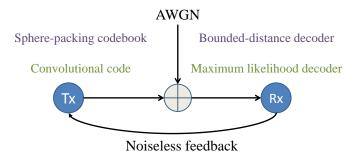
A Rate-Compatible Sphere-Packing Analysis of Feedback Coding with Limited Retransmissions

Adam Williamson, Tsung-Yi Chen, and Rick Wesel

UCLA Communication Systems Laboratory arXiv: 1202.1458


July 6, 2012

Variable-Length Feedback with Termination

- Variable-length feedback with termination (VLFT) codes [Polyanskiy et al. 2011]:
 - \Rightarrow Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - \Rightarrow Transmission may terminate after each symbol.
 - \Rightarrow (Rate-compatible) random coding.
 - \Rightarrow General results with numerical examples for BSC and BEC.

- This talk: Still the basic VLFT framework.
 - \Rightarrow Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - \Rightarrow Transmission may only terminate at the end of a "packet".
 - \Rightarrow Incremental packet lengths will be optimized.
 - \Rightarrow Rate-compatible sphere-packing (RCSP) [Chen et al. 2011].
 - \Rightarrow Rate-compatible tail-biting convolutional code.
 - \Rightarrow Focused on the AWGN channel.

Incremental Redundancy Scheme Overview

- Forward channel is AWGN with known SNR, η .
- The receiver attempts to decode after each incremental transmission, based on all received symbols.

UCLA (CSL)

Transmission Scheme Details (1st transmission)

• $k = \log_2 M =$ information bits.

- 1st transmission:
 - Send I_1 , decode with $N_1 = I_1$.
 - $R_1 = k/N_1$ = initial code rate.

Transmission Scheme Details (2nd transmission)

• $k = \log_2 M =$ information bits.

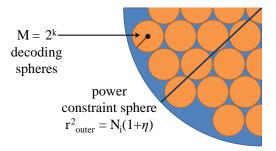
$$I_1$$
 I_2

• 2nd transmission:

- Send I_2 , decode with $N_2 = I_1 + I_2$.
- $R_2 = k/N_2 = \text{code rate.}$

Transmission Scheme Details (ith transmission)

• $k = \log_2 M =$ information bits.


- *i*th transmission: (i = 2, ..., m)
 - Send I_i , decode with $N_i = N_{i-1} + I_i$.
 - I_i = incremental step size, N_i = block length at *i*th transmission.
 - $R_i = k/N_i = \text{code rate at } i\text{th transmission}$

• m = maximum number of transmissions (before repetition).

Start Over if Failure after *m* Transmissions

- If decoding is unsuccessful after *m* transmissions, start over by sending I_1 bits, then I_2 bits, etc. (similar to ARQ).
- This is a practical limitation.
- Simplifies analysis.

Decoding Error Probability for Sphere-Packing

• P[error with block length *N_i*]

$$= \mathbf{P}(\zeta_i) = \mathbf{P}\left(\sum_{\ell=1}^{N_i} z_{\ell}^2 > r_i^2\right) = 1 - F_{\chi^2_{N_i}}(r_i^2),$$

r_i² = N_i(1+η)/2^{2k/N_i} is the sphere-packing radius (squared),
z_ℓ ~ N(0, 1) are the noise samples.

UCLA (CSL)

Sphere-Packing: Myth or Reality?

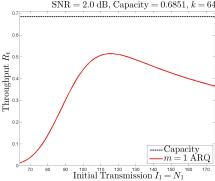
- An ideal sphere-packing codebook is mythical.
 - ⇒ Upper bound on packing density ϕ in *n* dimensions: $\phi \leq (n/e) 2^{-n/2}$.
- ... but we will see that a convolutional code can achieve sphere-packing performance.

Marginal vs. Joint Decoding Error Probability

• P[error with block length N_i] = P(ζ_i) (marginal)

$$= \mathbf{P}\left(\sum_{\ell=1}^{N_i} z_{\ell}^2 > r_i^2\right) = 1 - F_{\chi^2_{N_i}}(r_i^2),$$

• P[error after *j* transmissions] = P($\zeta_1, \zeta_2, \dots, \zeta_j$) (joint)


$$= \mathbf{P}\left(\sum_{\ell=1}^{N_1} z_{\ell}^2 > r_1^2, \sum_{\ell=1}^{N_2} z_{\ell}^2 > r_2^2, \dots, \sum_{\ell=1}^{N_j} z_{\ell}^2 > r_j^2\right)$$

$$= \int_{r_1^2}^{\infty} \int_{r_2^2 - t_1}^{\infty} \dots \int_{r_{j-1}^2 - \sum_{i=1}^{j-2} t_i}^{\infty} f_{\chi_{l_1}^2}(t_1) \dots f_{\chi_{l_{j-1}}^2}(t_{j-1}) \times \left(1 - F_{\chi_{l_j}^2}\left(r_j^2 - \sum_{i=1}^{j-1} t_i\right)\right) dt_{j-1} \dots dt_1.$$

Latency and Throughput (for m = 1, the ARQ Case)

• $\lambda =$ latency = expected number of forward channel uses.

$$\lambda = I_1 \left(1 + P(\zeta_1) + P(\zeta_1)^2 + P(\zeta_1)^3 + \dots \right)$$

= $\frac{I_1}{1 - P(\zeta_1)}$
= $\frac{I_1}{F_{\chi^2_{N_1}}(r_1^2)}$
 $\overset{\text{SNR} = 2.0 \text{ dB, Capacity} = 0}{\overset{\text{SNR} =$

- $R_t =$ throughput $= k/\lambda$.
- Select I_1 to maximize R_t .

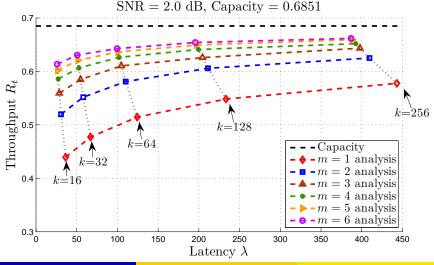
What About m > 1?

• Latency


$$\lambda = \frac{I_1 + \sum_{i=2}^m I_i P\left(\bigcap_{j=1}^{i-1} \zeta_j\right)}{1 - P\left(\bigcap_{j=1}^m \zeta_j\right)}$$

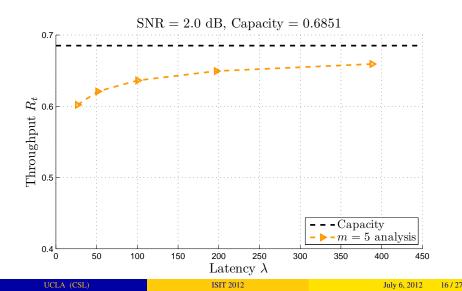
• Throughput

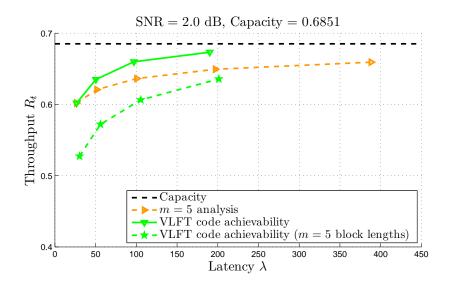
$$R_t = k/\lambda$$


• Select $\{I_1, I_2, \ldots, I_m\}$ to maximize R_t .

RCSP: Latency vs. Throughput for m = 1 (ARQ) Using Optimal Step Size I₁

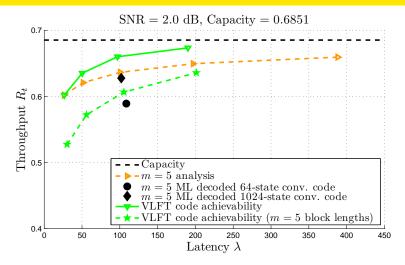
ISIT 2012


RCSP: Latency vs. Throughput for m = 1 **to** m = 6, **Using Optimal Step Sizes** I_i

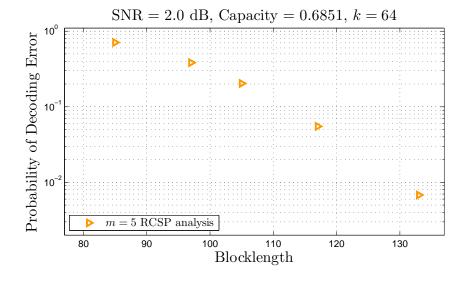

UCLA (CSL)

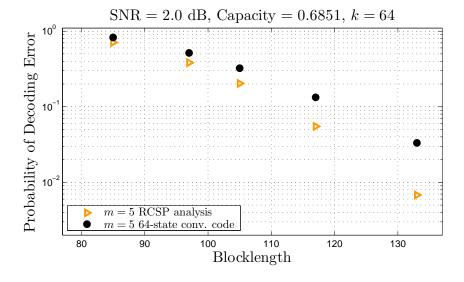
ISIT 2012

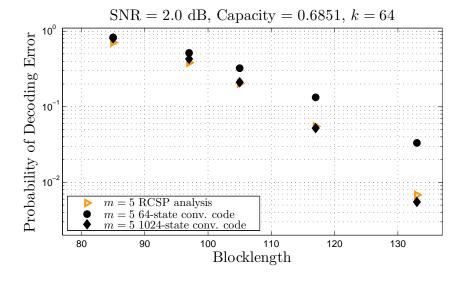
RCSP: Latency vs. Throughput for m = 5, Using Optimal Step Sizes I_i

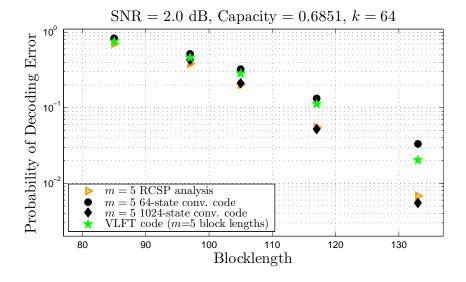

Comparison with [Polyanskiy et al. 2011]

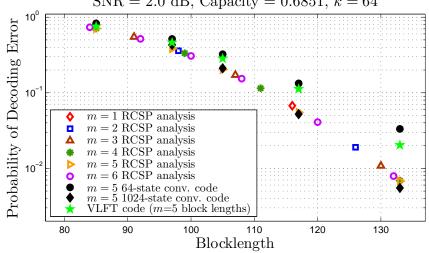
Convolutional Code Simulations for m = 5

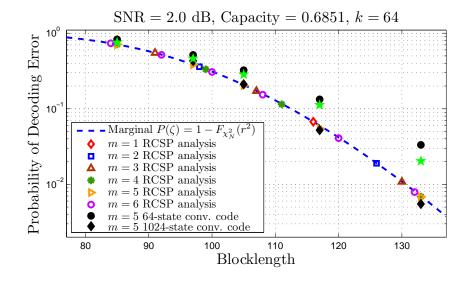

- Mother codes are rate 1/3, 64-state and 1024-state convolutional codes from [Lin and Costello 2004].
- Use transmission lengths $\{I_1^m\}$ identified in RCSP optimization for m = 5.
- High-rate codes obtained by pseudo-random puncturing of mother codes.
- Maximum likelihood (ML) decoding.
 - ML decoding regions completely fill the power constraint sphere.
- Tail-biting implementations used for throughput efficiency.

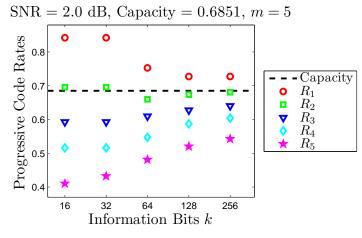

Convolutional Code Achievability, m = 5




• 90% of AWGN capacity in \sim 100 symbols.


UCLA (CSL)





SNR = 2.0 dB, Capacity = 0.6851, k = 64

Marginal Chi-Square: A Design Objective

Optimal Rates

• $R_1 > C$

- Feedback improves achievable rate for finite block lengths.
 - Feedback after every bit is best.
 - When transmissions must be grouped, pick the sizes wisely.
- Find good codes by matching RCSP error trajectories.
- Questions?