A Rate-Compatible Sphere-Packing Analysis of Feedback Coding with Limited Retransmissions

Adam Williamson, Tsung-Yi Chen, and Rick Wesel

UCLA Communication Systems Laboratory arXiv: 1202.1458

July 6, 2012

2/27

- Variable-length feedback with termination (VLFT) codes [Polyanskiy et al. 2011]:
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.

UCLA (CSL) July 6, 2012 2/2

- Variable-length feedback with termination (VLFT) codes [Polyanskiy et al. 2011]:
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - ⇒ Transmission may terminate after each symbol.

UCLA (CSL) July 6, 2012 July 6, 2012 2 / 2

- Variable-length feedback with termination (VLFT) codes [Polyanskiy et al. 2011]:
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - ⇒ Transmission may terminate after each symbol.
 - \Rightarrow (Rate-compatible) random coding.

UCLA (CSL) July 6, 2012 2 / 2

- Variable-length feedback with termination (VLFT) codes [Polyanskiy et al. 2011]:
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - ⇒ Transmission may terminate after each symbol.
 - ⇒ (Rate-compatible) random coding.
 - ⇒ General results with numerical examples for BSC and BEC.

UCLA (CSL) July 6, 2012 2 / 2

- This talk: Still the basic VLFT framework.
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.

UCLA (CSL) July 6, 2012 July 6, 2012 3 / 27

- This talk: Still the basic VLFT framework.
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - ⇒ Transmission may only terminate at the end of a "packet".

- This talk: Still the basic VLFT framework.
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - ⇒ Transmission may only terminate at the end of a "packet".
 - ⇒ Incremental packet lengths will be optimized.

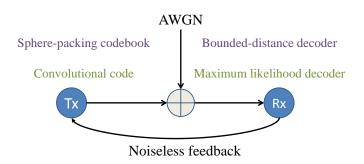
UCLA (CSL) July 6, 2012 July 6, 2012 3 / 2

- This talk: Still the basic VLFT framework.
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - ⇒ Transmission may only terminate at the end of a "packet".
 - ⇒ Incremental packet lengths will be optimized.
 - ⇒ Rate-compatible sphere-packing (RCSP) [Chen et al. 2011].

- This talk: Still the basic VLFT framework.
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - ⇒ Transmission may only terminate at the end of a "packet".
 - ⇒ Incremental packet lengths will be optimized.
 - ⇒ Rate-compatible sphere-packing (RCSP) [Chen et al. 2011].
 - ⇒ Rate-compatible tail-biting convolutional code.

- This talk: Still the basic VLFT framework.
 - ⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - ⇒ Transmission may only terminate at the end of a "packet".
 - ⇒ Incremental packet lengths will be optimized.
 - ⇒ Rate-compatible sphere-packing (RCSP) [Chen et al. 2011].
 - ⇒ Rate-compatible tail-biting convolutional code.
 - ⇒ Focused on the AWGN channel.

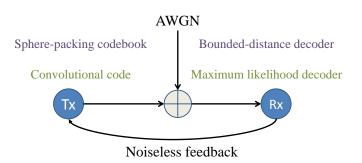
Incremental Redundancy Scheme Overview



• Forward channel is **AWGN** with known SNR, η .

4 / 27

Incremental Redundancy Scheme Overview



- Forward channel is **AWGN** with known SNR, η .
- The receiver attempts to decode after each incremental transmission, based on all received symbols.

Transmission Scheme Details (1st transmission)

• $k = \log_2 M = \text{information bits.}$

$$I_1$$

- 1st transmission:
 - Send I_1 , decode with $N_1 = I_1$.
 - $R_1 = k/N_1$ = initial code rate.

UCLA (CSL) ISIT 2012 July 6, 2012

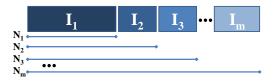
Transmission Scheme Details (2nd transmission)

• $k = \log_2 M = \text{information bits.}$

- 2nd transmission:
 - Send I_2 , decode with $N_2 = I_1 + I_2$.
 - $R_2 = k/N_2 = \text{code rate.}$

Transmission Scheme Details (ith transmission)

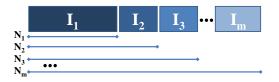
• $k = \log_2 M = \text{information bits.}$



- *i*th transmission: (i = 2, ..., m)
 - Send I_i , decode with $N_i = N_{i-1} + I_i$.
 - I_i = incremental step size, N_i = block length at ith transmission.
 - $R_i = k/N_i = \text{code rate at } i \text{th transmission}$

Transmission Scheme Details (ith transmission)

• $k = \log_2 M = \text{information bits.}$



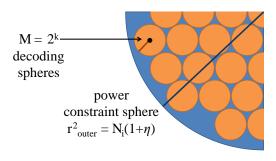
- *i*th transmission: (i = 2, ..., m)
 - Send I_i , decode with $N_i = N_{i-1} + I_i$.
 - I_i = incremental step size, N_i = block length at ith transmission.
 - $R_i = k/N_i = \text{code rate at } i\text{th transmission}$
- m = maximum number of transmissions (before repetition).

Start Over if Failure after *m* **Transmissions**

- If decoding is unsuccessful after m transmissions, start over by sending I_1 bits, then I_2 bits, etc. (similar to ARQ).
- This is a practical limitation.
- Simplifies analysis.

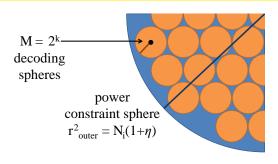
UCLA (CSL) July 6, 2012 8 / 2

Decoding Error Probability for Sphere-Packing



9/27

Decoding Error Probability for Sphere-Packing



• P[error with block length N_i]

$$= \mathrm{P}(\zeta_i) = \mathrm{P}\left(\sum_{\ell=1}^{N_i} z_\ell^2 > r_i^2\right) = 1 - F_{\chi_{N_i}^2}(r_i^2),$$

- $r_i^2 = \frac{N_i(1+\eta)}{2^{2k/N_i}}$ is the sphere-packing radius (squared),
- $z_{\ell} \sim \tilde{\mathcal{N}}(0,1)$ are the noise samples.

UCLA (CSL) July 6, 2012 9 / 27

Sphere-Packing: Myth or Reality?

- An ideal sphere-packing codebook is mythical.
 - \Rightarrow Upper bound on packing density ϕ in n dimensions:

$$\phi \leq (n/e) 2^{-n/2}$$
.

UCLA (CSL) ISIT 2012 July 6, 2012 10 / 27

Sphere-Packing: Myth or Reality?

- An ideal sphere-packing codebook is mythical.
 - \Rightarrow Upper bound on packing density ϕ in n dimensions: $\phi \leq (n/e) 2^{-n/2}$.
- ... but we will see that a convolutional code can achieve sphere-packing performance.

Marginal vs. Joint Decoding Error Probability

• P[error with block length N_i] = P(ζ_i) (marginal)

$$= P\left(\sum_{\ell=1}^{N_i} z_{\ell}^2 > r_i^2\right) = 1 - F_{\chi_{N_i}^2}(r_i^2),$$

Marginal vs. Joint Decoding Error Probability

• P[error with block length N_i] = P(ζ_i) (marginal)

$$= P\left(\sum_{\ell=1}^{N_i} z_\ell^2 > r_i^2\right) = 1 - F_{\chi_{N_i}^2}(r_i^2),$$

• P[error after j transmissions] = $P(\zeta_1, \zeta_2, ..., \zeta_j)$ (joint)

$$= \mathbf{P}\left(\sum_{\ell=1}^{N_1} z_{\ell}^2 > r_1^2, \sum_{\ell=1}^{N_2} z_{\ell}^2 > r_2^2, \dots, \sum_{\ell=1}^{N_j} z_{\ell}^2 > r_j^2\right)$$

$$= \int_{r_1^2}^{\infty} \int_{r_2^2 - t_1}^{\infty} \dots \int_{r_{j-1}^2 - \sum_{i=1}^{j-2} t_i}^{\infty} f_{\chi_{I_1}^2}(t_1) \dots f_{\chi_{I_{j-1}}^2}(t_{j-1}) \times \left(1 - F_{\chi_{I_j}^2}\left(r_j^2 - \sum_{i=1}^{j-1} t_i\right)\right) dt_{j-1} \dots dt_1.$$

UCLA (CSL) July 6, 2012 11 / 27

• $\lambda =$ latency = expected number of forward channel uses.

UCLA (CSL) July 6, 2012 12 / 27

• $\lambda =$ latency = expected number of forward channel uses.

$$\lambda = I_1 \left(1 + P(\zeta_1) + P(\zeta_1)^2 + P(\zeta_1)^3 + \dots \right)$$

$$= \frac{I_1}{1 - P(\zeta_1)}$$

$$= \frac{I_1}{F_{\chi_{N_1}^2}(r_1^2)}$$

UCLA (CSL) July 6, 2012 12 / 2

• $\lambda =$ latency = expected number of forward channel uses.

$$\lambda = I_1 \left(1 + P(\zeta_1) + P(\zeta_1)^2 + P(\zeta_1)^3 + \dots \right)$$

$$= \frac{I_1}{1 - P(\zeta_1)}$$

$$= \frac{I_1}{F_{\chi_{N_1}^2}(r_1^2)}$$

- $R_t =$ throughput = k/λ .
- Select I_1 to maximize R_t .

UCLA (CSL) July 6, 2012 12 /

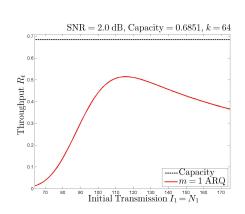
• $\lambda =$ latency = expected number of forward channel uses.

$$\lambda = I_{1} \left(1 + P(\zeta_{1}) + P(\zeta_{1})^{2} + P(\zeta_{1})^{3} + \dots \right)$$

$$= \frac{I_{1}}{1 - P(\zeta_{1})}$$

$$= \frac{I_{1}}{F_{\chi_{N_{1}}^{2}}(r_{1}^{2})}$$
SNR = 2.0 c

- $R_t =$ throughput = k/λ .
- Select I_1 to maximize R_t .



◆□▶◆□▶◆■▶◆■▶ ■ 900

What About m > 1?

Latency

$$\lambda = \frac{I_1 + \sum_{i=2}^{m} I_i P\left(\bigcap_{j=1}^{i-1} \zeta_j\right)}{1 - P\left(\bigcap_{j=1}^{m} \zeta_j\right)}$$

What About m > 1?

Latency

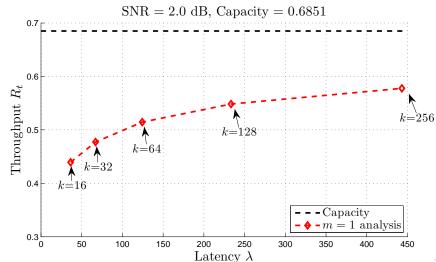
$$\lambda = \frac{I_1 + \sum_{i=2}^{m} I_i P\left(\bigcap_{j=1}^{i-1} \zeta_j\right)}{1 - P\left(\bigcap_{j=1}^{m} \zeta_j\right)}$$

Throughput

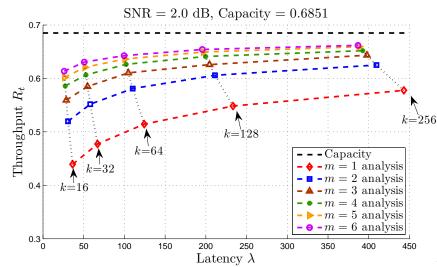
$$R_t = k/\lambda$$

• Select $\{I_1, I_2, \ldots, I_m\}$ to maximize R_t .

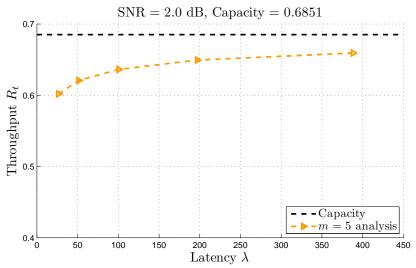
RCSP: Latency vs. Throughput for m = 1 (ARQ) Using Optimal Step Size I_1



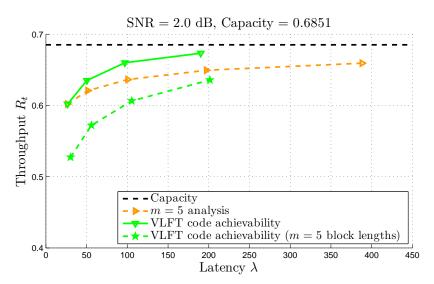
RCSP: Latency vs. Throughput for m = 1 to m = 6, Using Optimal Step Sizes I_i



RCSP: Latency vs. Throughput for m = 5, Using Optimal Step Sizes I_i



Comparison with [Polyanskiy et al. 2011]



Convolutional Code Simulations for m = 5

• Mother codes are rate 1/3, 64-state and 1024-state convolutional codes from [Lin and Costello 2004].

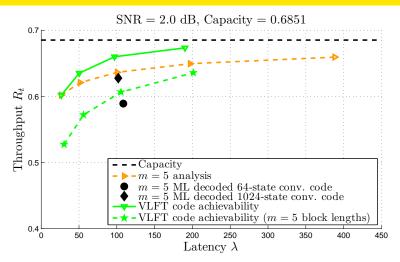
Convolutional Code Simulations for m = 5

- Mother codes are rate 1/3, 64-state and 1024-state convolutional codes from [Lin and Costello 2004].
- Use transmission lengths $\{I_1^m\}$ identified in RCSP optimization for m = 5.
- High-rate codes obtained by pseudo-random puncturing of mother codes.

Convolutional Code Simulations for m = 5

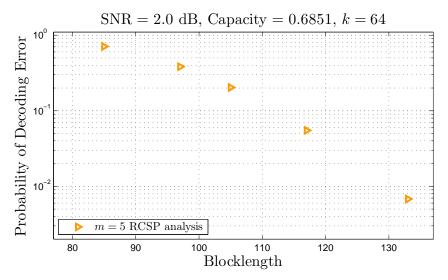
- Mother codes are rate 1/3, 64-state and 1024-state convolutional codes from [Lin and Costello 2004].
- Use transmission lengths $\{I_1^m\}$ identified in RCSP optimization for m = 5.
- High-rate codes obtained by pseudo-random puncturing of mother codes.
- Maximum likelihood (ML) decoding.
 - ML decoding regions completely fill the power constraint sphere.
- Tail-biting implementations used for throughput efficiency.

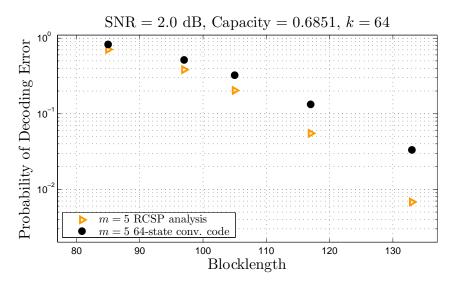
Convolutional Code Achievability, m = 5

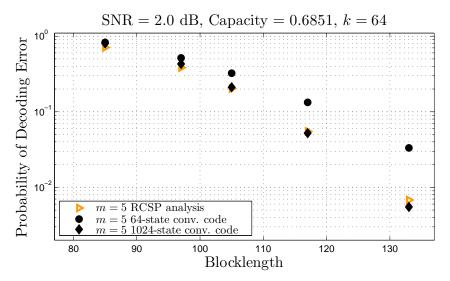


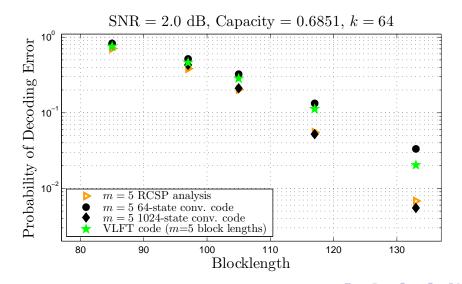
• 90% of AWGN capacity in \sim 100 symbols.

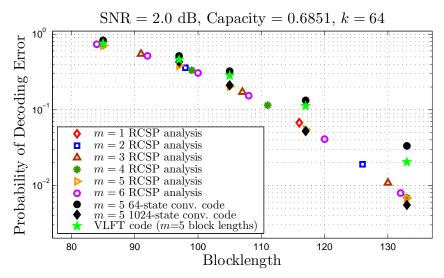
UCLA (CSL) ISIT 2012 July 6, 2012 19 / 27





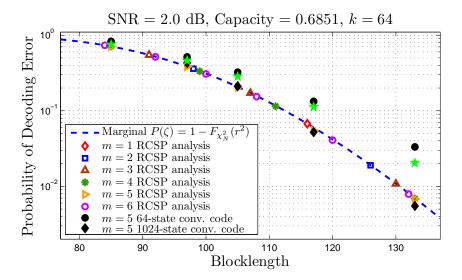




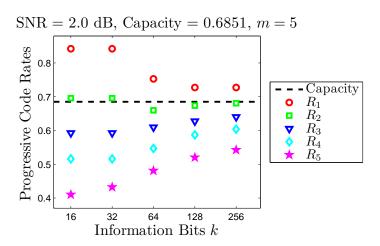


July 6, 2012

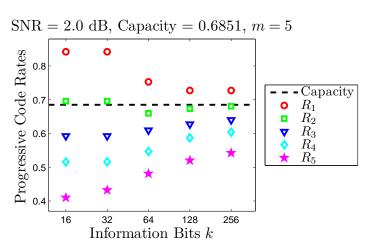
Marginal Chi-Square: A Design Objective



Optimal Rates



Optimal Rates



• $R_1 > C$

ロト 4回 ト 4 重 ト 4 重 ト 9 年 の 9 (で)

26 / 27

• Feedback improves achievable rate for finite block lengths.

- Feedback improves achievable rate for finite block lengths.
 - Feedback after every bit is best.

UCLA (CSL) July 6, 2012 27 /

- Feedback improves achievable rate for finite block lengths.
 - Feedback after every bit is best.
 - When transmissions must be grouped, pick the sizes wisely.

- Feedback improves achievable rate for finite block lengths.
 - Feedback after every bit is best.
 - When transmissions must be grouped, pick the sizes wisely.
- Find good codes by matching RCSP error trajectories.

- Feedback improves achievable rate for finite block lengths.
 - Feedback after every bit is best.
 - When transmissions must be grouped, pick the sizes wisely.
- Find good codes by matching RCSP error trajectories.
- Questions?