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Variable-Length Feedback with Termination

Variable-length feedback with termination (VLFT) codes
[Polyanskiy et al. 2011]:

⇒ Transmitter sees all channel outputs and tells the receiver
when to terminate through a separate control channel.

⇒ Transmission may terminate after each symbol.

⇒ (Rate-compatible) random coding.

⇒ General results with numerical examples for BSC and BEC.
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This Talk

This talk: Still the basic VLFT framework.

⇒ Transmitter sees all channel outputs and tells the receiver
when to terminate through a separate control channel.

⇒ Transmission may only terminate at the end of a “packet”.

⇒ Incremental packet lengths will be optimized.

⇒ Rate-compatible sphere-packing (RCSP) [Chen et al. 2011].

⇒ Rate-compatible tail-biting convolutional code.

⇒ Focused on the AWGN channel.
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Incremental Redundancy Scheme Overview

Tx Rx 

Sphere-packing codebook 
 

Convolutional code 

Bounded-distance decoder 
 

Maximum likelihood decoder 

AWGN 

Noiseless feedback 

Forward channel is AWGN with known SNR, η.
The receiver attempts to decode after each incremental
transmission, based on all received symbols.
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Transmission Scheme Details (1st transmission)

k = log2 M = information bits.

I1 
N1 

1st transmission:
Send I1 , decode with N1 = I1.
R1 = k/N1 = initial code rate.
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Transmission Scheme Details (2nd transmission)

k = log2 M = information bits.

I1 I2 
N1 
N2 
 
 

2nd transmission:
Send I2 , decode with N2 = I1 + I2.
R2 = k/N2 = code rate.
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Transmission Scheme Details (ith transmission)

k = log2 M = information bits.

I1 I2 I3 Im 
N1 
N2 
N3 
Nm 

ith transmission: (i = 2, . . . ,m)
Send Ii , decode with Ni = Ni−1 + Ii.
Ii = incremental step size, Ni = block length at ith
transmission.
Ri = k/Ni = code rate at ith transmission

m = maximum number of transmissions (before repetition).
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Start Over if Failure after m Transmissions

If decoding is unsuccessful after m transmissions, start over by
sending I1 bits, then I2 bits, etc. (similar to ARQ).

This is a practical limitation.

Simplifies analysis.
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Decoding Error Probability for Sphere-Packing

M = 2k 
decoding 
spheres 

power 
constraint sphere 
r2

outer = Ni(1+Ș)  

P[error with block length Ni]

= P(ζi) = P

(
Ni∑
ℓ=1

z2
ℓ > r2

i

)
= 1 − Fχ2

Ni
(r2

i ),

r2
i = Ni(1+η)

22k/Ni
is the sphere-packing radius (squared),

zℓ ∼ N (0, 1) are the noise samples.
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Sphere-Packing: Myth or Reality?

An ideal sphere-packing codebook is mythical.
⇒ Upper bound on packing density ϕ in n dimensions:

ϕ ≤ (n/e) 2−n/2.

. . . but we will see that a convolutional code can achieve
sphere-packing performance.
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Marginal vs. Joint Decoding Error Probability

P[error with block length Ni] = P(ζi) (marginal)

= P

(
Ni∑
ℓ=1

z2
ℓ > r2

i

)
= 1 − Fχ2

Ni
(r2

i ),

P[error after j transmissions] = P(ζ1, ζ2, . . . , ζj) (joint)

= P

(
N1∑
ℓ=1

z2
ℓ > r2

1,

N2∑
ℓ=1

z2
ℓ > r2

2, . . . ,

Nj∑
ℓ=1

z2
ℓ > r2

j

)

=

∫ ∞

r2
1

∫ ∞

r2
2−t1

. . .

∫ ∞

r2
j−1−

∑j−2
i=1 ti

fχ2
I1
(t1) . . . fχ2

Ij−1
(tj−1)×(

1 − Fχ2
Ij

(
r2

j −
j−1∑
i=1

ti

))
dtj−1 . . . dt1.

UCLA (CSL) ISIT 2012 July 6, 2012 11 / 27



Latency and Throughput (for m = 1, the ARQ Case)

λ = latency = expected number of forward channel uses.

λ = I1
(
1 + P(ζ1) + P(ζ1)

2 + P(ζ1)
3 + . . .

)
=

I1

1 − P (ζ1)

=
I1

Fχ2
N1
(r2

1)

Rt = throughput = k/λ.

Select I1 to maximize Rt.

UCLA (CSL) ISIT 2012 July 6, 2012 12 / 27



What About m > 1?

Latency

λ =

I1 +
m∑

i=2
IiP

(
i−1∩
j=1

ζj

)

1 − P

(
m∩

j=1
ζj

)

Throughput
Rt = k/λ

Select {I1, I2, . . . , Im} to maximize Rt.
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RCSP: Latency vs. Throughput for m = 1 (ARQ)
Using Optimal Step Size I1
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RCSP: Latency vs. Throughput for m = 1 to m = 6,
Using Optimal Step Sizes Ii
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RCSP: Latency vs. Throughput for m = 5,
Using Optimal Step Sizes Ii
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Comparison with [Polyanskiy et al. 2011]
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Convolutional Code Simulations for m = 5

Mother codes are rate 1/3, 64-state and 1024-state convolutional
codes from [Lin and Costello 2004].

Use transmission lengths {Im
1 } identified in RCSP optimization for

m = 5.

High-rate codes obtained by pseudo-random puncturing of mother
codes.

Maximum likelihood (ML) decoding.
ML decoding regions completely fill the power constraint
sphere.

Tail-biting implementations used for throughput efficiency.
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Convolutional Code Achievability, m = 5
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Capacity
m = 5 analysis
m = 5 ML decoded 64-state conv. code
m = 5 ML decoded 1024-state conv. code
VLFT code achievability
VLFT code achievability (m = 5 block lengths)

90% of AWGN capacity in ∼100 symbols.
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Decoding Error Trajectory
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m = 5 RCSP analysis
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Decoding Error Trajectory
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m = 5 RCSP analysis
m = 5 64-state conv. code
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Decoding Error Trajectory
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m = 5 RCSP analysis
m = 5 64-state conv. code
m = 5 1024-state conv. code
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Decoding Error Trajectory
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m = 5 RCSP analysis
m = 5 64-state conv. code
m = 5 1024-state conv. code
VLFT code (m=5 block lengths)
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Decoding Error Trajectory
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Marginal Chi-Square: A Design Objective
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Optimal Rates
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Concluding Thoughts

Feedback improves achievable rate for finite block lengths.
Feedback after every bit is best.
When transmissions must be grouped, pick the sizes wisely.

Find good codes by matching RCSP error trajectories.

Questions?
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