HQ using Visual C++. We then divided all

of these terms by TSSV to compute a normalized run-time T̄ .

Fig. 1 shows normalized complexity based on equation (6)

and normalized run-times. In both cases, the normalization

is computed by dividing by the complexity or run-time

associated with SSV, i.e. performing all the add-compare-

select (ACS) operations on the trellis and a traceback from

the state with the best metric. The normalized complexity and

normalized run-time curves are indistinguishable. Fig. 1 also

shows that the additional complexity of S-LVA is primarily

from maintaining an ordered list of path metric differences.

Fig. 2 shows complexity calculated using (1) as a function

of SNR for the rate-1/2 CC with v = 7 in Table I for

DSO CRCs from m = 0 (no CRC) to m = 10. The

complexity at target FERs of 10−2, 10−3, and 10−4 are

indicated, respectively, by squares, diamonds, and stars for



Fig. 1. The complexity of S-LVA with different list sizes for (27, 31) CC, and
0x709 CRC code, with k = 64 at SNR = 2 dB. All variables are normalized
by the time or complexity of the SSV algorithm. In the simulation setting,
c1 = 1.5 and c2 = 2.2.
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Fig. 2. The decoding complexity vs. SNR for (247, 371) CC with its
corresponding distance-spectrum-optimal CRC codes. The CC with no CRC
using soft Viterbi decoding is also given as a reference.

each choice of CRC. For each of these three operating points

and CRCs, the complexity for S-LVA is within a factor of 2
of the complexity for m = 0, i.e., SSV with no list decoding.

B. Comparison with Random Coding Union Bound

To assess performance in the short-blocklength regime, we

use the approach of [8] utilizing the RCU bound [9]. We

compute the RCU bound using a numerically efficient saddle-

point approximation [24]. Fig. 3 shows the gap from the

RCU bound on finite blocklength transmission computed as

described in [9] as a function of the complexity expression

derived in Sec. II-A.

Fig. 3 shows that increasing m can provide significant

reduction in the gap from the RCU bound for a relatively

small complexity cost. As v becomes larger, the complexity

cost for increasing m becomes less significant. For CCs with

Complexity

Fig. 3. The SNR gap to RCU bound vs. decoding complexity for various CC-
CRC pairs with k = 64 and target FER 10−3. Each color corresponds to a
specific CC shown in parenthesis. Markers from top to bottom with the same
color correspond to soft Viterbi decoding with no CRC at the very top and
then m = 3, 4, · · · , 10 distance-spectrum-optimal CRC codes, respectively.
CCs with v = 11, 12, 13 using soft Viterbi decoding are also provided.

v ≥ 5 the complexity cost of increasing m from m = 0 (no

CRC) to m = 10 is within a factor of 2. This is consistent

with Fig. 1 where the complexity increased by a factor less

than 1.5 even for a very large list size.

III. TAIL-BITING CC WITH CRC AND S-LVA

A tail-biting CC can be decoded by performing SSV from

each initial state and constraining the SSV to terminate in

the initial state. Choosing the ending state with the lowest

metric selects the overall ML codeword. This has complexity

2vNsNb where Ns is the number of trellis stages and Nb is

the number of branches in one stage of the trellis.

The wrap-around Viterbi algorithm (WAVA) is an alterna-

tive that performs a single SSV in which all initial states are

active and initialized with a zero metric. If the lowest-metric

final state matches the initial state that results from traceback,

WAVA concludes by selecting the corresponding codeword.

If not, WAVA “wraps around” by again performing an SSV

with the initial states initialized to have the metric of the cor-

responding final state from the previous SSV. WAVA has not

been proven to be ML, but its performance is empirically very

close to ML. Its complexity is E[Mw]NsNb where E[Mw]
is the expected number of times SSV is performed. Since

E[Mw] < 2v at typical target FERs, WAVA typically requires

significantly less complexity in practice than performing SSV

from each initial state.

A. List decoding for tail-biting CC

List decoding is an alternative to WAVA. An efficient

iterative, recursive decoding algorithm for tail-biting CCs is

introduced in [18]. We extend the decoding algorithm of [18]

to include a CRC by adding an additional step. If a traceback

identifies a tail-biting path, the CRC of the corresponding

codeword is checked. If the codeword passes the CRC check,
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Fig. 4. FER vs. gap from the RCU bound. These rate-1/2 CCs with v =
6, 7, 8 and a CRC with m = 10 are between 0.4 and 0.55 dB from the RCU
bound for FER of 10−4 when terminated with v zeros. Tail-biting removes
the v overhead bits so that the gap form the RCU bound is less than 0.1 dB
for v = 8.

the algorithm terminates. If it fails, the algorithm locates

the next lowest path metric difference and continues the list

decoding process of [18].

The first codeword that satisfies both the tail-biting con-

straint and the CRC check is the maximum likelihood code-

word. This is because the algorithm considers all possible

paths, regardless of starting and ending state, in ascending

order of total path metric differences. Thus, the first codeword

that checks both constraints must be the codeword with the

lowest total metric difference from the channel observations.

Figure 4 shows the improvement in decoder performance

relative to RCU bound using a DSO CRC with tail-biting

rather than zero-termination for the CC. Although tail-biting

generally has a higher FER at the same SNR as compared to

the zero-terminated CC, tail-biting operates at a higher rate

than the zero-terminated CC. Using RCU gap as our metric

of relative performance, the FER increase from tail-biting is

outweighed by the rate saved through tail-biting.

B. Expected List Size of S-LVA

As defined in Sec. II-A, the random variable L is the “list

size” required by S-LVA to find a codeword that passes the

CRC for a zero-terminated CC or that both satisfies the tail-

biting condition and passes the CRC for tail-biting CC. Defin-

ing ǫ as the FER, we propose the following approximations

for E[L] for zero-terminated CC and tail-biting CC for the

case where there is no maximum list size, i.e. Lmax = ∞:

E[LZTCC] ≈ 1− ǫ+ 2mǫ (7)

E[LTBCC] ≈ 1− ǫ+ 2v+mǫ. (8)

Figure 5 shows that for a zero-terminated CC with v = 8
and m = 3, 4, · · · , 7, (7) is a good approximation for E[L]
over the entire FER range. In the case of a tail-biting CC,
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Fig. 5. E[L] vs. FER for TBCC and zero-terminated CC. The E[L] for tail-
biting CC and zero-terminated CC can be approximated with a function that
depends only on FER, v, and m.

Figure 5 also shows that (8) is accurate when E[L] > 10.

However, in the case of a tail-biting CC, the approximation

falls slightly below E[L] when E[L] < 10.

Note that (7) and (8) assume that the decoding occurs

with no limit on the number of tracebacks. When Lmax limits

the number of tracebacks such that NACKs are declared, the

observed E[L] can decrease below (7) and (8).

Designers can use (7) and (8) and a target ǫ to choose the

CRC size m and to decide between ZTCC and tail-biting CC.

Assuming ǫ ≪ 1, E[L] ≈ 2 can be achieved by selecting m
for a ZTCC such that 2m ≈ ǫ−1 or choosing m and v such

that 2m+v ≈ ǫ−1 for tail-biting CC. Specifically, by choosing

m + v = 17, E[L] ≈ 2 can be achieved for tail-biting CCs

with DSO CRCs for ǫs below 10−5.

IV. DESIGNS FOR 5G RATES

In this section, we design punctured tail-biting CCs and

companion DSO CRCs for k = 64 information bits targeting

rates 1/2, 1/3, 1/6, and 1/12 to compare with parity check

polar codes at these rates. For target rates 1/2 and 1/3, we

use periodic puncturing as in [25] followed by a DSO CRC

designed for the punctured CC following [11]. For target rates

1/6 and 1/12, the “puncturing” of the CC simply yields a

higher-rate un-punctured CC.

Consider a rate-1/n tail-biting CC described by polynomial

vector g with v memory elements and a CRC polynomial

of degree m. Puncturing B = nm bits compensates for the

rate loss introduced by the CRC to obtain an effective rate

R = k/(n(k +m) − B) = 1/n. For periodic puncturing, as

in [25], let T be the puncturing period and t be the number of

punctured bits in each period. Thus, B = ⌊(k+m)/T ⌋t. The

puncturing pattern of [25] is described by an n × T binary

matrix P for which Pi,j = 1 if the j-th bit in each period

produced by the i-th column of g is transmitted and Pi,j = 0
if it is punctured, 1 ≤ i ≤ n, 1 ≤ j ≤ T .



For a compact representation exploiting the sparsity of 0
entries in P , define the set of zero-entry locations in P as

I = {b | ∃ i, j,Pi,j = 0, b = (j − 1)r + i} . (9)

The design procedure is as follows: First, we design the

periodic puncturing scheme either by exhaustive search or

by repetitive construction. Then we find the CRC for the

punctured (terminated) CC using Lou et al.’s approach [11]

which selects the CRC polynomial that maximizes the weight

of all possible undetected error events. This is a suboptimal

CRC design because it ignores the effect of tail-biting. In-

corporating tail-biting effects into the DSO CRC design is a

subject for future research.

Table II summarizes our designs. The degree-10 CRC

(2303)8 in octal is p(x) = x10 + x7 + x6 + x + 1,

and dmin denotes the minimum distance of the punctured

CC assuming zero termination. Similarly, dCRC denotes the

minimum distance for the concatenated CRC and punctured

(terminated) CC. The subsections below describe the specific

design procedures for each target rate.

A. Rate-1/2 and Rate-1/3

Consider the rate-1/2 tail-biting CC in which the mother

CC is described by the polynomial g6 = (133, 171) with v =
6 memory elements. Following the discussion that concludes

Sec. III-B, we choose m = 11 for CRC degree since m+v =
17 yields complexity close to that of SSV on the mother CC

for FERs below 10−5. Similarly, for the mother CC g7 =
(247, 371) with v = 7 memory elements, we choose m = 10
as the CRC degree.

For g6 = (133, 171) and m = 11, B = nm = 22 parity

check bits are added as a result of the CRC. Thus, choosing

t = 2 and solving for T , we have (k +m)t/B = 75/11 ≈ 7
so that T = 7. Then B = ⌊(k + m)/T ⌋t = 20 < 22. One

way to obtain the required 2 bits is to puncture in the last

incomplete period according to I after I is found.

After determining T and t, we find one optimal puncturing

pattern I = {1, 6} which gives a maximum dmin = 7 using

exhaustive search. After finding the optimal (periodically)

punctured terminated CC. We apply Lou et al.’s approach

to obtain the optimal degree-11 CRC polynomial. When ap-

plying Lou et al.’s design scheme, the error events considered

should be the punctured error events. The design process for

rate-1/3 is the same as for rate-1/2 and we omit the details.

Figure 6 shows the performance of tail-biting CCs with

DSO CRCs relative to that of other rate-1/2 codes with k =
64. The code with v = 7 and m = 10 performs nearly as

well as a tail-biting CC with v = 11 decoded using WAVA

and the code with v = 8 and m = 10 performs within 0.1
dB of a v = 14 tail-biting CC decoded using WAVA at an

FER of 10−5. In addition, our method using v = 7, m = 10
and v = 8, m = 10 outperforms the iterative bit-flipping

decoding method used in [8] despite the code of [8] having

a much larger m = 16 for its off-the-shelf CRC and a much

larger v = 11. The tail-biting CCs with DSO CRCs with

v = 7, m = 10 and with v = 8, m = 10 both outperform the

TABLE II
CODES WITH TAIL-BITING CC AND DSO CRC FOR k = 64.

g6 = (133, 171), g7 = (247, 371), g8 = (561, 753),
f6 = (133, 171, 165), f7 = (225, 331, 367), f8 = (575, 623, 727),

T = 7 FOR PUNCTURED CODES.

Rtb tail-biting CC v dmin m CRC dCRC

1/2 g6 I = {1, 6} 6 7 11 6373 15
1/2 g7 I = {1, 3} 7 7 10 2303 15
1/2 g8 I = {2, 6} 8 9 10 2275 16
1/3 f6 I = {1, 2, 10} 6 12 10 3667 24
1/3 f7 I = {1, 4, 7} 7 13 10 2071 25
1/3 f8 I = {3, 6, 12} 8 15 10 2357 26

64/370 (f6, g6) 6 25 10 2715 48
64/375 (f6, g6) 6 25 11 4517 51
64/370 (f7, g7) 6 27 10 3463 53
64/375 (f7, g7) 6 27 11 4123 56
64/370 (f8, g8) 6 30 10 3155 55
64/375 (f8, g8) 6 30 11 7471 58
64/760 (f6, g6, f6, g6) 6 50 12 15721 108
64/770 (f6, g6, f6, g6) 6 50 13 25467 110
64/770 (f7, g7, f7, g7) 6 54 12 14661 116
64/770 (f7, g7, f7, g7) 6 54 13 35233 122
64/760 (f7, g7, f7, g7) 6 60 12 11435 120
64/770 (f7, g7, f7, g7) 6 60 13 23173 126
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Fig. 6. FER vs. SNR comparison between serial-list Viterbi decoded TBCC
with DSO CRC and other candidate codes for URLLC. All simulations are
for k = 64, n = 128, rate=1/2. WAVA and 5G eMBB simulations are
located in [26], parity-check polar (PC-Polar) code simulations are located
in [7], and iterative bit flipping (IBF) simulations with an off-the-shelf (OTS)
CRC are located in [8].

5G eMBB polar and parity-check polar codes with L = 32
at rate-1/2.

B. Rate-1/6 and Rate-1/12

The design procedures for rate-1/6 and rate-1/12 codes

involves repeating a higher rate CC. The construction scheme

combines two low-rate convolutional generator matrices and

then deletes columns to leave space for the CRC. For example,

the for v = 6 case, we first construct a rate-1/6 mother CC

by repeating (133, 171, 165) twice and then deleting the last

column to obtain the rate 1/5 code (133, 171, 165, 133, 171).
We then apply Lou et al.’s design method as described in Sec.
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Fig. 7. FER vs. SNR comparison between serial-list decoded TBCC with
DSO CRC and other candidate codes for URLLC. The target rates are
1/3, 1/6 and 1/12. k = 64 is used for all simulations. The PC-Polar
simulations are located in [7].

IV-A. The resulting concatenated code is approximately rate-

1/6 (or 64/384). In the design process for a rate-1/12 code,

we repeat the rate-1/5 code to obtain the rate-1/10 code.

The resulting concatenated code is approximately rate-1/12
(or 64/768).

Figure 7 shows the performance of the designed tail-biting

CCs with DSO CRCs at rates 1/3, 1/6 and 1/12. At all three

rates, our designed codes outperform parity-check polar codes

with L = 32.

V. CONCLUSION

This paper develops complexity metrics for S-LVA and

uses them to show that the average complexity of using S-

LVA for a zero-terminated CC with CRC is within a factor

of 2 of SSV for that zero-terminated CC for FERs below

10−2. The paper showed that k = 64 CCs with a DSO CRC

and S-LVA can achieve FER performance very close to the

RCU bound with significantly less complexity than [8]. This

paper also provides a good approximation for expected list

size for both zero termination and tail-biting. This allows a

designer to control complexity by selecting a CRC size m
that does not induce a large expected list size. It can also

inform the selection between zero termination and tail-biting

based on available complexity and desired FER. Finally, the

paper shows that tail-biting CCs with DSO CRCs decoded

with S-LVA outperform the parity-check polar codes of [7].

A careful complexity comparison between polar approaches

and CC with S-LVA approaches remains as future work.
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