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This dissertation investigates communication over the binary symmetric channel with noise-

less feedback of the received symbols from the decoder to the encoder. The binary symmetric

channel receives as input a binary symbol, and produces as output also a binary symbol, that

may be different to the input symbol. The channel is symmetric in the sense that the prob-

ability that the output symbol is not equal to the input symbol is the same for both input

symbols. The general communication problem consists of reliably relaying a message from

a source (where it is generated) to a destination (where it is needed) while using the least

possible system resources. Reliability in this case is defined as a small error probability–the

probability that the message at the destination differs from that at the source. System re-

sources include forward channel symbol transmissions, encoder and decoder complexity, and

possibly other resources that may be associated with a cost, like the number of times the

feedback channel is accessed for a feedback transmission. The system operates as follows:

the source delivers its message to an encoder, that computes channel input symbols; the

channel produces output symbols that are noisy versions of the input symbols; a decoder
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uses channel output symbols to compute an estimate of the message at the encoder; and

a noiseless feedback channel delivers the output symbols to the encoder, which affords the

encoder all the information available to the decoder. The objectives of this dissertations

are (1) to design encoding methods that can be implemented in simulations; (2) explore

simplifications that make the implementations more efficient; (3) analyze the expected rate

that can be achieved with all the proposed encoding methods, including the simplifications;

(4) analyze converse bounds, the lowest rates that cannot be achieved with the system while

satisfying an error probability constraint; and (5) explore communication with additional

constraints, like source causality constraints and feedback sparsity constraints.

Chapter 1 lays out the background and motivation of the research problems studied in

this dissertation, and summarizes previous results and about related problems. Then, Ch. 1

briefly summarizes the contents of each Chapter.

Chapter 2 provides efficient algorithms and a simulation framework that implements

previously proposed encoders as well as new ones. Simulation results validate previous

achievability bounds and motivate tighter achievability bounds. Chapter 2 also proposes a

simpler encoding rule, that greatly lowers the runtime and memory complexity, and exhibits

a rate performance indistinguishable from the encoders with the highest existing achievability

bounds. The performance of the new encoder is further analyzed in Ch. 3.

Chapter 3 demonstrates a new analysis of the expected blocklength needed to transmit a

fixed length information sequence with bounded error probability. The new analysis relaxes

the sufficient encoding constraints that guarantee an expected rate performance above the

highest achievability bounds previously developed for the model. To tighten an upper bound

on expected time, analyzed for the first phase of a two-phase process, this chapter proposes

an analysis of a “surrogate process,” for which a tighter bound can be shown. The “surrogate

process” is carefully constructed from the original process, so that its decoding time upper

bounds that of the original process. This property guarantees that the tighter bound on the

“surrogate process” applies to the original, and results in a significantly higher achievability
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bound. The bounds are tightened further by jointly optimizing both phases of the two-

phase analysis used to obtain the original bounds. A proof that the simple encoder of Ch. 2

satisfies the relaxed constraints is provided. Chapter 3 then proposes a converse bound, an

upper bound on the highest expected rate that is achievable by an encoder that enforces the

stopping rule used by the proposed encoders.

Chapter 4 extends the study of feedback codes over the binary symmetric channel to

the “causal encoding” setting, where the source information sequence becomes progressively

available during transmission instead of the traditional setting where the entire source se-

quence is available before transmission begins. In “causal encoding” the encoder seeks to

minimize the average decoding delay under the same frame error rate constraint considered

in Ch. 2 and Ch. 3. The sub-block combining algorithm is proposed as a “causal encoder,”

that starts the transmission with a segment of the information sequence, and adds new seg-

ments as they become available. The chapter identifies lower bounds on expected decoding

times imposed by the channel and the source, as well as the region where a causal encoder

may outperform existing non-causal encoders. Simulation results are provided to show that

the sub-block combining algorithm outperforms, in average decoding time, non-causal en-

coders, in their original form, and with natural modifications that make them better “causal

encoders” under certain conditions. The performance of the sub-block combining algorithm

is further improved using a method that analyzes optimized block sizes for the specific op-

erating point, set by the source and channel symbol rates.

Chapter 5 studies the “sparse feedback” setting where feedback symbols are only available

to the transmitter at sparse time instances, instead of being available before the transmission

of each symbol. A new encoding rule is introduced, that also satisfies the relaxed constraints

proposed in Ch. 3. Then the “look-ahead algorithm” is proposed, to satisfy the encoding

constraints for a few transmissions in advance, without additional feedback. Simulation

results show that the “look-ahead algorithm” admits average feedback delay that increases

with message length, from slightly above one transmission at a message length of about ten
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bites, to about five to six when the message size reaches 80 bits. The sub-block combining

algorithm of Ch. 4 is modified to operate on several blocks simultaneously and used as a

sparse feedback encoder. This algorithm exhibits much lower complexity, which makes it

suitable for message sizes of up to a few hundred bits, that are not possible with the look-

ahead algorithm.

Chapter 6 provides the conclusions of this dissertation, and highlights future research

directions.
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CHAPTER 1

Introduction

This dissertation studies feedback communication over the binary symmetric channel (BSC)

with noiseless feedback. The BSC is a simple model for communication that reveals the

essential role that feedback can play at short blocklength. Feedback communication over the

BSC has been widely studied over the years. Shannon [Sha48] showed that feedback does

not increased the capacity of discrete memoryless channels, including the BSC. However,

Shannon’s capacity is an asymptotic limit as the blocklength goes to infinity. For finite

blocklengths, and especially for short blocklengths, feedback has been shown to increase the

decay rate of the error probability, e.g. by Burnashev [Bur76], when variable length codes

are used. Many transmission methods have been developed for feedback communication over

the BSC. An early well-known scheme was introduced by Horstein [Hor63], and subsequently

generalized as “posterior matching” by [SF11]. Naghshvar et al. [NJW15] introduced a very

efficient posterior matching scheme, which is studied in detail in this dissertation. Achiev-

ability and converse bounds have also been developed for the BSC with feedback limited to

“stop feedback,” like Polyanskiy’s VLF [PPV11] , and with full noiseless feedback by Yang

et al. [YPA21].

The system model consists of an information source, an encoder, a forward noisy chan-

nel, a noiseless feedback channel and a decoder, see Fig. 1.1. The source generates a binary

sequence that is received by the encoder. The encoder generates binary transmitter sym-

bols using the source information sequence and the feedback from the noiseless feedback

channel. The forward channel, the BSC, produces binary channel symbols according to the

1
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Figure 1.1: System diagram for communication over the BSC with a noiseless feedback
channel. The information source generates a binary information sequence Θ; the encoder
receives the information sequence and encodes, at each time t, a binary channel symbols
Xt that is transmitted over the binary symmetric channel. the binary symmetric channel
(BSC), with crossover probability p, produces binary output symbols Yt, t = 1, 2, . . . , that
are noisy versions of the input symbols Xt, t = 1, 2, . . . , according to the channel transition
function: Pr(Yt ̸= Xt) = p. The channel output symbols Yt are sent back to the encoder
through the noiseless feedback channel, and may be used by the encoder to encode the next
symbol Xt+1. The decoder receives the channel symbols and, at the end of the transmissions,
produces an estimate Θ̂ of the source information sequence Θ.

channel transition function. The channel transition function is a random function that pro-

duces a symbol different from the transmitted symbol according to the channel’s crossover

probability. The decoder receives the channel symbols and, at the end of the transmission,

produces an estimate of the transmitted message, the source information sequence. The

feedback channel delivers the channel’s output symbols to the encoder, which allows the

encoder access to the same information available to the decoder.

The BSC is a special case of the broader class of discrete memoryless channels. These

channels have discrete (countable) input and output alphabets, and have a channel transition

function that governs the probability that an output symbol is received given the symbol

that is transmitted. In memoryless channels, the channel has no “state.” The transition

function is fixed. The output symbol depends only on the input symbol and the transition

function, not on the time, and not on previous channel inputs or outputs. There are different

symmetries for discrete memoryless channels. For the BSC the symmetry consists on equal

probability that either input symbol is transformed into the other symbol by the channel.

The noiseless feedback channel affords the encoder all the information available to the
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decoder, in addition to the information sequence. The highest achievable performance of

this model upper bounds the performance of the same BSC with no feedback or any other

limited feedback, like stop feedback [PPV10] for given frame error rate constraints. This

becomes clear by noting that the noiseless feedback model can be downgraded to any other

feedback model by restricting, or ignoring, the feedback used to encode each symbol. For

instance, the encoder could make a “copy” of the decoder, that only signals the end of the

process, thus transforming full and noiseless feedback into stop feedback, also noiseless.

Horstein [Hor63] developed a well known variable length schemes for the BSC with noise-

less feedback. In Horstein’s scheme, every possible message is represented as a sub-interval

in a unit interval (0, 1). The transmitter divides the unit interval into two equal halves and

transmits 0 if the interval containing the transmitted message is in the first half, otherwise

it transmits a 1. Let the channel’s crossover probability be p and let q = 1 − p. Then, the

received symbol is used to adjust the sizes of the sub-intervals on each half by 2q and 2p de-

pending on what symbol was received. Both encoder and decoder do this, since the encoder

gets access to the received symbol via the noiseless feedback channel. Horstein’s scheme

terminates when a sub-interval grows sufficiently large, according to a pre-selected decoding

threshold. Horstein’s sequential transmission scheme was presumed to achieve the capacity

of the BSC. Shayevitz and Feder [SF11] analyzed a class of encoding schemes, which they

call “posterior matching” (PM) schemes, that achieve the capacity of discrete memoryless

channels . Shayevitz and Feder defined a “posterior matching” scheme as one that satisfies

the “posterior matching principle” described as follows:

1. The channel input symbol Xt+1, at time t+ 1 is a fixed function of a random variable

U , that is independent of the received symbol history Y t ≜ {Y1, Y2, . . . , Yt};

2. The transmitted message, Θ, can be uniquely recovered from (U, Y t) a.s.

Shayevitz and Feder [SF11] then proved that Horstein’s scheme achieves the capacity of the

BSC, by showing that it satisfies the “posterior matching principle” and thus is a “posterior
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matching” scheme. Gorantla and Coleman [GC10] used Lyapunov functions for an alternative

proof that PM schemes achieve the channel capacity. A notable fixed length “Posterior

Macching” scheme for discrete memoryless channels was introduced by Li and El-Gamal

[LG15]. Their scheme used a random cyclic shift that was later used by Shayevitz and

Feder for a simpler proof that Horstein’s scheme achieves the capacity of the BSC [SF16].

Naghshvar et al. [NJW15] proposed a variable length, single phase “posterior matching”

scheme for discrete DMC channels with feedback that exhibits Burnashev’s optimal error

exponent, and used a sub-martingale analysis to prove that it achieves the channel capacity.

Polyanskyi [PPV10] developed a rate lower bound as a function of blocklength for variable

length, stop feedback systems. In a stop feedback system, after every transmitted symbol the

receiver sends the transmitter a true/false symbol that signals the end of the transmission, or

equivalently, there is a single feedback symbol that is sent by the receiver when it determines

the end of the transmission. Bae and Anastasopoulos [BA10] proposed a “posterior matching”

scheme that achieves the capacity of finite state channels with feedback. Since then, other

“posterior matching” algorithms have been developed, see [KPV17,KMM13, SPK18,Tru14,

Ana12]. Other variable length schemes that attain Burnashev’s optimal error exponent have

also been developed, and some can be found in [Sch71,SP73,TT02,TT06,NWJ12].

Chapter 2 provides efficient posterior-matching algorithms and corresponding simula-

tion results for transmission over the BSC with noiseless feedback under a frame error rate

constraint. The simulation results validate recent achievability bounds, such as the SED

bound by Yang et al. [YPA21], developed for Naghshvar’s encoder [NJW15]. However, the

simulation results also reveal a wide gap between actual performance and previous achiev-

ability bounds, which motivates the development of tighter bounds. The simulation results

include a lower complexity algorithm that is facilitated by a relaxation of constraints that is

justified in Chapter 3.

Chapter 3 explores a new analysis showing that the bounds developed by Yang et al.

for the small-enough distance (SED) posterior-matching encoder developed by Naghshvar
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et al. [NJW15] can be achieved with a simpler encoder facilitated by relaxing the SED

constraint. The relaxed constraint does not admit the submartingale analysis of Yang et

al [YPA21], but the new analysis replacing that submartingale analysis allows for even

tighter achievability bounds. The new analysis also incorporates and generalizes the use

of a surrogate process [YPA21], synthesized from the original process, to further tighten

the achievability bounds. The surrogate process avoids the paradox where a performance

improvement (an acceleration of convergence at the end of the transmission) loosens the

achievability bound.

Chapter 4 studies causal encoding, which enforces on the encoder an information source

availability constraint where information arrives at the encoder throughout the encoding

process. The encoder does not have full knowledge of the message at the start of the trans-

mission, but rather can only use information causally as the transmission progresses. The

goal of causal encoding is to minimize the expected decoding time starting when the source

delivers the first message bit to the encoder. Instead of waiting for the arrival of the entire

information sequence before starting the transmission, the causal encoder must make efficient

use of every opportunity to transmit a symbol, starting when the first information symbol

arrives. It is also desired to maintain a manageable encoder complexity to make the imple-

mentation feasible. For a causal encoder, this dissertation proposes a sub-block combining

algorithm that begins transmitting when a small message segment is available and combines

new segments as they arrive. This dissertation identifies the operating regions where a causal

encoder can outperform existing non-causal encoders. Analytical results include quantifying

the decoding latencies achievable by causal and non-causal decoders and the gap between

these two approaches. The segment sizes, or sub-block sizes, are optimized to reduce the

decoding latency. Simulation results demonstrate that the sub-block combining algorithm

significantly lowers the average decoding time over non-causal encoders, and performs close

to the bounds inherent to the system over a wide portion of the region.

Chapter 5 proposes a sparsity constraint on feedback communication over the BSC.
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The constraint limits the number of times the feedback channel is accessed by the receiver,

not the number of symbols that are transmitted on each access. All the received symbols

eventually become available to the encoder, but they do not all arrive immediately; a few

forward transmissions may occur before a received symbols is seen by the encoder. This

dissertation explores how sparse the feedback can be while still guaranteeing performance

above the rate bounds developed for sequential, non-sparse feedback communication. This

dissertation introduces both a “look-ahead algorithm” and a “sub-block combining algorithm”

to accomplish communication with sparse feedback.

The “look-ahead algorithm,” is a sparse encoder that seeks to encode several consecutive

“look-ahead” symbols without additional feedback by enforcing the same constraint developed

for the sequential, non-sparse case. The number of look-ahead transmissions varies and is

computed after each feedback transmission using only the feedback symbols that are shared

by encoder and decoder. Simulation results show that the average number of “look-ahead”

transmissions increases with message size, from slightly above one, for a 10-bit message,

up to about five for an 80-bit message, for channels with capacity between 0.50 and 0.75.

The “look-ahead algorithm” has significantly higher complexity than the other algorithms

proposed in this dissertation.

For larger message sizes, as an alternative to the “look-ahead algorithm,” the “sub-block

combining algorithm” of chapter 4 can also serve as a sparse feedback encoder. In fact, the

sparse version of the “sub-block combining algorithm” exhibits much lower complexity than

the ”look-ahead algorithm.” For a given message size, the ”look-ahead algorithm” achieves

superior sparsity. However, the performance deficit of the “sub-block combining algorithm”

decreases as the message sizes increases. The significantly lower complexity allows the “sub-

block combining algorithm” to provide a practically feasible solution for much larger message

sizes and for lower capacity channels than possible with the “look-ahead algorithm.”

Finally, Chapter 6 summarizes the dissertation results and conclusions, and points to

possible future research direction on feedback communication and sparse feedback models.
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CHAPTER 2

Algorithms, Implementation and Simulations

This chapter considers algorithms that implement sequential communication over the binary

symmetric channel with noiseless feedback. The implementation framework presented here

is based on the posterior patching [SF11] encoding algorithm proposed by Naghshvar et

al. [NJW15], with their original encoding rule, as well as other rules. An implementation of

this algorithm is a valuable tool that serves to validate theoretical results with simulation

results, for the encoding methods that are compatible with the algorithm. Specifically, vali-

dating the achievability bounds proposed by Yang et al. [YPA21] was a driving motivation

for the implementation of an efficient simulation framework. However, the algorithm by

Naghshvar et al. requires that the encoder and decoder maintain and update the posterior

probabilities of each candidate message in the entire message space, after every transmission.

A straightforward implementation that tracks the state of each candidate message individ-

ually is prohibitively complex, since the number of messages grows exponentially with the

message length. This dissertation provides an implementation framework that greatly sim-

plifies the implementation of the binary version of Naghshvar’s algorithm. This framework

exploits key properties of the system to reduce the complexity of each transmission from

exponential to linear, respect to the block size. The simulation results that have been ob-

tained using this framework showcase how tight, or loose, analytical achievability bounds

are respect to the encoding methods that the algorithms implement. The wide gap between

previous performance bounds and the simulation results motivate the new analysis and

tighter analytical bounds that are provided here and in previous works, especially [YPA21]

and [AGW23]. This dissertation proposes new encoding rules for Nahshvar’s transmission
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Figure 2.1: System model for the implementation of sequential communication over the BSC
with a noiseless feedback channel. The information source generates a K-bit message Θ; the
encoder receives the message Θ and encodes, at each time t, a binary symbols Xt that is
transmitted over the forward channel. The forward channel is the binary symmetric channel
(BSC), that produces binary output symbols Yt, t = 1, 2, . . . , which are. Each symbol Yt is
a noisy versions of Xt, according to the channel transition function: Pr(Yt ̸= Xt) = p, where
p is the channel’s crossover probability. Each output symbol Yt is sent back to the encoder
through the noiseless feedback channel, and may be used to encode the next symbol Xt+1.
At the end of the transmission, the decoder produces an estimate Θ̂ the message Θ, from
received symbols.

scheme that greatly reduce the runtime and memory complexity and allow to obtain simula-

tion results over the entire region of interest, where variable length feedback codes present an

advantage over fixed length feedback codes, or fixed length forward error correction codes.

In chapter 3, this dissertation proves that the new encoding rules satisfy the constraints

needed to achieve the same achievability bounds, developed by Yang et al. [YPA21], for the

more complex SED encoder of Naghshvar et al. [NJW15].

The system consists of an information source, an encoder, a noisy forward channel, a

noiseless feedback channel, and a decoder, see Fig. 2.1. The algorithms proposed in this

chapter implement sequential transmission. The transmission happens at discrete times

index by t = 1, 2, . . . . In sequential transmission the encoder sends a binary symbol Xt ∈

{0, 1} to the decoder over the forward BSC channel, and the received symbol Yt ∈ {0, 1}

is sent back to the encoder over the noiseless feedback channel before the next symbol is

encoded. Thus, the encoder has access to every symbol received by the decoder, which it

can use to encode the next symbol. In this chapter the information sequence, or message,

from the source is assumed to be available to the encoder, in its entirety, before the start of
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the transmission.

The problem addressed by the algorithms consists of communicating a K-bit information

sequence Θ, from the encoder to the decoder. The message Θ is provided from an infor-

mation source, and is assumed to be a uniform random variable, that is Θ ∼ U(Ω), where

Ω = {0, 1}K . The encoder computes each next transmitted symbol Xt+1 using the source

information sequence Θ, and the feedback sequence Y t = Y1, Y2, . . . , Yt. The process termi-

nates at the earliest time t = τ , when the decoder determines an estimate Θ̂ of Θ, such that

the error probability Pr(Θ̂ ̸= Θ) ≤ ϵ. Where ϵ is a small threshold provided to the decoder.

That is:

τ ≜ min
t∈N
{∃i ∈ Ω : ρi(y

t) ≥ 1− ϵ} (2.1)

Since the encoder possesses all the information available to the decoder, it can also determine

when the decoder stops the process and produces the estimate Θ̂. At the core of the problem

is the encoding rule used by the encoder to compute each symbol Xt, to minimize the

expected decoding time E[τ ]. The purpose of the algorithms is to efficiently implement the

provided encoding rules, in order to obtain simulation results and validate the achievability

bounds developed for those encoding rules.

The communication schemes in this dissertation are base on the single phase “posterior

matching” scheme proposed by Naghshvar et al. [NJW15]. A summary of the binary version

of the algorithms follows. Before each transmission, both the transmitter and the receiver

partition the message set Ω = {0, 1}K into two sets, S0 and S1. The partition is based on

the received symbols Y t according to a specified deterministic algorithm known to both the

transmitter and receiver. Then, the transmitter encodes Xt = 0 if θ ∈ S0 and Xt = 1 if

θ ∈ S1, i.e.

Xt = enc(θ, Y t) = 1i∈S1 (2.2)
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Let the posterior probabilities ρi(y
t) of each candidate message i ∈ Ω be defined by:

ρi(y
t) ≜ P (θ = i | Y t = yt), ∀i ∈ {0, 1}K . (2.3)

After receiving the next symbol Yt+1, the receiver computes the posteriors ρi(y
t+1) for each

message i ∈ {0, 1}K , via the equation:

ρi(y
t+1) = Pr(θ = i | Y t+1 = yt+1) =

Pr(θ = i, Yt+1 = yt+1 | Y t = yt)

Pr(Yt+1 = yt+1 | Y t = yt)
. (2.4)

Using the chain rule, the probability Pr(θ = i, Yt+1 = yt+1 | Y t = yt) in the numerator is

factored into Pr(Yt+1 = yt+1 | Y t = yt, θ = i) and Pr(θ = i | Y t = yt). Since {Y t = yt} fully

determines the partitions, the first probability is q if i ∈ Syt+1 , the set indexed by the received

bit, and p if i /∈ Syt+1 , when i is in the other set The second factor Pr(θ = i | Y t = yt) is

just ρi(y
t). The probability in the denominator is the marginal of the probability in the

numerator, and is obtained by adding the probabilities Pr(Yt+1 = yt+1 | Y t = yt, θ = j) for

each j ∈ Ω as follows:

ρi(y
t+1) =

Pr(Yt+1 = yt+1 | θ = i)ρi(y
t)∑

j∈Ω Pr(Yt+1 = yt+1 | Y t = yt, θ = j)ρj(yt)
(2.5)

= ρi(y
t)

q1i∈Syt+1
+ p1i∈S1⊕yt+1

q
∑

j∈Syt+1
ρj(yt) + p

∑
j∈Ω\Syt+1

ρj(yt)
. (2.6)

Note that Pr(Yt+1 = yt+1 | Y t = yt, θ = j) is the same for all j ∈ S0 and for all j ∈ S1. It

suffices to compute P0 ≜
∑

j∈S0
ρj(y

t), P1 ≜
∑

j∈S1
ρj(y

t) once. Then, the bottom term is

given by Pr(Yt+1 = yt+1 | Y t = yt) = qP0 + pP1 if Yt+1 = 0, and by Pr(Yt+1 = yt+1 | Y t =

yt) = pP0 + qP1 if Yt+1 = 1. The new posteriors ρi(yt+1) can be computed from the previous
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posteriors ρi(y
t) via the following update:

Yt+1 = 0 =⇒


ρi(y

t+1) = ρi(y
t) q

qP0+pP1
, ∀i ∈ S0

ρi(y
t+1) = ρi(y

t) p
qP0+pP1

, ∀i ∈ S1

(2.7)

Yt+1 = 1 =⇒


ρi(y

t+1) = ρi(y
t) p

qP1+pP0
, ∀i ∈ S0

ρi(y
t+1) = ρi(y

t) q
qP1+pP0

, ∀i ∈ S1

(2.8)

The transmitter computes the same posteriors, as it has access to the received symbol Yt+1

via the noiseless feedback channel, which allows both transmitter and receiver to use the

same deterministic partitioning algorithm. The process repeats until the first time τ that a

single message i attains a posterior ρi(y
τ ) ≥ 1 − ϵ. The receiver chooses this message i as

the estimate θ̂. Since θ is uniformly sampled, every possible message j ∈ {0, 1}K has the

same prior: Pr(θ = j) = 2−K .

Naghshvar et al. proposed two methods to construct the partitions S0 and S1. The

simplest one, which was later described as the “small enough difference” (SED) rule by

[YPA21], consists of an algorithm that terminates when the SED encoding rule is satisfied:

SED rule: 0 ≤
∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t) < min

i∈S0

ρi(y
t) . (2.9)

The algorithm starts with an enumeration {1, . . . , 2K} of all 2K candidate messages and their

posteriors [ρ1(y
t), . . . , ρ2K (y

t)]. All messages are initially in S0, and are moved to S1 one by

one, from the smallest to the largest posterior. The partitioning process ends at any point

where the SED rule (2.9) is met If the accumulated probability in S0 falls below 1
2
, then the

labels of S0 and S1 are swapped, and the process resumes.

The worst case scenario complexity of this algorithm is of order O(M2), where M = 2K is

the number of posteriors. The M is squared because part of the process repeats after every

swap, and in the worst case scenario the number of swaps is proportional to M . However, a
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likely scenario is that the process ends after very few swaps, in which case the complexity is

of order O(M) = O(2K).

The second method by which Naghshvar et al. proposed to construct S0 and S1 consists

of an exhaustive search over all possible partitions, i.e., the power set 2Ω, and use the

extrinsic Jensen-Shannon divergence (EJS) metric to determine the optimal partition. This

partitioning method would at least exhibit the same performance achieved by the SED rule,

since the exhaustive search includes every possible partitioning, specifically, it includes that

constructed with the previous algorithm.

2.1 Organization

The rest of the chapter proceeds as follows: Sec. 2.2 introduces the SEAD encoding constraint

that relaxes the SED rule (2.9) criteria to significantly reduce the encoder’s complexity. This

rule will be analyzed further in chapter 3 to show that it satisfies the same rate bound that

the SED rule does. Sec 2.3 proposes the thresholding of order posteriors (TOP) partitioning,

a very simple method to construct partitions S0 and S1 that satisfy the SEAD rule. The

TOP algorithm facilitates further complexity reduction by avoiding explicit computation of

posterior updates for the majority of messages, since those posterior updates are not needed

to find the threshold position. Sec. 2.4 introduces the Systematic Posterior Matching algo-

rithm (SPM), an efficient implementation of a systematic version of the scheme by Naghshvar

et al, that allows partitioning with either the SED or SEAS partitioning rules. The SPM

algorithm is intended as a simulation framework to validate analytical results, for which a

thorough description is provided, including implementation details and algorithms. Sec. 2.5

analyzes the complexity of the SPM algorithm with TOP partitioning. Sec. 2.6 provides

simulation results that highlight the need for tighter performance bounds and serve to vali-

date previously developed theoretical bounds, as well as the ones provided in Chapter 3 of

this dissertation. Sec. 3.16 also provides empirical complexity results for the SPM algorithm
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that validates the complexity analysis. Sec. 2.7 concludes the chapter.

2.2 The SEAD Partitioning Rule

The SED encoding rule by Naghshvar et al. is straightforward to implement. The algorithm

could be implemented with a simple modification that results in the exact same partitions,

but significantly reduces the implementation complexity. Instead of moving small items from

S0 to S1, large items could be moved from S1 to S0. However, the SED rule is not without

disadvantages. The implementation entails significant complexity, that grows rapidly with

message sizes, even after taking additional steps to avoid many unnecessary operations.

Under uniform prior, binomial prior, and some other distributions of the source information

sequence, a few posterior probability values are shared by many messages at the start of

the process. The implementation framework in this dissertation, also in [AGW23], and

in [AYW20], relies on this posterior sharing property to greatly reduce the runtime and

memory complexity. All the messages sharing an initial posterior are collected in a group.

To track the posterior probabilities of all messages, it suffices to track a single posterior for

each group, and a map of the messages in each group. The SED encoder would divide a

group into two every time the termination condition is checked, except for the case where

the condition is checked at the boundary of two groups. This holds every time the labels

are swapped, and could result in multiple new groups created before every transmission. In

addition, the SED partitioning rule is likely to involve messages i with very low posterior

ρi(y
t). When low posterior messages are not involved in the partitioning, many operations

can be avoided, which will be described in subsequent sections.

In light of these observations, a relaxed encoding rule, the “small enough absolute differ-

ence” (SEAD) rule is proposed [AGW23]. The SEAD rule terminates when the difference

between the posteriors in S0 and S1 is smaller than the smallest posterior in S0, regardless

whether the accumulated posterior in S1 is more than that of S0, if no item has a posterior
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above 1
2
. The SEAD rule is compactly described by:

∣∣∣∣∣∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t)

∣∣∣∣∣ ≤ min
i∈S0

ρi(y
t) (2.10)

ρi(y
t) ≥ 1

2
=⇒ S0 = {i} or S1 = {i} . (2.11)

The SEAD rule is much simpler to implement than the SED rule, and does not require

swapping labels. When messages with shared posteriors are consolidated in groups, it is

possible to implement the SEAD rule without creating more than one new group at each

transmission. This dissertation shows a method, the “thresholding of ordered posteriors”

[AGW23] that enforces the SEAD rule, and creates at most one new group before every

transmission.

2.3 Partitioning by Thresholding of Ordered Posteriors (TOP)

The TOP rule is a simple method to construct S0 and S1 at any time t from the vector of

posteriors ρt, which enforces the SEAD partitioning constraint of Thm. 3. The rule requires

an ordering {o1, . . . , oM} of the vector of posteriors such that ρo1(t) ≥ ρo2(t) ≥ · · · ≥ ρoM (t).

TOP builds S0 and S1 by finding a threshold m to split {o1, . . . , oM} into two contiguous

segments: {o1, . . . , om} = S0, and {om+1, . . . , oM} = S1. To determine the threshold position,

the rule first determines an index m′ ∈ {1, . . . ,M} such that:

m′−1∑
i=1

ρoi(y
t) <

1

2
≤

m′∑
i=1

ρoi(y
t) , (2.12)

Once m′ is found, the rule must select between two possible alternatives: Either m = m′ or

m = m′−1. In other words, all that remains to decide is whether to place om′ in S0 or in S1.

The selected choice is the one that guarantees that the absolute difference between P0 and

P1 is no larger than the posterior of om′ . Thus, the threshold m is selected from {m′−1,m′}
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Figure 2.2: Set partitioning (top), posterior updates (center), and partition merge (bottom),
for sequential transmission with the TOP partitioning rule, at each time t. The bars represent
the set of messages. The bar lengths represent the message posteriors, and the bars are
ordered according to posteriors (bar lengths). With TOP partition, a threshold separates
the ordered list of messages (top center), into two parts, top left and top right. Updating
the posteriors consists of boosting S0 and attenuating S1, if Yt = 0 (center left), or boosting
S1 and attenuating S0, if Yt = 1 (center right). If S0 is boosted, merging the partitions only
requires to “stack” S0 and S1 (bottom left). If Yt = 1, the items in S0 and S1 are interleaved
to create a new sorted list (bottom right). There will be a group of items in S1 that remain
small, even after the boost. These items are “stacked” at the top the list.

as follows:

m =


m′ − 1 if

∑m′

i=1 ρoi(t)−
1
2
> 1

2
ρom′ (t)

m′ if
∑m′

i=1 ρoi(t)−
1
2
≤ 1

2
ρom′ (t)

(2.13)

Note that since m ∈ {m′− 1,m′}, then the posterior of om′ is no larger than that of om, and

the posterior of om is also the value of ρmin = mini∈S0{ρi(t)}.

Claim 1. The TOP rule guarantees that the SEAD constraints of Thm. 3, given by (3.33)

and (2.9), are satisfied.

Proof. The TOP partitioning rule sets the threshold that separates S0 and S1 exactly before
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or exactly after item om′ depending on which of the cases in (2.13) occurs. To show that

the TOP rule guarantees that the SEAD constraints in Thm. 3 are satisfied note that if the

first case of (2.13) occurs, the threshold lies before item om′ . Then, the inequalities in (2.12)

demand that:

P0 =
m′−1∑
i=1

ρoi(y
t) =

m′∑
i=1

ρoi(y
t)− ρom′ (t) <

1

2
(2.14)

P0 >
1

2
+

1

2
ρom′ (t)− ρom′ (t) =

1

2
− 1

2
ρom′ (t) . (2.15)

When the second case of (2.13) occurs, the threshold is set after item om′ . Then, the

inequalities in (2.12) demand that:

P0 =
m′∑
i=1

ρoi(y
t) ≥ 1

2
(2.16)

P0 ≤
1

2
+

1

2
ρom′ (t) , (2.17)

In either case:
1

2
− 1

2
ρom(t) ≤ P0 ≤

1

2
+

1

2
ρom(t) (2.18)

By definition, ∆ = P0 − P1 = P0 − (1 − P0) = 2P0 − 1. Scale equation (2.18) by 2 and

subtract 1, then: −ρom′ (t) < 2P0 − 1 ≤ ρom′ (t). Then, | ∆ | ≤ ρom′ (t) ≤ ρom(t) = ρmin. This

concludes the proof.

The TOP rule shows that the construction of partitions S0 and S1 that satisfy the SEAD

rule could be done in three simple steps. The first is finding the threshold item om′ where

the c.d.f. induced by the ordered vector of posteriors crosses 1
2
. The second is deciding if

the threshold should be placed before or after item om′ . And the third is allocating all items

before the threshold to S0 and all items after the threshold to S1.
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2.4 The Systematic Posterior Matching Algorithm

The SPM-TOP algorithm is a low complexity scheme that implements sequential transmis-

sion over the BSC with noiseless feedback with a source message sampled from a uniform

distribution. Algorithms 3 and 4 present the encoder and decoder as functions that, when

called, respectively transmit and decode one channel symbol. These functions have the usual

communication and confirmation phases, but the communication phase starts with a sys-

tematic transmission phase. Thus systematic transmissions of the communication phase are

treated as a separate systematic phase, for a total of three phases that we proceed to describe

in detail.

2.4.1 Systematic Phase

Let the sampled message be θ ∈ {0, 1}K , with bits b
(θ)
i , that is θ = {b(θ)1 , b

(θ)
2 , . . . , b

(θ)
K }.

For t = 1, . . . , K, the bits b
(θ)
t are transmitted (See line 2 of Alg. 3.) and the vector

yK ≜ {y1, . . . , yK} is received without any decoder computations. (See line 2 of Alg. 4.)

At time t = K, right after the K-th systematic transmission, both transmitter and

receiver initialize a list of K + 1 groups {G0, . . . ,GK}, where each Gi is a tuple Gi =

[Ni, Li, hi, ρi(y
t)]. Alg. 1 implements the initialization of the list of groups as the func-

tion InitializeGroups, which is called in line 5 of Alg. 3 and Alg. 4.

As described in Alg. 1 for Group i, Ni is the count of messages in the group; Li is the

index of the first message in the group; hi is the shared Hamming distance between yK and

any message in the group, that is: l, s ∈ Gi =⇒
∑K

j=1 b
(l)
j ⊕ yj =

∑K
j=1 b

(s)
j ⊕ yj = hi;

and ρi(y
t) is the posterior shared by every item in the group. At time t = K, each group

Gi, i = 1, . . . , K has that Ni =
(
K
i

)
, Li = 0, hi = i, and ρi(K) = pjqK−j. The groups

are initially established in order of decreasing probability, equivalent to increasing Hamming

weight, since for p < q, j > l =⇒ plqK−l < pjqK−j, (see line 2 of Alg. 1).

At the end of the systematic phase, the transmitter finds the index hθ of the group, and
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Algorithm 1: G = InitializeGroups(p, q,K)

Input: Channel parameters p, q, message length K
Output: List of Groups G = G0, . . . ,GK
for i=0,. . . ,K do

ρi ← qK−ipi ▷ ∀j ∈ Gi → ρj(K) = ρi
Ni ←

(
K
i

)
▷ Ni ≜| Gi |: count of items in group

Li ← 0 ▷ First index in group
hi ← i ▷ Shared group Hamming weight
Wi = 1 ▷ Delayed update coefficient
fi = 0 ▷ For encoder: set fi = 1 if θ ∈ Gi
Gi = (Ni, Li, hi, ρi,Wi, fi)

end
G← G0, . . . ,GK

the index nθ within the group, that corresponds to the sampled message θ, using Alg. 2.

Line 5 of Alg. 3 shows the call to the function InitializeGroups of Alg. 2. The group index

hθ is given by hθ =
∑K

j=1 o
(θ)
j ⊕ yj and the index nθ ∈ {0, . . . ,

(
K
hθ

)
− 1} within the group is

computed using the function FindMessageIndex of Alg. 2

Algorithm 2: (h, n)=FindMessageIndex(K, xK , yK)

Input: Length K, Trans. Seq. xK , Rec. Seq. yK

Output: Hamming weight h, index n
eK = xK ⊕ yK

h←
∑K

j=0 e
i
j

n← 0
c← h
for j = 0, . . . , K − 1 do

if c = 0 then
Break

else if ej = 0 then
n← n+

(
K−j−1
c−1

)
else

c← c− 1
end

end
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2.4.2 Communication Phase

The communication phase consists of the transmissions after the systematic phase, for which

all the posteriors are below the threshold 1
2
. During communication phase, the transmitter

attempts to boost the posterior of the transmitted message, past the threshold 1
2
, though

any other message may cross the threshold instead, due to channel errors.

The list of groups initialized in the systematic phase is maintained ordered by decreasing

common posterior. The list of groups is partitioned into S0 and S1 before each transmission

using rule (2.12) as shown in Alg. 6. For this, the group Gnm that contains the threshold

item om is found first, see lines 4− 7 of Alg. 6. Then all groups before Gnm are assigned to

S0 and all the groups after Gnm are assigned to S1, shown in line 8 of Alg. 6. The group

Gnm is split into two groups, one of which is assigned to S0 and the other to S1. Note that

the item om, that sets the threshold, is a member of Gnm . To determine how the group Gnm

is split, the index nm of item om, within group Gnm , needs to be computed first, see lines

9 − 12 of Alg. 6. The TOP rule demands that all items j ∈ Gnm with index n
(j)
m ≤ nm be

assigned to S0 and all items i ∈ Gnm with index n
(i)
m > nm to S1. Group Gnm is split into two

by creating an new group with the segment of items past nm that belongs in S1, as shown in

lines 12−27 of Alg. 6. However, if the item with index nm is the last item in Gnm , the entire

group Gnm belongs in S0. Splitting the group is avoided in this particular case, as shown in

lines 28− 34 of Alg. 6. This case is more likely to happen to the end of the communication

phase, when the first few groups have low cardinality and high total posterior. The same

partitioning algorithm is used by the encoder and decoder during the communication phase,

as shown in the calls to function PartitionGroups in line 31 of Alg. 3, and in line 23 of

Alg. 4.

After each transmission t, the posterior probabilities of the groups are updated using the

received symbol Yt according to equation (3.84), which is shown by Alg. 5. Each posterior is

multiplied by a weight update, computed using equation (3.85), according to its assignment,
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S0 or S1, see lines 4, 8, and 15 of Alg. 5. Then, the lists that comprise S0 and S1 are merged

into a single sorted list, see lines 11 − 12, 16 − 17, and 21 of Alg. 5. The process repeats

for the next transmission, which is shown by the calls to functions CommPhaseUpdate

in lines 23 and 27 of Alg. 3 and lines 15 and 19 of Alg. 4. The communication phase is

interrupted to transition to the confirmation phase when the posterior of a candidate message

crosses the 1
2

threshold. The communication phase might resume if the posterior of message

i that triggered the confirmation falls below 1
2

rather than increasing past 1−ϵ, and all other

posteriors are still below 1
2
, see line 22 of Alg. 3, and line 14 of Alg. 4.

2.4.3 Confirmation Phase

The Confirmation Phase is triggered when a candidate i attains a posterior ρi(y
t) ≥ 1

2
, see

line 33 of Alg. 3 and line 24 of Alg. 4. During this phase the transmitter will attempt to

boost ρi(y
t), the posterior of candidate i, past the 1 − ϵ threshold, if it is the true message

θ. Otherwise it will attempt to drive its posterior below 1
2
. Clearly, the randomness of the

channel could allow the posterior ρi(y
t) to grow past 1− ϵ, even if it is the wrong message,

resulting in a decoding error. Alternatively, the right message could still fall back to the

communication phase, also due to channel errors. Let Ui(t) denote the log likelihood ratio

defined by:

Ui(t) ≜ log2

(
ρi(Y

t)

1− ρi(Y t)

)
. (2.19)

The confirmation phase lasts for as long as the posterior of the message that triggered its

start stays between 1
2

and 1− ϵ or equivalently Ui(t) stays between 0 and ϵU ≜ log2
(
1−ϵ
ϵ

)
.

There are no partitioning, update, or combining operations during the confirmation

phase. If j is the message in the confirmation phase, then the partitioning is just S0 = {j},

S1 = Ω \ {j}. A single update is executed, if a fall back to to the communication phase oc-

curs, letting ρi(y
t) = ρi(y

Tn) ∀i = 1, . . . ,M , where n is the index of the confirmation phase
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round that just ended, and Tn is the time at which it started, see the calls to CommPhase-

Update in line 23 of Alg. 3, and line 14 of Alg. 4. This is because every negative update

that follows a positive update results in every ρi(y
t) returning to the state it was at time

t−2. This is summarized in claim 3 that follows. During the confirmation phase it suffices to

check if Uj(t) ≥ ϵU , in which case the process should terminate, or if Uj(t) < 0, in which case

a fall back occurs. The encoder terminates the process by computing an estimate x̂K of the

systematic symbols vial Alg. 7, which is shown in the call to function IndexToEstimate

in line 9 of Alg. 4. When the process terminates, the transmitter can declare a successful

decoding if the index n0 and Hamming distance h0 of the message in confirmation match nθ

and hθ, and an error otherwise, as shown in lines 12− 16 of Alg. 3.

During the confirmation phase we only need to count the difference between boosting

updates and attenuating updates. Since the Ui(t) changes in steps with magnitude C2, then

there is a unique number N such that Ui(Tn) + NC2 ≥ ϵU and Ui(Tn) + (N − 1)C2 < ϵU .

Starting at time t = Tn, since S0 = {j}, any event Yt+1 = 0 is a boosting update that results

in Ui(t + 1) = Ui(t) + C2 and any event Yt+1 = 1 is an attenuating update that results in

Ui(t + 1) = Ui(t) − C2. A net of N boosting updates are needed to reach Ui(Tn) + NC2.

Let the difference between boosting and attenuating updates be Z(t) ≜
∑t

s=Tn+1(1 − 2Ys).

The transmission terminates the first time τ where Z(τ) = N . However, a fall back occurs

if Z(t) ever reaches −1 before reaching N . The value of N can be computed as follows: let

N1 ≜
⌈
C−1

2 log2
(
1−ϵ
ϵ

)⌉
, and let ϵn ≜ log2

(
1−ϵ
ϵ

)
− N1C2, see line 35 of Alg. 3, and line 26

of Alg. 4. Suppose the confirmation phase starts at some time t = Tn, then, N = N1 if

Ui(Tn) ≥ ϵN , otherwise N = N1 + 1. Once N is computed, all that remains is to track Z(t),

where Z(t+1) = Z(t) + (1− 2Yt+1), and return to the communication phase if Z(t) reaches

−1, or terminate the process if Z(t) reaches N , see lines 18 and 22 of Alg. 3, and lines 11

and 14 of Alg. 4.
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Algorithm 3: (S ′
0, S

′
1, Z

′, N ′
ϵ)=Encoder(t, yt, S0, S1, Z,Nϵ)

Data: Channel constants p, q, error bound ϵ, length K
Input: Message θ time t, feedback yt = [y1, . . . , yt] and hθ, nθ ▷ set once, see line 4.
Input: Previous Encoder state: partitions S0, S1, confirmation state Z, target Nϵ

Output: Next symbol xt+1, encoder state S ′
0, S

′
1, confirmation state Z ′, target N ′

ϵ

if t < K then
channel input: xt+1 = bθt+1 ▷ θ = [b

(θ)
1 , . . . , b

(θ)
K ]

else if t = K then
G← InitializeGroups(K, p, q) ▷ Alg. 1
(hθ,nθ)←FindMessageIndex(K, xK, yK) ▷ Alg. 2
mθ ← hθ, fmθ

← 1 ▷ Since θ ∈ Ghθ
, then mθ ← hθ and fhθ

= 1 to track Ghθ

Z ′ ← −1 ▷ Set communication phase
else if Z ≥ 0 then

Z ′ ← (yt = 0 ? Z + 1 : Z − 1)
if Z ′ = Nϵ then

if h0 = hθ and L0 = nθ then
Declare success

else
Declare error

end
S ′
0, S

′
1 ← ∅ ▷ Terminate process

else if Z ′ ≥ 0 then
S ′
0, S

′
1,← S0, S1, Nϵ ▷ No change in partitions

N ′
ϵ ← Nϵ ▷ Same target

xt+1 ← (h0 = hθ and L0 = nθ ? 0 : 1)

else if Z ′ = −1 then
G′ ← CommPhaseUpdate(S0, S1, yt) ▷ Alg. 5 and Fall to comm. phase

end
else if Z = −1 then

G′ ← CommPhaseUpdate(S0, S1, yt) ▷ Alg. 5
Z ′ ← Z ▷ No state change yet (see line 3)

end
if Z ′ = −1 then

S ′
0, S

′
1 ← PartitionGroups(G′) ▷ Alg. 6

xt+1 ← (∃Gi ∈ S0: fi = 1 ? 0 : 1)
if ρ0 ≥ 1

2
and N0 = 1 then

Z ′ ← 0 ▷ Set Confirmation phase start

N ′
ϵ ←

⌈
C−1

2

(
log2

(
1−ϵ
ϵ

)
− log2

(
ρ0

1−ρ0

))⌉
end

end
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Algorithm 4: (S ′
0, S

′
1, Z

′, N ′
ϵ)=Decoder(t, yt, S0, S1, Z,Nϵ)

Data: Channel constants p, q, error bound ϵ, length K
Input: Previous Decoder state of partitions S0, S1

Input: Previous confirmation state Z, target Nϵ

Output: Next Decoder state S ′
0, S

′
1

Output: Next confirmation state Z ′, next target N ′
ϵ

if t < K then
▷ No action needed at decoder

else if t = K then
G← InitializeGroups(K, p, q) ▷ Alg. 1
Z ′ ← −1 ▷ Set communication phase

else if Z ≥ 0 then
Z ′ ← (yt = 0 ? Z + 1 : Z − 1)
if Z ′ = Nϵ then

x̂K ← IndexToEstimate(h0, L0, y
t
1:K) ▷ Alg. 7

Report Estimate x̂K

else if Z ′ ≥ 0 then
S ′
0, S

′
1,← S0, S1, Nϵ ▷ No change in partitions

N ′
ϵ ← Nϵ ▷ Same target

else if Z ′ = −1 then
G′ ← CommPhaseUpdate(S0, S1, yt)

▷ Fall back to communication phase: Alg. 5
end

else if Z ′ = −1 then
G′ ← CommPhaseUpdate(S0, S1, yt) ▷ Alg. 5
Z ′ ← Z ▷ No state change yet (see line 4)

end
if Z ′ = −1 then

S ′
0, S

′
1 ← PartitionGroups(G′) ▷ Alg. 6

if ρ0 ≥ 1
2

and N0 = 1 then
Z ′ ← 0 ▷ Set confirmation phase start

N ′
ϵ ←

⌈
C−1

2

(
log2

(
1−ϵ
ϵ

)
− log2

(
ρ0

1−ρ0

))⌉
end

end
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Algorithm 5: G = UpdateGroupList(yt, S0, S1)

Input: Channel output: yt, partitions S0, S1

Output: Updated list G = {G0, . . . ,GK+ns}
w0 ← q

Pyt+1 (q−p)+p
▷ Weight update for items in S0

w1 ← p
Pyt+1 (q−p)+p

▷ Weight Update for items in S1

m0 ← 0, m1 ← 0 ▷ Indices of first group in S0, S1

Wm1 ← Wm1 · w1 ▷ Update weight of first group in S1

G← ∅ ▷ Initialize to null
while S0 ̸= ∅ do

if w0 · ρm0 < Wm1 · ρm1 then
ρm1 ← ρm1 ·Wm1

Wm1+1 ← Wm1+1 ·Wm1 ▷ Update Next weight
Wm1 ← 1 ▷ Reset weight Wm1

remove Gm1 from S1

insert Gm1 to tail of G
m1 ← m1 + 1 ▷ Get next item from S1

else
ρm0 ← ρm0 · w0 ▷ Update ρm0(t)
remove Gm0 from S0

append Gm0 to tail of G
m0 ← m0 + 1 ▷ Get next item from S0

end
end
append S1 to tail of G ▷ No update for rest of S1
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Algorithm 6: (S0, S1) = PartitionGroups(G, nθ)

Input: List of Groups G = {G0, . . . ,GK+ns} ▷ ns: new group created by line 6
Input: (Transmitter only) index nθ ▷ Encoder: tracks group with hi = hθ, ni = nθ

Output: Sets S0, S1 that partition G ▷ S0={G0, . . .Gm}, S1={Gm+1}, . . .GK+ns}
m← 0 ▷ Index of first group in G
S0 ← ∅ ▷ Initialize S0 to empty
P0 ← 0 ▷ Posterior in S0: P0 ≜ P(θ ∈ S0)
while P0 +Nmρm < 1

2
do

P0 ← P0 +Nmρm(t) ▷ Nm, ρm ∈ Gm
m← m+ 1 ▷ Increase group index m

end
S0 ← {G0, . . . ,Gm−1}, S1 ← {Gm+1, . . . }
n← ⌈0.5−P0

ρm(t)
⌉ ▷ Initial n value

if P0 + nρm(t) >
1
2
(1 + ρm(t)) then

n← n− 1 ▷ TOP rule
end
if n > 0 and n < Nm then

Nright ← Nm − n ▷ Items in new group
Lright ← Lm + n ▷ Index of first item
Nleft ← n ▷ Decrease count in old group

▷ Lines 18-19 only execute for transmitter.
if fm = 1 and nθ ≥ Lright then

fright ← 1 ▷ Case: Lright ≤ nθ < Lright + n
fleft ← 0 ▷ Gm no longer group containing nθ

else
fright ← 0 ▷ Case: Lm ≤ nθ < Lright

end
G(left)m ← (Nleft, Lm, hm, ρm,Wm, fleft)

G(right)m ← (Nright, Lright, hm, ρm,Wm, fright)

S0 ← S0 ∪ G(left)m

S1 ← G(right)m ∪ S1

else if n = 0 then
S1 = Gm ∪ S1 ▷ Case entire Gm belongs in S1

m← m− 1 ▷ Equation (2.13)
else if n = Nm then

S0 = S0 ∪ Gm ▷ Case entire Gm belongs in S0

P0 ← P0 + nρm(t)

end
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Algorithm 7: x̂K = IndexToEstimate(h, n,K, yK)

Input: Weight h, index n, length K symbols yK

Output: Estimate x̂K ▷ Estimate of θ = xK

x̂K ← yK ▷ Initialize x̂K with received symbols yK

for j = 0, . . . , K − 1 do
if h = 0 then

Break
else if n <

(
K−1−j
h−1

)
then

x̂j ← ¬x̂j

h← h− 1

else
n← n−

(
K−j−1
h−1

)
end

end

2.5 Complexity of the SPM-TOP Algorithm

The memory complexity of the SPM-TOP algorithm is of order O(K2) because we use a

triangular array of all combinations of the form
(
K
i

)
i ∈ {0, . . . , K}. The algorithm itself

stores a list of groups that grows linearly with K, since the list size is bounded by the

decoding time τ .

The time complexity of the SPM-TOP algorithm is of order O(K2). To obtain this result

note that the total number of items that the system tracks is bounded by the transmission

index t. At each transmission t, the partitioning, update, and combine operations require

visiting every item at most once. Furthermore, because of the complexity reduction described

in Sec. 2.4.2, the system executes operations for only a fraction of all the items that are

stored. The time complexity at each transmission is then of order O(K), with a small

constant coefficient. The number of transmissions required is approximately K/C as the

scheme approaches capacity. A linear number of transmissions, each of which requires a

linear number of operations, results in an overall quadratic complexity, that is, order O(K2),

for fixed channel capacity C. The K systematic transmissions only require storing the

bits, and in the confirmation phase we just add each symbol Yt to the running sum. The
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complexity of this phase is then of order O(K). Therefore, the complexity of O(K2) is only

for the communication phase.
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Figure 2.3: Rate performance of the SED and SEAD encoders vs. blocklength. The rate
performance of the SEAD encoder, solid curves with dots −◦ labeled SPM SEAD algorithm,
over channels with capacities 0.90, 0.75, 0.50, 0.25, 0.10 are provided. For comparison, The
rate performance of the SED algorithm is also provided, solid curves −⋆, labeled SPM-SED
Algorithm. The channel capacities are shown for reference, see horizontal −− lines.

2.6 Simulation Results of the SPM Algorithm

Performance results from simulation of the systematic posterior matching algorithm are

provided in Fig. 2.3 and Fig. 2.4. The rate curves show average rate K/E[τ ] vs. average

blocklength E[τ ]. Fig. 2.3 shows the rate performance of the SEAD encoder implemented

with the TOP partitioning rule and the rate performance of the original SED encoder by
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Naghshvar et al. [NJW15], over channels with capacity C = 0.90, 0.75, 0.50, 0.25, 0.10. The

performance of the the SEAD encoder is shown with the solid colored curves −◦ labeled

“Threshold of Ordered Posteriors,” and the performance of the SED encoder is shown with

the black solid curves −⋆ with stars. The simulations are for channels with with capacities

0.1, 0.25, 0.5, 0.75, 0.9, shown by the dashed lines −−, and the decoding threshold used was

ϵ = 1e− 3. The simulated rate curves attain an average rate that approaches capacity

rapidly. The SPM algorithm with the thresholding of ordered posterior rule exhibits a rate

performance that is indistinguishable from that of the algorithm implementing the SED rule.

This indistinguishable performance motivates the analysis shown in Chapter 3.

The rate curves of Fig. 2.3 and Fig. 2.4 are jagged, which is explained by a high error

approaching the threshold ϵ = 1e− 3 at the peaks, and dropping far below the threshold at

the troughs, as shown in the bottom of Fig 2.4. To better understand this behavior, Fig 2.4

includes simulations of the SEAD algorithm with a pseudo random stopping rule. The rate

performance with the pseudo random rule is shown in the top of Fig 2.4 with the dash dot

curves −.◦ labeled “Randomized SPM-TOP,” along with rate of the standard stopping rule

(2.1), solid −◦ colored curves. The the pseudo-random stopping rule alternates between the

standard rule, which is stopping when a message i attains Ui(t) ≥ log2 ((1− ϵ)/ϵ), and an

early stopping rule, when a message attains Ui(t) ≥ log2 ((1− ϵ)/ϵ) − C2, and requires one

less correctly received transmission than the standard rule. A pseudo random function selects

either rule with a probability biased to obtain a higher rate by forcing the FER to be close to

the threshold ϵ, rather than upper bounded bounded by ϵ. Let the bias probability of early

decoding be π1, and let i be the message in confirmation, with Ui(t) ≥ log2 ((1− ϵ)/ϵ)−C2,

then π1 satisfies:

π1Ui(t) + (1− π1) (Ui(t) + C2) = log2
(
1−ϵ
ϵ

)
(2.20)

π1 = 1− 1

C2

(
log2

(
1−ϵ
ϵ

)
− Ui(t)

)
(2.21)
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Figure 2.4: Rate performance (top) of the SPM algorithm with two stopping rules, and with
thresholding of ordered posteriors (TOP) partitioning. The rate performance of SPM with
a pseudo random stopping rule is shown with the dash dot −.• curves labeled “Randomized
SPM-TOP.” The pseudo random rule allows early decoding with a probability biased to
attain a frame error rate (shown in the bottom) close to the threshold ϵ = 1e − 3, instead
of the standard rule (2.1) that requires a frame error rate below the threshold. The rate
curve for the standard stopping rule (2.1) is shown with the solid lines −•. The partitioning
method for all the curves is the thresholding of ordered posteriors (TOP), which implements
the SEAD encoder. The frame error rate curves obtained for each of the rate curves is shown
in the bottom. are shown in the bottom.
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The bottom plot of Fig. 2.4 shows the frame error rate for the rate curves in the top.

The FER curves that are below the horizontal line at ϵ = 1e − 3, and far below for at

some blocklengths, are for the standard stopping rule, while the FER curves for the pseudo

random stopping rule are tightly packed around the threshold ϵ = 1e − 3. The rate curves

obtained with the pseudo random stopping rule are smooth compared to the standard rule.

This, along with sudden drops in the FER of the standard rule, support the explanation

that the peaks and troughs in the rate curves of the standard rule are caused by frequent

events where a message i attains a high posterior, close to ρi(t) ⪅ 1− ϵ, but not high enough

to terminate the process. Such events force at least one additional transmission, and thus

the process often terminates with a posterior ρi(τ) high above 1− ϵ, or an error probability

1− ρi(τ) far below ϵ, as shown by the left of the FER curves at the bottom of Fig. 2.4.

2.6.1 Complexity Results of the SPM Algorithm

The complexity analysis of the SPM-TOP algorithm described in 2.5 is validated with simu-

lation results. Fig. 2.5 shows the average time per message and per 1000 symbols, in millisec-

onds, for the original SED encoder, and for the SEAD encoder implemented by thresholding

of ordered posteriors partitioning, for a channel with capacity C = 0.50. The original SED

encoder is implemented by the systematic posterior matching SPM algorithm that groups

messages of with equal posterior to lower the complexity. However, the posterior of every

group is updated after every transmission. Also, many posterior groups need alternatively

assigned to S0 and S1 before the SED rule is satisfied for the first time. The simulated time

of the this algorithm is shown by the blue and magenta curves of Fig. 2.5.

The SEAD encoder is implemented by the thresholding of ordered posteriors (TOP),

which is much simpler than the SED algorithm. Partitioning with the TOP rule only re-

quires to visit the groups with largest posteriors, until the group that contains the “weighted

median,” where the c.d.f. crosses half, is found. These larger groups are all assigned to the

set S0. When the TOP rule is used, the SPM algorithm performs posterior updates on the
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Figure 2.5: Shows average runtime of the SED and SEAD encoder, in milliseconds per
message and per each 1000 symbols, as a function of message size K, for a channel with
capacity C = 0.50. The average time per message of the SED encoder is the solid blue
line; the average time per each 1000 symbols for the SED encoder is the magenta line;
the average time per message of the SED encoder implemented by thresholding of ordered
posteriors partitioning is the orange solid line; and the average time per 1000 symbols of the
SEAD encoder is the yellow solid line. The time per 1000 symbols is provided instead of
per each symbol, to show all the curves in the same plot. Note that for this channel, with
C = 0.50, at K = 500 the average number of symbols required is about 1000, and is where
the SEAD curves cross. The number of trials used to obtain this data is 100, 000.

all the posterior groups in S0. From the posterior groups in S1 only those whose updated

posterior exceed the smallest posterior in S0 are updated, which is zero when Yt = 0, and

a few groups when Yt = 1. This results in a much simpler algorithm, as can be seen in the

runtime curves of Fig. 2.5.

For a more accurate characterization of the complexity’s evolution as a function of mes-

sage size K, the simulations also counted the number of posterior groups involved in the set

partitioning, and in the posterior updates and partition merge operations executed during
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Figure 2.6: Average number of posterior groups operated on at each symbol transmission
as a function of message size K, for the SPM algorithm implementing the original SED
encoder and the relaxed SEAD encoder. The algorithm compares posteriors to construct the
partitions S0 and S1 before the transmission, and then updates the posteriors and merges
the partitions after the each transmission. The solid blue line labeled “SED Update/Merge”
is the number of update/merge operations for the SED encoder; the solid magenta curve
labeled “SED Partition” is the number of partition operations for the SED encoder; the
orange and yellow curves are the operations for the SEAD encoder, which are shown at scale
in Fig. 2.6. Both simulations are for a channel with capacity C = 0.50.

the transmission of each symbol and each message. Counting the operations prevents exter-

nal factors like computer temperature and OS tasks that compete for computing resources

with the simulations, from affecting the complexity results. The average number of opera-

tions per symbol are shown in Fig. 2.6 and 2.7, and the number of operations per message

in 2.8 and 2.9. Fig. 2.6 shows that the number of posterior updates of the original SED

encoder is a linear function of message size K, but with a much higher slope than that of

the SEAD encoder. Fig. 2.7 shows a wider range of values of K, and is scaled to high-

light the complexity evolution of the SEAD encoder, see the orange and yellow lines labeled

“SEAD-TOP Update/Merge” and “SEAD-TOP Patiton,” and the partition operations of the

SED encoder, see magenta curve labeled “SED Partition.” These curves showcase the low
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Figure 2.7: Average number of posterior groups operated on at each symbol transmission
as a function of message size K, same as Fig. 2.6, scaled to highlight the curves for the
SEAD encoder with thresholding of order posteriors, and for a wider range of K values. The
solid blue curve with a very high slope, labeled “SED Update/Merge” shows the update and
merge operations for the SED encoder; the solid magenta curve with a lobe, labeled “SED
Partition,” shows the partition operations for the SED encoder; the solid orange line labeled
“SEAD-TOP Update/Merge,” shows the update and merge operations for the SEAD encoder
with TOP partitioning; and the solid yellow curve labeled “SEAD-TOP Partition” shows the
partition operations for the SEAD encoder with TOP partitioning. These are curves are the
same simulations in Fig. 2.6 for a channel with capacity C = 0.50.

complexity of the SEAD encoder with TOP partitioning. Note that when K = 1000, an

average of only 20 posterior groups are visited at each transmission.

Quadratic Lines were fitted in Fig. 2.9, to each curve in Fig. 2.8, to compare the

analytical result that the complexity of the SPM algorithm is of quadratic order, with the

simulated complexity. The quadratic coefficient, about 0.0154, of the two cures for the SEAD

encoder with TOP partitioning are two orders of magnitude below that of the SED encoder

1.5, which demonstrates the lower complexity of the SEAD encoder with TOP partitioning.

For this encoder, the complexity that from the linear term is higher than that of the quadratic

term, up to K = 300. These results show that complexity of the SPM-TOP algorithm allows

33



0 100 200 300 400 500 600 700 800 900 100
0

message size K

0

0.5

1

1.5

2

2.5

A
v
er
a
g
e
O
p
er
a
ti
o
n
s
p
er

M
es
sa
g
e

#104

SED Update/Merge
SED Partition
SEAD-TOP Update/Merge
SEAD-TOP Partition

Figure 2.8: Average number of posterior groups operated on per message transmission as
a function of message size K, over a channel with capacity C = 0.50. The solid blue curve
labeled “SED Update/Merge” shows the update and merge operations for the SED encoder;
the solid magenta curve labeled “SED Partition” shows the number of partition operations
for the SED encoder; the solid orange curve labeled “SEAD-TOP Update/Merge” shows the
update/merge operations for the SEAD encoder with TOP partitioning; and the solid yellow
curve labeled “SEAD-TOP Partition” shows the partition operations for the SEAD encoder
with TOP partitioning. These curves show the same simulation in Fig. 2.6 and Fig. 2.7, but
instead of operations per symbol, the vertical axis is the number of operations per message.

for fast execution time. The quadratic curves fit very well each of the simulated curve, and

thus validate the theory that the complexity order, as a function of blocklength, is linear for

each transmission, and is quadratic for the entire block.

The simulations in Fig. 2.3 and Fig. 2.4 of the SED encoder consisted of 104 of trials

for channels with capacities C = 0.10 and 0.25 and 105 trials for the other channels; the

simulation of the SEAD encoder consisted of 105 trials for channels with C = 0.1 and 0.25

and 106 trials for the other channels. All the complexity simulations consisted of 105 trials

for each value of K = 1, 10, 20, . . . , 1000, and for a channel with capacity C = 0.50. The

decoding threshold used in all simulations was ϵ = 10−3. The simulations were performed

on a 2019 MacBook Pro laptop with a 2.4 GHz, 8-core i9 processor and 16 GB of RAM, and

with transmitter and receiver operating alternatively on the same processor.
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Figure 2.9: Shows parabolas fitted to each curve in Fig. 2.9. The solid lines are the same
curves of Fig. 2.9, and the markers on each curve show a quadratic line fitted to the curve.
The legend shows the markers and the quadratic curves aK2 + bK + c fitted to each curve.
The figure highlights the much lower quadratic coefficient for the SEAD encoder with TOP
partitioning, compared to the SED encoder.

2.7 Conclusion

To reduce complexity, the simulation framework in this dissertation replaces SED with the

small enough absolute difference (SEAD) partitioning constraints, that relax the SED con-

straints by allowing the negative side, making it a two-sided version of SED during the

communication phase. The SEAD constraints admit a partitioning rule that only applies a

threshold to the vector ordered posteriors, the TOP rule. In this way, SEAD allows a low

complexity approach that organizes messages according to their type, i.e. their Hamming

distance from the received word, orders messages into groups according to their posterior,

and partitions the messages with a simple threshold without requiring any swaps. This

partitioning requires splitting at most one posterior per transmission, and greatly simplifies

the process of updating and reordering the posterior groups into a sorted list, after each

transmission.
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The simplified SEAD-TOP encoder has a complexity order of O(K2), and allows sim-

ulations for message sizes of at least 1000 bits. The high rate performance attained with

the SEAD encoding rule motivates the analysis shown in Chapter 3. From a practical per-

spective, the simulation results themselves provide new lower bounds on the achievable rates

possible for the BSC with full feedback. For example, with an average block size of 200.97

bits corresponding to K = 99 message bits, simulation results for a target codeword error

rate of 10−3 show a rate of R = 0.493 for the channel with capacity C = 0.5, i.e. 99% of the

capacity.
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CHAPTER 3

Analytical Bounds

This chapter analyzes achievability bounds for the system model considered in Chapter 2.

Through a new analysis, this chapter proves that the SEAS partitioning rule in 2.2 guarantees

an expected rate K/E[τ ] above the highest bound developed for the system model, the

bound by Yang et al. [YPA21] that is achieved by Naghshvar’s SED encoder. The new

analysis facilitates further tightening of the bound by Yang et al. This chapter generalizes

the concept of a “surrogate” process in [YPA21] and construct a matching surrogate process

for the SEAD encoder.

3.1 Encoder and Decoder Model

This chapter studies analytical bounds for the model in chapter 2, and thus the system

model is the same, see Fig. 3.1. At each time t = 1, 2, . . . , τ the encoder sends a binary

symbol Xt ∈ {0, 1} to the decoder over the forward BSC channel, and the received symbol

Yt ∈ {0, 1} is sent back to the encoder over the noiseless feedback channel before the next

symbol is encoded. The communication problem consists of transmitting a K-bit information

sequence Θ, from the encoder to the decoder, using the smallest expected number of symbols

E[τ ], and with error probability Pr(Θ̂ ̸= Θ) bounded by a small threshold ϵ. The information

sequence, or message, Θ is sampled from the message space Ω according to some probability

distribution PΩ, that is Θ ∼ PΩ(Ω). Throughout this dissertation, a Random Variable

(R.V.) is denoted by an upper case letter, and realizations with lower case letters. For

most of this dissertation, the sample space Ω is {0, 1}K , where K is the message length,
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Source Encoder BSC(p) Decoder

Delay

Θ Xt Yt Θ̂

Yt−1

Figure 3.1: Model for sequential transmission over the BSC with noiseless feedback. The
model consists of an information source, an encoder, a noisy forward channel, a decoder
and a noiseless feedback channel. The model is the same used in chapter 2, Fig. 2.1. The
encoder needs to communicate to the decoder a K-bit message Θ from a source. At each time
t = 1, 2, . . . , τ , the encoder sends a binary symbols Xt over the forward channel, the BSC
with a crossover probability p, and the decoder receives a binary symbol Yt, that is a noisy
version of Xt, according to the channel transition function Pr(Yt ̸= Xt) = p. The channel
symbol Yt is subsequently sent back to the encoder via the noiseless feedback channel, and
is available to the encoder to encode the next and future symbols Xt+1, Xt+2, . . . , Xτ . The
transmission ends when any message i attains a posterior probability Pr(i = Θ | Y t) ≥ 1− ϵ,
for a small threshold ϵ, and the message i becomes the estimate Θ̂ of Θ.

and the probability distribution is uniform, denoted by U ; that is, Θ ∼ U(Ω). In this

chapter the information sequence Ω is assumed to be available to the encoder, from the start

of the transmission. The encoder computes each next transmitted symbol Xt+1 using the

message Θ, the feedback sequence Y t = Y1, Y2, . . . , Yt, and possibly the previous symbols

X t = X1, X2, . . . , Xt. The decoder and the encoder both compute the posterior probabilities

ρi(y
t), introduced in chapter 2, equation (2.3), defined by ρi(y

t) = Pr(Θ = i | Y t = yt). The

process terminates at the earliest time t = τ that a candidate i ∈ Ω achieves a posterior

ρi(y
τ ) ≥ 1− ϵ, and the message i that attains such a posterior becomes the decoder estimate

Θ̂. For each i ∈ Ω, let Ui(t) denote the log likelihood ratio defined in Eq. (2.19). The

stopping time τ introduced in (2.1) is equivalent to:

τ ≜ min
t∈N
{∃i ∈ Ω : Ui(t) ≥ log2

(
1−ϵ
ϵ

)
} . (3.1)
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The expected rate is defined by:

Rate ≜
K

E[τ ]
. (3.2)

When the number of K-bit messages transmitted is n, the total information length is n ·K-

bits, the total number of transmitted symbols is nτ̄ -bits and the overall rate is nK
nτ̄

= K
τ̄
.

In the limit the average τ̄ becomes E[τ ], and the expected rate E[R] is of the form given in

(3.2). The analytical achievability bounds in this dissertation are computed using alternative

stopping rules that upper bound the stopping time τ in (3.1). The lower bound on τ and

upper bound on the rate use a stopping time that lower bounds the definition of τ in (3.1).

3.2 Achievability Bound Problem Statement

The communication problem consists of finding the highest lower bound on the expected

achievable rate R, given by E[R]≜K/E[τ ], with bounded error rate: E
[
1Θ̂ ̸=Θ

]
=Pr(Θ̂ ̸=Θ) ≤

ϵ, as well as a scheme that achieves the rate lower bound. The sequential problem can be

described by:

minimize τB (3.3)

subject to E[τ ] ≤ τB (3.4)

Pr(Θ̂ ̸= Θ) ≤ ϵ (3.5)

3.3 Previous Results

To prove that the SED scheme of Naghshvar et. al. [NJW15] is a posterior matching BSC

scheme as described in [SF11], it suffices to show that the scheme uses the same encoding

function as [SF11] applied to a permutation of the messages. Since the posteriors ρi(y
t) are

fully determined by the history of received symbols Y t, a permutation of the messages can
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be defined concatenating the messages in S0 and S1, each sorted by decreasing posterior.

This permutation induces a c.d.f. on the corresponding posteriors. Then, to satisfy the

posterior matching principle, the random variable U could just be the c.d.f. evaluated at the

last message before θ. The resulting encoding function is given by Xt+1 = 0 if U < 1/2,

otherwise Xt+1 = 1.

3.4 Achievable Rate by Yang et al.

Naghshvar et al. [NJW15] proposed the “posterior matching” communication scheme ana-

lyzed in this section, with the SED partitioning rule (2.9), given by:

SED rule: 0 ≤
∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t) < min

i∈S0

ρi(y
t) . (3.6)

This is the rule described as the “small enough difference” (SED) rule by Yang et al. [YPA21].

Naghshvar et al. proved that the communication scheme, with SED partitioning achieves

the channel capacity asymptotically. An alternative prove that the scheme, under SED

partitioning, achieves the channel capacity is to just show that it is in fact a “posterior

matching” scheme. It suffices to show that the scheme uses the same encoding function

as [SF11] applied to a permutation of the messages. Since the posteriors ρi(y
t) are fully

determined by the history of received symbols Y t, a permutation of the messages can be

defined by the ordering of the message that results from concatenating the messages in

S0 and S1, each sorted by decreasing posterior. This permutation induces a c.d.f. on the

corresponding posteriors. Then, to satisfy the “posterior matching principle”, the random

variable U could just be the c.d.f. evaluated at the last message before θ. The resulting

encoding function is given by Xt+1 = 0 if U < 1/2, otherwise Xt+1 = 1.

Yang et al. [YPA21] developed a finite-blocklength lower bound on the rate achievable by

the SED encoder. This bound is computed from an upper bound on the expected blocklength
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E[τ ] for each message length K provided in [YPA21], equation (3.17). Yang’s achievability

bound is the highest existing lower bound that could be found for the model before the

analysis in this dissertation was developed. The achievability bounds in this dissertation are

also published in [AGW23].

The analysis by Yang et al. consists of splitting the single phase process by Naghshvar

et al. [NJW15] into a two phase process, with a communication phase (or phase I) and a

confirmation phase (or phase II). The communication phase starts at time t = 0 and ends

at a stopping time T , when the transmitted message attains a log likelihood ratio Ui(t) at

or above 0 for the first time, defined in [YPA21] by:

Phase I stopping time: T ≜ min
t∈N
{Ui(t) ≥ 0 : θ = i} . (3.7)

Note that Ui(t) = 0 ⇐⇒ ρi(y
t) = 1

2
, and that Ui(t) ∈ [0, C2) ⇐⇒ ρi(y

t) ∈ [1
2
, q). The

confirmation phase starts at time T , when the communication phase ends, and ends at the

stopping time τ where ρi(y
t) ≥ 1

2
, also where i is the transmitted message θ. This is a

method first used by Burnahsev in [Bur76]. The two phase analysis allows one to exploit

the tighter constraints that the process satisfies during the confirmation phase.

Let Ft ≜ σ(Y t), the σ-algebra generated by the sequence of received symbols up to time

t, where Y t = [Y1, Y2, . . . , Yt]. Yang et al. showed that the SED encoder from Naghshvar et

al. [NJW15] guarantees that the following constraints (3.8)-(3.11) are met:

E[Ui(t+ 1)|Ft, θ = i] ≥ Ui(t) + C, if Ui(t) < 0, (3.8)

|Ui(t+ 1)− Ui(t)| ≤ C2, (3.9)

E[Ui(t+ 1)|Ft, θ = i] = Ui(t) + C1, if Ui(t) ≥ 0, (3.10)

|Ui(t+ 1)− Ui(t)| = C2, if Ui(t) ≥ 0 . (3.11)

Meanwhile, Naghshvar et al. showed that the SED encoder also satisfies the stricter con-
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straint that the average log likelihood ratio U(t), as defined in equation (3.12), and is also

a submartingale that satisfies equation (3.13), which is equivalent to (3.14):

U(Y t) ≜
M∑
i=1

ρi(Y
t)Ui(Y

t) (3.12)

E[U(Y t+1) | Ft] ≥ U(Y t) + C (3.13)

E

[
M∑
i=1

(
ρi(y

t+1)Ui(t+1)−ρi(yt)Ui(t)
) ∣∣∣∣∣Ft

]
≥ C . (3.14)

The process U(t) is a weighted average of values Ui(t), some of which increase and some of

which decrease after the next transmission t+ 1.

Yang et al. [YPA21] analyzed the expectation E[T ] as a martingale stopping time, on the

process ζ(t) defined by ζ(t) ≜ Ui(t)
C
− t. The bound by Yang et al. required that inequalities

(3.8) and (3.9) be satisfied, so that the process ζ(t) would exhibit the desired properties.

Before continuing with the analysis by Yang et al. [YPA21], the use of the restriction to

event {θ = i}, in the communication phase stopping time, is explained. The analysis only

terminates the process in the confirmation phase, which starts at time T , when the correct

message attains Ui(t) ≥ 0. For this reason, the restriction is also “inherited” by the process

stopping time τ . When applied to the communication phase stopping time T , the restriction

to the event {θ = i} facilitates the analysis. When applied to the overall stopping time τ , it

defines a “Gene” aided decoder that prevents early decoding when the wrong message i ̸= θ

attains a posterior ρi(y
t) ≥ 1 − ϵ. In reality, the process ends when any message i ∈ Ω

attains ρi(yt) ≥ 1− ϵ. The “Gene” aided decoder may force the process to continue past the

original stopping time τ , and only stop when the posterior of message θ attains the stopping

condition. Thus, the “Gene” aided decoder exhibits a stopping time τ that upper bounds

that of the original decoder that is analyzed.

Yang et al. [YPA21], [YW19] upper bounded the confirmation phase expected time E[τ−

T ] using a Markov Chain analysis that exploits the larger and fixed magnitude step size of
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C2 during the confirmation phase, see (3.11), and the fixed expected step size in equation

(3.10). It is possible that the correct message enters the confirmation phase, and then falls

back to the communication phase. This “fall back” event is formally described by:

Fall back event: {t2 > t1 = T} ∩ {Ui(t1) ≥ 0} ∩ {Ui(t2) < 0} ∩ {θ = i} (3.15)

Since T is the time of the first crossing into the confirmation phase, the time τ −T , which is

analyzed by Yang et al. using a Markov Chain, includes the time that the message θ takes

to return to the confirmation phase if a “fall back” occurs.

Yang et al. used the two phase analysis to obtained the following upper bounds τB on

the expected blocklength E[τ ]:

τB =
log2(M − 1) + C2

C
+

⌈
log2(

1−ϵ
ϵ
)

C2

⌉
C2

C1

+ 2−C2

(
2C2

C
− C2

C1

)
1− ϵ

1−ϵ
2−C2

1− 2−C2
. (3.16)

Yang et al. analyzed a tighter upper bound on E[τ ], which is found in Thm. 7, Lemma

4 in [YPA21]. The tighter bound was obtained by synthesizing a surrogate martingale U ′
i(t)

with stopping time T ′ that upper bounds T , which is a degraded version of the sub-martingale

Ui(t). The martingale U ′
i(t) guarantees that whenever U ′

i(t) < 0, then U ′
i(t+1) ≤ 1

q
log2(2q),

while still satisfying the constraints needed to guarantee the bound (3.16). An achievability

bound on the expected blocklength for the surrogate process, U ′
i(t), is constructed from (3.16)

by replacing some of the C2 values by 1
q
log2(2q). The new bound from [YPA21] Lemma 4 is

given by:

τB ≤
log2(M−1)

C
+
log2(2q)

q · C
+

⌈
log2(

1−ϵ
ϵ
)

C2

⌉
C2

C1

+2−C2

(
C2+

log2(2q)
q

C
−C2

C1

)
1− ϵ

1−ϵ
2−C2

1− 2−C2
. (3.17)

This bound also applies to the original process Ui(t), since the blocklength of the process

U ′
i(t) upper bounds that of Ui(t). The bound (3.17) is lower because 1

q
log2(2q) is smaller

than C2. The improvement is more significant as p→ 0 because 1
q
log2(2q) grows from 0 to 1
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as p→ 0, while C2, instead, grows from 0 to infinity. The rate lower bound is given by K
E[τ ]

,

where E[τ ] is upper bounded by (3.17) from Thm. 7 [YPA21]. We explain this analysis in

detail in Thm. 2 and generalize it to other processes that are not restricted to martingales.

3.5 Motivation, Observations and Approach

This research seeks informative analytical bounds on the rates that are possible when commu-

nicating over the binary symmetric channel with full, noiseless feedback. To be informative,

any lower bound on the rate must be higher than the lower bounds developed for less ca-

pable systems with limited feedback, such as the bound for stop feedback by Polyanskyi et

al. [PPV11]. Note that the BSC with full, noiseless feedback is more capable than the BSC

with stop feedback, which is itself more capable than the BSC without feedback. Consider

“downgrading” the BSC with full feedback to the stop feedback system by adding a “black

box” containing a replica of the receiver, that outputs a true-false symbol informing the

transmitter when the process stops. Then, the achievable performance of the BSC with

full and noiseless feedback is lower bounded by that of the BSC with stop feedback. This

dissertation seeks to analyze a finite-blocklength achievability bound, for the BSC with full

and noiseless feedback, that is higher than the highest achievability bound for the BSC with

stop feedback, by Polyanskyi et al. [PPV11].

The new analysis presented in this chapter was originally motivated by simulations that

achieved excellent performance with relaxed encoding rules that violated the constraints of

previous analysis.

• Performance results from simulations that enforced either relaxation of the SED rule,

with less restrictive partitioning, demonstrated performance that was indistinguishable

from that of the original strict SED rule. The SEAD rule has the significant advan-

tage of lower complexity implementations, e.g. it admits the simple partitioning by

thresholding of ordered posteriors, see 2.3, which then allows updating the posteriors
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and merging S0 and S1 into a sorted list with much fewer operations. Specifically, the

relaxed rules can accomplish partitioning while splitting at most one posterior group

at a given time t.

• A notable property of the SEAD partitioning rule is that it guarantees the following

inequality: E[Uθ(t+1)−Uθ(t) | Y t = yt] ≥ C. This is an expectation that only requires

knowledge of the posteriors obtained from the received sequence Y t, which is available

to both encoder and decoder at any time t. The expectation E[Uθ(t+1)−Uθ(t) | Y t = yt]

is a function of all the posteriors in the space Ω. The SED rule satisfies the more strict

constraint ∀ i ∈ Ω : E[Ui(t+ 1)− Ui(t) | Y t = yt, θ = i] ≥ C, (3.8).

• The problem statement seeks a bound on E[τ ], where E[τ ] =
∑

i∈Ω E[τ | θ = i] Pr(θ = i).

The SED rule guarantees bound (3.17) on E[τ | θ = i] for every i ∈ Ω, using constraint

(3.8), and thus on E[τ ]. However, the bound derived from the SEAD rule is not for

every particular i ∈ Ω, but is rather an expectation over the entire space Ω. This

dissertation explores using the lower bound taken over the entire message space, a

bound on E[Uθ(t+1)−Uθ(t) | Y t = yt], to analyze a bound directly on E[τ ]. This bound

may not apply to the expected decoding time condition on an individual message (that

is, E[τ | θ = i] for a particular i ∈ Ω) but rather holds for E [E[τ | θ = i]] =
∑

i∈Ω E[τ |

θ = i] Pr(θ = i).

3.6 Contributions

The contribution of this chapter are the following:

• This chapter shows achievability rate bounds [AGW23] for the BSC with noiseless

feedback above previously developed bounds like those in [YPA21]. The achievabilty

bounds meet the desired criteria of exceeding, even for very high rates, the bounds

developed for the BSC with stop feedback that prevent the encoder from using the
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received sequence to optimize the transmissions. The new bounds show the provable

performance gain by the full, noiseless feedback over stop feedback.

• The achievability rate bounds apply to both the SED encoder analyzed in [YPA21],

and to the small-enough-absolute-difference (SEAD) encoder in [AGW23].

• This chapter proposes a tighter communication phase stopping time analysis via a “sur-

rogate process,” also shown in [YPA21], and generalized in [AGW23]. The “surrogate

process” analysis leads to a tighter stopping time bound for a class of processes with

increasing expected step size that is not fully utilized in the bound of the stopping

time of the original process.

• This chapter provides a new analysis framework for posterior matching over the BSC

that forgoes submartingale analysis in the communication phase. This allows it to

demonstrate that the achievable rate of [YPA21] can be attained with a broader set of

encoders that satisfy less restrictive criteria than the SED constraint, like the SEAD

2.2 or the Weighted Median partitioning rule of 5.6.

• This chapter proves that the SEAD encoding rule from Chapter 2.2, which admits low

complexity encoders like the systematic posterior matching algorithm 2.4, suffices to

guarantee the same rate performance that has been previously established for SED

encoders, e.g., [YPA21].

• This chapter proves that the systematic transmissions used in [AYW20], and in the

SPM algorithm of chapter 2, to initially send the message symbols, meets the SED

encoding rule, as well as the SEAD and “Weighted Median” encoding rule of chapter

5. During the systematic transmissions, operations are limited to simply storing the

received sequence, further reducing the transmission complexity.

• This chapter provides a finite blocklength rate upper bound for the BSC with noiseless

feedback under an error probability constraint Pr(Θ̂ ̸= Θ) ≤ ϵ. The rate upper bound
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is below the channel capacity for a very large region, and is always below the epsilon

capacity shown in [PPV11].

3.7 Organization

The rest of the chapter is organized as follows: Sec. 3.8 provide achievability rate bounds for

the BSC with noiseless feedback with error rate constraints. Sec. 3.9 introduces a converse

bound on the rate achievable by the BSC with noiseless feedback with a stopping rule of the

form described by (3.1) that terminates the process only when a “reliable enough” estimate

is obtained. Sec. 3.10 introduces eight Lemmas that are used to prove the theorems. Sec.

3.11 proves Thm. 1. Sec. 3.14 provides the proofs of Lemmas 1-6 . Sec. 3.12 proves Thm.

2 and Thm. 3. Sec. 3.13 proves the converse Thm. 4. Sec. 3.15 extends the achievability

bounds in Thms. 1, 2, and 3 to arbitrary input distribution, and to the special case where

systematic transmissions transform a uniform input distribution on Ω = {0, 1}K into a

binomial distribution, given the received sequence Y K . Sec. 3.16 provides plots of the bounds

defined in Thms. 1, 2, 3, and 4 for forward BSC channels with capacities 0.90, 0.75, 0.50 and

0.25, as a function of blocklength, along with simulation results that validate the expressions

in the Thms. Sec. 2.7 provides the chapter’s conclusion. Finally, Sec. 3.18 through Sec. 3.22

provides the proofs of some of the details and claims used, but not proven in the previous

sections.

3.8 Achievability Theorems

The achievability bounds in this dissertation use the stopping rule τ introduced by Yang et

al. [YPA21], and is given by:

τ ≜ min{t ∈ N : max
i
{Ui(t)} ≥ NC2} , N ≜

⌈
log2

(
1−ϵ
ϵ

)
C2

⌉
. (3.18)
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Figure 3.2: Achievability bounds vs. blocklength for a channel with capacity C = 0.50,
shown by the horizontal, solid, blue line. The purple and red solid lines −• with circles
show the simulated performance of the SEAD via the SPM-TOP algorithm of chapter 2.
The red solid line is the bound derived with the new analysis and tightened using the
surrogate process in Thms. 2 and 3. The dash dot line −. is Yang’s achievability bound
from (3.17). The yellow solid line is the sub-optimal achievability bound of Thm. 1, and
the yellow line −. is Yang’s original bound (3.16), not optimized with the surrogate process
analysis. The blue dash dot line −. shows Polyanskiy’s [PPV11] achievability bound for
variable-length, stop-feedback codes, and the green dash dot line −. shows Williamson’s
approximation [Wil14] to Polyanskiy’s [PPV11] achievability bound.

The new stopping rule replaces the original stopping time τ defined in (3.1), and facilitates

the analysis of the confirmation phase. The upper bound on E[τ ], derived with the new

stopping rule, also applies to the original stopping time. To show this, note that the new

stopping time upper bounds the original stopping time. This is because NC2 ≥ log2(1− ϵ)−

log2(ϵ), thus, the new process does not stop after reaching a point Ui(t) ∈ [log2(
1−ϵ
ϵ
), NC2),

while the original point does. However, if the new process stops, after reaching Ui(t) ≥ NC2,

the original process also stops, because it has exceeded the log2(
1−ϵ
ϵ
) threshold.

The definition of the communication phase time T used in the achievability bounds is not
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the stopping time used in by Yang et al. [YPA21]. Instead, it is the sum of stopping times

used in [AGW23]. For each n = 1, 2, 3, . . . , let Tn be the time at which the confirmation

phase for message i starts for the n-th time (or the process terminates), and let t
(n)
0 be the

time the encoder exits the confirmation phase for message i for the (n − 1)-th time (or the

process terminates). That is, for each n = 1, 2, 3, . . . , let t
(n)
0 and Tn be defined recursively

by t
(1)
0 = 0 and:

Tn = min{t ≥ t
(n)
0 : Ui(t) ≥ 0 or t = τ} (3.19)

t
(n+1)
0 = min{t ≥ Tn : Ui(t) < 0 or t = τ} . (3.20)

Then, the total time the process Ui(t) is not in its confirmation phase is given by:

T ≜
∞∑
n=1

(
Tn−t(n)0

)
. (3.21)

The new definition of T is needed in the new analysis. Furthermore, it leads to a tighter anal-

ysis of the expected communication phase time. The definition of T0 used in this dissertation,

and in [AGW23], agrees with the communication phase time T in Yang et al. [YPA21].

The analysis of the bounds on E[τ ] follow the same approach used by Yang et al. where

the time τ is split into τ = T +(τ −T ), where T is the new definition in (3.21). By linearity

of expectations, E[τ ] = E[T ]+E[τ−T ], which allows us to bound the terms E[T ] and E[τ−T ]

separately. Then, the bound τB on E[τ ] is obtained as the sum of the two bounds.

3.8.1 Fundamental Achievability Theorem

The next Thm. is the fundamental achievability Thm. that forgoes the submartingale analysis

of the communication phase used by Yang et al. [YPA21].

Theorem 1. Let ϵ < 1/2 be a chosen bound on the frame error rate and let τ be a stopping

time of a sequential transmission system over the BSC, defined in (2.1). At each time t let
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the posteriors ρ1(Y
t), ρ2(Y

t), . . . , ρM(Y t) be as defined in (7.1) and the log likelihood ratios

U1(t), . . . , UM(t) be as defined in (7.2). Suppose that for all times t for all received symbols

yt, and for each i ∈ Ω, the constraints (3.22)-(3.25) are satisfied:

E[Ui(t+ 1)− Ui(t)|Y t = yt, θ = i] ≥ a , where a > 0 , (3.22)

Ui(t+ 1)− Ui(t) ≤ C2 , if Ui(t) ≤ 0 , (3.23)

E[Ui(t+ 1)− Ui(t)|Y t = yt, θ = i] = C1 , if Ui(t) ≥ 0 , (3.24)

| Ui(t+ 1)− Ui(t) | = C2 , if Ui(t) ≥ 0 . (3.25)

Suppose further that for all t and yt the following condition is satisfied:

E[Uθ(t+ 1)− Uθ(t)|Y t = yt] ≥ C (3.26)

Then, expected stopping time E[τ ] is upper bounded by (3.27).

E[τ ] ≤ log2(M−1) + C2

C
+

⌈
log2(

1−ϵ
ϵ
)

C2

⌉
C2

C1

+ 2−C2

(
C2

C
− C2

C1

)
1− ϵ

1−ϵ
2−C2

1− 2−C2
. (3.27)

The sequential transmission process begins by randomly sampling a message θ from Ω.

Using that selected message, at each time t until the decoding process terminates, the process

computes an Xt = xt, which induces a Yt = yt at the receiver. The original constraint (3.8)

used by Yang et al. [YPA21] requires that {Ui(t) − tC, θ = i} be a submartingale and

allows for a bound on Ui(t) at any future time t+ s for any possible selected message i, i.e.

E[Ui(t + s) | Ft, θ = i] ≥ Ui(t) + sC. This is no longer the case with the new constraints in

Thm. 1. While equation (3.22) of the new constraints make the process Ui(t) a submartingale,

it only guarantees that E[Ui(t+ s) | Ft, θ = i] ≥ Ui(t)+ sa and a could be any small positive

constant. The left side of equation (3.26) is a sum that includes all M realizations of the

message; it is a constraint for each fixed time t and each fixed event Y t = yt that governs

the behavior across the entire message space Ω, and does not define a submartingale. For
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this reason, the martingale analysis used by Naghshvar et al. in [NJW15] and Yang et al.

in [YPA21] no longer applies.

A new analysis is needed to derive (3.27), the bound on the expected stopping time τ ,

using only the constraints of Thm. 1. This new analysis needs to exploit the property that the

expected stopping time is over all messages, that is: E[τ ] =
∑M

i=1 Pr(θ = i)E[τ | θ = i], which

the original analysis does not need, because it guarantees that the bound (3.17) holds for

each message individually, i.e., the bound holds on E[τ | θ = i] , i = 1, . . . ,M . Note, however,

that the original constraint (3.8) does imply that the new constraints are satisfied, so that

the results derived in this chapter also apply to the setting of Naghshvar et al. [NJW15], and

Yang et al. [YPA21]. The new constraints allow for a much simpler encoder and decoder

design. This simpler design motivates the new analysis that forgoes the simplicity afforded by

modeling the process {Ui(t), θ = i} as a martingale. The new achievability analysis includes

in the communication phase time T every time interval where the transmitted message is not

in its confirmation phase, that is, the time intervals where {Ui(t) < 0, θ = i}. Specifically,

in the event where Ui(t1) ≥ 0 for some t1 and ∃t > t1 with Ui(t) < 0, the time t is counted

in the communication phase time T . The analysis by Yang et al. [YPA21] included these

events in the confirmation phase time τ − T instead.

3.8.2 A “Surrogate Process” that Tightens the Achievability Bounds

The method used to obtain the achievability bounds (3.16) and (3.27), introduces a large

sub-optimal term C2

C
, when the expectation E[τ ] is split into E[T ] and E[τ−T ] to bound them

separately. This term makes the bounds loose compared to (3.17). Since the expectation

E[Ui(T )], the value of Ui(t) at the end of the communication phase, could not be computed

directly, the bound C2 on Ui(T ) from (3.23) is used in the bound on the communication

phase time E[T ]. However, this large value C2 is not strictly needed to satisfy any of the

constraints in Thm. 1. To overcome this sub-optimality, this dissertation proposes analyzing

a surrogate process, which is a degraded version of the original process Ui(t). The surrogate
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Figure 3.3: Achievability bounds vs. blocklength for a channel with capacity C = 0.999,
shown by the horizontal, solid, blue line. The red solid line is the bound derived with the
new analysis and tightened using the surrogate process in Thms. 2 and 3. The red dash dot
line − ⋆−· with stars on top of the solid red line is Yang’s achievability bound from (3.17),
also using a surrogate process analysis. The yellow solid line is the sub-optimal achievability
bound of Thm. 1, and the yellow line − ⋆ −· with stars on top of the yellow solid line
is Yang’s original bound (3.16), not optimized with the surrogate process analysis. Note
that the latter two fall below Williamson’s approximation [Wil14] to Polyanskiy’s [PPV11]
achievability bound for for variable-length, stop-feedback codes.

process is a degradation in the sense that it is always below the value of the original process

Ui(t). For the surrogate process, the value at the start of the confirmation phase is bounded

by a constant that is smaller than C2.

The utility of the surrogate process may be better understood through the following frog-

race analogy, illustrated in Fig. 3.4. A frog f1 traverses a race track of length L jumping

from one point to the next. The distance traveled by frog f1 in a single jump is upper

bounded by u1. The jumps are not necessarily IID, but the expected progress of each jump

is guaranteed to be bounded by l. However, not every jump is forward; f1 may sometimes
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Figure 3.4: Example: frogs f1 and f2 jumping from 0 to L. The length of a single jump by
f1 is at most u1. Frog f2 jumps at the same times as f1; however, the length of a single jump
by f2 is at most u2 < u1. This restriction forces frog f2 to be always behind f1, and thus
reach L no sooner than frog f1.

jump backwards. With only this information, an upper bound on the average number of

steps that frog f1 takes to reach the end of the track needs to be determined. This could

be done using Doob’s optional stopping theorem [Dur19b] to compute the upper bound as
L+u1

l
, the maximum distance L+u1 traveled from the origin to the last jump divided by the

lower bound on average distance l of a single jump.

Perhaps this bound can be improved. The final point is located between L and L + u1

and is reached in a single jump from a point between L − u1 and L. If, for instance, the

frog was restricted to only forward jumps, the term u1/l could just be replaced by 1. This

is not the case, as the process Ui(t) does take steps backwards with probability p. Another

property of Ui(t) is exploited instead, which is that the maximum step size C2 is not needed

to guarantee the lower bound C on the average step size. Suppose now that a surrogate frog

f2 participates in the race along f1, but with the following restrictions:

1. f1 and f2 start in the same place and always jump at the same time.

2. f2 is never ahead of f1, i.e. when f1 jumps forward, f2 jumps at most as far, and when

f1 jumps backwards, f2 jumps at least as far.

3. Moreover, the forward distance traveled by frog f2 in a single jump is upper bounded
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by u2 < u1.

4. Despite its slower progress, the surrogate frog f2 still satisfies the property that the

expected length of each jump is lower bounded by l.

The average number of steps taken by f2 will be upper bounded by L+u2

l
, also by Doob’s

optional stopping theorem. Since f2 is never ahead of f1, then f2 crossing the finish line

implies that f1 has as well. Thus, L+u2

l
is also an upper bound on the average number of

jumps required for frog f1 to reach across L.

The concept of the “surrogate process” is formalized in the next Thm, where the “surro-

gate” frog f2 is replaced by the process U ′
i(t), the track length L is log(M−1), the maximum

step size u1 of the original process Ui(t) is C2, the maximum step size u2 of the surrogate

process U ′
i(t) is B < C2, and the shared lower bound l on the expected step size is C.

Theorem 2: Surrogate Process Theorem. Let the surrogate process U ′
i(t) be a degraded

version of Ui(t) that still satisfies the constraints of Thm. 1. Initialize the surrogate process

as U ′
i(0) = Ui(0), and reset U ′

i(t) to Ui(t) at every t = t
(n)
0 , that is, at each t that the

encoder exits a confirmation phase round for message i. Define T ′
n ≜ min{t ≥ t

(n)
0 : U ′

i(t) ≥

0 or t = t
(n+1)
0 }. Suppose that for some B < C2, the process U ′

i(t) also satisfies the following

constraints:

Ui(t) < 0 =⇒ U ′
i(t+1)−U ′

i(t) ≤ Ui(t+1)−Ui(t) (3.28)

U ′
i(t) < 0 =⇒ U ′

i(t+1) ≤ B (3.29)

U ′
i (T

′
n)−

p

q
(Ui(Tn)− C2) ≤ B. (3.30)

Then, the total time U ′
i(t) is not in its confirmation phase is given by T ′ ≜

∑∞
n=1

(
T ′
n−t

(n)
0

)
,

and E[T ] is bounded by:

E[T ] ≤ E[T ′] ≤ B

C

(
1+2−C2

1−2−NC2

1−2−C2

)
− E[Ui(0)]

C
. (3.31)
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Note that Tn ≤ T ′
n for all n, because the definition of U ′

i(t) and constraint (3.28), demand that

Ui(t) ≥ U ′
i(t), thus T ≤ T ′. Also note that after the process terminates at the stopping time

τ , both Tn and t
(n)
0 are equal to τ , which makes their difference 0. Then, the communication

phase times T and T ′ are a sum of finitely many non-zero values.

Theorem 3. Consider sequential transmission over the BSC with noiseless feedback with an

encoder that enforces the Small Enough Absolute Difference (SEAD) encoding constraints,

used in Chapter 2, Sec. 2.2, and described by equations (3.32) and (3.33) below:

∣∣∣∣∣∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t)

∣∣∣∣∣ ≤ min
i∈S0

ρi(y
t) (3.32)

ρi(y
t) ≥ 1

2
=⇒ S0 = {i} or S1 = {i} . (3.33)

Then, the constraints (3.25)-(3.26) in Thm. 1 are satisfied, and a process U ′
i(t), i = 1, . . . ,M

as described in Thm. 2 can be constructed with B = 1
q
log2(2q). Then, the following upper

upper bound on E[τ ] applies to both U ′
i(t), and to the original process:

E[τ ] ≤
log2(M−1)+

log2(2q)
q

C
+
C2

C1

⌈
log2

(
1−ϵ
ϵ

)
C2

⌉
+2−C2

1− ϵ
1−ϵ

2−C2

1− 2−C2

(
log2(2q)

qC
− C2

C1

)
. (3.34)

Note that meeting the SEAD constraints guarantees that both sets S0 and S1 are non empty.

This is because, if either set is empty, the other one is the whole space Ω, and the difference

in (3.32) is 1, which is greater than any posterior in a space with more than one element

with non-zero posterior.

3.9 Converse Theorem

The next theorem proposes an upper bound on the rate achievable for the BSC with noise-

less feedback, under the same constraints in the problem statement of Sec. 3.2. The original

transmission problem consists of maximizing the expected rate, defined by K/E[τ ], or mini-
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mizing the expected decoding time E[τ ]. A lower bound on the achievable expected decoding

time E[τ ] defines an upper bound on the achievable expected rate K/E[τ ].

3.9.1 Converse Bound Problem Statement

The converse bound problem consists on finding the highest lower bound τB on the expected

decoding time E[τ ] that can be achieved with any scheme that bounds the error probability

by Pr(θ̂ ̸= θ) ≤ ϵ. The converse problem can be formally described by:

maximize τB (3.35)

subject to τB ≤ E[τ ] (3.36)

Pr(θ̂ ̸= θ) ≤ ϵ (3.37)

Theorem 4. Let N = ⌊ log2(1−ϵ)−log2(ϵ)
C2

⌋. That is, N is at most the minimum number of

confirmation phase steps needed to decode. Then, the bound τB below lower bounds the E[τ ]:

τB ≜ (1− 2ϵ)
K − 1

C
+ 2ϵ

K − 1

log2(2q)
− (1− 2ϵ)

log2(2q)

C
(3.38)

+
1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)

C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.39)

+
1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)

C2

C1

(
N − 2−NC2

1− 2−NC2

1− 2−2NC2
2N

)
(3.40)

This time is given by three expressions: the time where every message is in the communication

phase, given by (3.38); the time that a message i that is not the correct message θ spends

in the confirmation phase before the correct message ever reaches the confirmation phase,

given by (3.39); and the time the process takes to stop after the correct message θ enters the

confirmation phase for the first time, given by (3.40). Note that incorrect decoding must be

accounted for in the second and third case, terms (3.39) and (3.40).
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3.9.2 Approximated of the Rate and Blocklength of the SEAD Encoder

Let N = ⌈ log2(1−ϵ)−log2(ϵ)
C2

⌉, as defined in (3.18). Then, the expected decoding time of an

encoder that enforces either the SEAD or SED encoding rules, may be approximated by

E[τ ] ≈ τA, where τA is given by:

τA ≜
K − 1

C
− log2(2q)

C

+
1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)

C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
+

1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)

C2

C1

(
N − 2−NC2

1− 2−NC2

1− 2−2NC2
2N

)
(3.41)

This approximation is similar to the upper bound of Thm. 4, in that assumes an expected

step size E[log2(ρθ(y
t+1))− log2(ρθ(y

t))|Y t = yt] = C, during the communication phase.

This is an upper bounds on the expected step size of log2(ρi(yt), see the proof of Thm. 4.

However, the expression enforces an error probability upper bounded by ϵ, as it only allows

the confirmation phase to stop when the posterior of the item in confirmation reaches or

exceeds the threshold ϵ. This is how the algorithm is implemented in 2. An approximation

of the rate for the same encoders is give by K
τA

.

3.10 Lemmas

The following five Lemmas are the key elements to prove the theorems:

Lemma 1: Expected times. Let T be the total time the transmitted message spends in the

communication (including the time another message i ̸= θ may spend in the confirmation

phase), and let Tn and t
(n)
0 be as defined in (3.19) and (3.20). Define T (n) ≜ Tn − t

(n)
0 . For

r ≤ s ≤ t, let ytr:s be [y1, . . . , ys], the string of yi values from yr to ys. Define the sets Yϵ
(τ>t),
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Yϵ, and Yϵ
i by:

Yϵ
(τ>t) ≜ {yt∈{0,1}t | ρj(yt1:s)<1−ϵ, ∀j ∈ Ω, s ≤ t} (3.42)

Yϵ ≜ ∪∞t=0Y
t,ϵ
(τ>t) (3.43)

Yϵ
i ≜ {yt ∈ Yϵ | ρi(yt) < 1

2
} , (3.44)

then, E[τ ] and E[T ] are given by:

E[T ] =
M∑
i=1

Pr(θ = i)
∑
yt∈Yϵ

i

Pr(Y t = yt | θ = i) =
M∑
i=1

∑
yt∈Yϵ

i

Pr(Y t = yt, θ = i) . (3.45)

E[τ ] =
M∑
i=1

Pr(θ = i)
∑
yt∈Yϵ

Pr(Y t = yt | θ = i) =
∑
yt∈Yϵ

M∑
i=1

Pr(Y t = yt, θ = i) (3.46)

Lemma 2. Suppose constraints (3.22), (3.25), and (3.26) of Thm. 1 are satisfied, and define

Vi(y
t) and Ψi(y

t):

Vi(y
t) ≜ E[Ui(t+1)−Ui(t) |Y t = yt, θ = i] (3.47)

Ψi(y
t) ≜ E[log2(ρi(y

t+1))−log2(ρi(yt))|Y t = yt, θ = i] , (3.48)

Define the set Aϵ by:

Aϵ ≜ {yt ∈ Yϵ
i : ρj(y

t) <
1

2
∀j = 1, . . . ,M} , (3.49)

where Aϵ does not depend on i. Then, the following inequalities holds:

C
M∑
i=1

Pr(θ= i)
∑
yt∈Yϵ

i

Pr(Y t = yt | θ= i) ≤
M∑
i=1

Pr(θ= i)
∑
yt∈Yϵ

i

Vi(y
t) Pr(Y t = yt | θ= i) (3.50)

C

M∑
i=1

Pr(θ= i)
∑
yt∈Aϵ

Pr(Y t = yt | θ= i) ≥
M∑
i=1

Pr(θ= i)
∑
yt∈Aϵ

Ψi(y
t) Pr(Y t = yt | θ= i) . (3.51)
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Claim 2. For the communication scheme described in Sec. 3.3, the following are equivalent:

(i) | Uj(t+ 1)− Uj(t) |= C2

(ii) S0 = {j} or S1 = {j}

This claim implies that for constraint (3.25) to hold, the set containing item j, with Uj(t) ≥ 0,

must be a singleton.

Proof. See Sec. 3.18

Claim 3 (The Confirmation Phase is a Discrete Markov Chain). Let the partitioning of Ω

at time t = s be S0 = {j}, S1 = Ω \ {j}, and suppose Ys+1 = 0. If the partitioning at time

t = s+1 is also S0 = {j}, S1 = Ω \ {j}, the same partitioning of time s, and Yt+1 = 1, then

for all i = 1, . . . ,M , ρi(yt+1) = ρi(y
t−1), that is ρi(y

s) = ρi(y
s+2). Proof: see appendix 3.21

Lemma 3. Suppose that constraints (3.22), (3.25), and (3.26) of Thm. 1 are satisfied, as

in Lemma 2, then the following equalities hold:

∑
E

yt∈Yϵ
i

[Ui(t+1)−Ui(t) |Y t=yt, θ= i] Pr(Y t=yt |θ= i)=
∞∑
n=1

E[Ui(Tn)−Ui(t
(n)
0 ) |θ= i] . (3.52)

∑
yt∈Yϵ

i

E[log2

(
ρi(y

t+1)

ρi(yt)

)
|Y t=yt, θ= i] Pr(Y t=yt |θ= i) = E[log2

(
ρi(y

T0)

ρi(y0)

)
| θ= i] . (3.53)

The left side of 3.52 is the inner sum of (3.50) in Lemma (2)

Lemma 4. Let ϵ be the decoding threshold, and let the decoding rule be (3.18). Define the fall

back probability as the probability that the correct message θ returns to the communication

phase, computed at the start of a confirmation phase. Then, the fall back probability is a

constant pf independent of the message i = 1, . . . ,M , independent of the number of previous

confirmation phase rounds n, and is given by:

pf = 2−C2
1− 2−NC2

1− 2−(N+1)C2
. (3.54)
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Let the decoding rule be similar to rule (3.18), in the sense that N is fixed regardless of the

value of Ui(T ) ∈ [0, C2). Particularly, N could be computed by:

N ≜

⌊
log2(

1−ϵ
ϵ
)

C2

⌋
. (3.55)

In this case, (N + 1)C2 > log2(
1−ϵ
ϵ
) ≥ NC2, which lower bounds the decoding time. Define

the recovery probability as the probability that the wrong message returns to the communi-

cation phase, given that it has just crossed into the confirmation phase. Then, the recovery

probability is a constant pr given by:

pr =
1− 2−NC2

1− 2−(N+1)C2
, (3.56)

is independent of which incorrect message i ∈ Ω \ θ has reached the confirmation phase,

provided it is not θ, and independent of the number of previous correct or wrong confirmation

phase rounds n.

Conversely, suppose that the wrong message i ∈ Ω \ θ has crossed into the confirmation

phase, with Ui(t) ∈ [0, C2) for some time t. Then, the probability that the wrong confirmation

phase ends in wrong decoding at some time t′ > t, where message i attains Ui(t
′) ≥ NC2,

instead of a recovery, is given by 1− pr:

1− pr = 2−NC2
1− 2−C2

1− 2−(N+1)C2
(3.57)

Corollary of Lemma 4. Suppose that, at some time t = t2, the confirmation phase for the

correct message is at a step n, that is {Ui(t2) ∈ [nC2, (n + 1)C2)} ∩ {θ = i}, and suppose

further that the confirmation phase ends the first time τ2 that Ui(t) reaches state n+m (m

states ahead of n), or when Ui(t) reaches state zero (n states backwards, that is:

τ2 ≜ min{t > t2 : Ui(t) < C2 or Ui(t) ≥ (n+m)C2} . (3.58)
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Let pm be the probability that such confirmation phase ends with Ui(τ2) ≥ (n+m)C2, and let

p−n be the probability that it ends with Ui(τ2) < C2. Then, pm and p−n = 1− pm are given by:

pm =
1− 2−nC2

1− 2−(n+m)C2
(3.59)

pn− =
1− 2−mC2

1− 2−(n+m)C2
2−nC2 (3.60)

Furthermore, if n = m = N then:

pN =
1− 2−NC2

1− 2−2NC2
(3.61)

pN− =
1− 2−NC2

1− 2−2NC2
2−NC2 (3.62)

Lemma 5: Confirmation Phase Time. Suppose that the decoding rule is the one defined

in (3.18). Let pf be the fall back probability defined in 4, and let E[Sn] be the expected

duration of the n-th confirmation round. Then, E[Sn] is the same for any n = 1, 2, . . . , and

is a constant E[S], given by:

E[S] =
C2

C1

((1− pf )N − pf ) , (3.63)

that does not depend on n, that is: E[Sn] = E[S] ∀n = 1, 2, . . . .

Let the decoder be a “Gene aided” decoder that does not stop when the wrong message

reaches the decoding criteria. Then, the expected number of occurrences of the confirmation

phase is given by
∑∞

j=0 p
i
f = 1

1−pf
times, and the total confirmation phase time E[τ − T ] is

given by:

E[τ − T ] = E[S]
1

1− pf
=

(
N − pf

1− pf

)
C2

C1

=

(
N − 2−C2

1− 2−NC2

1− 2−C2

)
C2

C1

(3.64)

Equation (3.64) (with a few modifications) was proven in Yang et al. [YPA21], using a

Markov chain analysis.

61



Suppose instead, that the wrong message has just entered confirmation, and the decoding

rule is similar to rule (3.18), in that the process terminates when the message i in confirma-

tion reaches Ui(t) ≥ NC2, for some N ∈ N. Let the wrong confirmation phase end with a

recover, when the wrong message in confirmation falls back to the communication phase, or

in wrong decoding, when it reaches the decoding criteria. Let the recovery probability be pr

as defined in Lemma 4. Then, the expected duration E[Sbad
n ], of the n-th wrong confirmation

phase round, is a constant E[Sbad], given by:

E[Sbad] =
C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
, (3.65)

and does not depend on n. That is: E[Sn] = E[S]∀n = 1, 2, . . . .

Corollary of Lemma 5. Let the the setting be the one described in Corollary 1, in which

the process is in the correct confirmation phase at some time t = t2 and i = θ, with nC2 ≤

Ui(t2) < (n + 1)C2. This confirmation phase ends the first time t = τ2 that either i reaches

the origin: where Ui(t) < C2, or it reaches state n+m: where Ui(t) ≥ (n+m)C2, according

to rule 3.58. Then, such confirmation phase has an expected duration E[Sn+m], given by:

E[Sn+m] =
C2

C1

(
1− 2−nC2

1−2−(n+m)C2
(m+n)−n

)
=

C2

C1

(
m−2−nC2

1− 2−mC2

1−2−(n+m)C2
(m+n)

)
. (3.66)

In the particular case where m = n = N , then E[S2N ] is given by:

E[S2N ] =
C2

C1

(
2N

1− 2−NC2

1−2−2NC2
−N

)
=

C2

C1

(
N − 2N2−NC2

1− 2−NC2

1−2−2NC2

)
. (3.67)

This Corollary could apply to the case where reaching the origin is associated with a wrong

decoding, and reaching n+m is associated with a correct decoding.

Lemma 6. Let pf be the fall back probability in Lemma 4, and suppose that Ui(0) < 0 , ∀i =
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1, . . . ,M . Then the expectation (3.52) in Lemma 3 is upper bounded by:

M∑
i=1

Pr(θ= i)
∞∑
n=1

E[Ui(Tn)−Ui(t
(n)
0 ) | θ = i] ≤

M∑
i=1

Pr(θ= i)

(
pf

1−pf
C2 + C2−Ui(0)

)
(3.68)

≤ 2−C2
1− 2−NC2

1− 2−C2
C2 + C2 − E[Ui(0)] . (3.69)

Lemma 7: Markov Chain state probabilities on wrong confirmation phase. Sup-

pose that the wrong message i ̸= θ has entered the confirmation phase at some time t. Then,

Ui(t) > 0 and Ui(t − 1) < 0. In this case yt ∈ Yi \ Aϵ, and either yt−1 ∈ Aϵ or ∃j ̸= i

such that Uj(t − 1) ≥ 0, in which case also yt−1 ∈ Yi \ Aϵ. The message i in confirmation

(correct or wrong) is the entire set S0, making it a singleton S0 = {i}. By claim 3, the wrong

confirmation phase is also a Markov Chain with steps size C2. In the wrong confirmation

phase, since θ ̸= i, the transmitter sends 1, 1, . . . until a recovery occurs (or the process ends

in error). Suppose that the wrong Markov Chain has n states. Let r0 denote the time spent

at the starting state 0, and let ri i = 1, 2, . . . , n denote the time spent at state i. Then, in

the limit, as n→∞, each ri is given by:

rk+1 = r0
pk+1

qk+1
, ∀k = 1, 2, . . . , (3.70)

and r0 =
1
q
. Note that, message i spends one time unit at state 0, if recovery happens in the

first transmission. This immediate recovery happens with probability q, and with probability

p state 1 is reached instead. A future return necessarily implies additional time in state 0.

As n→∞, the message i returns to state 0 a.s., leading to r0 =
∑∞

j=0 p
j = 1

1−p
.

Lemma 8: Expected Sum of Bad Confirmation Steps. Let S be the sum of all the

steps that message θ takes, during any and all bad confirmation phases that may happen
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before an initial correct confirmation phase. Then, S is given by:

S =
1

C

M∑
i=1

Pr(θ = i)
∑

yt∈Yϵ
i \Aϵ

E[log2(ρi(y
t+1))−log2(ρi(yt))|θ = i, Y t = yt] . (3.71)

Denote by m the number of consecutive times a wrong message enters confirmation before

an initial correct confirmation. Let the crossing posterior of such message be ρm, given by

ρm = Pr(θ = i | Y t = yt), where i is the m-th incorrect message to enter the confirmation

phase by time t, and before message θ enters for the first time. Note that 1 − ρm is the

probability that message i is the incorrect message, given {Y t = yt}. Then, the value of S is

given by:

S =
∞∑
n=1

Vq(ρn) Pr(m ≥ n) , (3.72)

where,

Vq(ρn) = log2
q

q(1− ρn) + pρn
. (3.73)

And the probability Pr(m ≥ n) is given by:

Pr(m ≥ n) =
n∏

r=1

(1− ρr) . (3.74)

This Lemma implies that the value of log2(ρj(yt), for a message j ∈ Ω not in confirmation,

progresses by exactly Vq(ρn), from the time another message enters the confirmation phase,

to the time such message falls back to the communication phase.
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3.11 Proof of Thm. 1

Proof. The proof uses linearity of expectations, E[τ ] = E[τ−T ]+E[T ], to separately analyzed

bounds first on E[T ], and then E[τ − T ].

First Lemmas 1 is used to express E[T ] as a sum of probabilities of events yt ∈ Yϵ
i , over

each i ∈ Ω, and the Lemma 2 is used to bound the resulting sum of probabilities as follows:

E[T ] =
M∑
i=1

∑
yt∈Yϵ

i

Pr(Y t = yt, θ = i) (3.75)

≤ 1

C

M∑
i=1

∑
yt∈Yϵ

i

E[Ui(t+1)−Ui(t) |Y t = yt, θ = i] Pr(Y t = yt, θ = i) . (3.76)

By Lemma (3), expression (3.76) is equal to the left side of inequality (3.68), which is

bounded by (3.77) according to Lemma 6:

1

C

M∑
i=1

Pr(θ= i)
∞∑
n=1

E[Ui(Tn)−Ui(t
(n)
0 ) |θ= i] ≤

(
1 + 2−C2

1− 2−NC2

1− 2−C2

)
C2

C
− U(Y 0)

C
, (3.77)

where U(Y 0) is the expected value of the log likelihood ratio of the true message according

to the a-priori message distribution: U(Y 0) =
∑

i∈Ω ρi(0) log2

(
ρi(0)

1−ρi(0)

)
. Note that U(Y 0)

is − log(M − 1) for a uniform a-priori input distribution. Equations (3.75)-(3.77) yield the

following bound on E[T ]:

E[T ] ≤ 2−C2
1− 2−NC2

1− 2−C2

C2

C
+

C2 −U(Y 0)

C
. (3.78)

The expectation E[τ − T ] is bounded via Lemma 5:

E[τ − T ] ≤
(
N − 2−C2

1− 2−NC2

1− 2−C2

)
C2

C1

. (3.79)

Note that (3.79) is not equality because Lemma 5 uses the “Gene aided” decoder that does not
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terminate the transmission if any message j, other than the transmitted message θ, attains

Uj(t) ≥ NC2. However, the actual process does end in error whenever such condition is met

by any message.

A bound similar to (3.79) was first obtained by Yang et al. [YPA21], Section V. F, using a

Markov Chain analysis. Yang’s bound differs in that it includes in τ−T the time spent by the

correct message in the communication phase, after a fall back event. This time is included in

the self loop weight ∆0 = 1+ C2

C
+ C2

C
, and later replaced by ∆0 = 1+ C2

C
+ log2(2q)

qC
, using the

surrogate process analysis of Thm. 2 adapted to the SED rule. The analysis analysis by Yang

et al. could also be used in (3.79), if the self loop is set to ∆0 = 1, as was done in [AGW23].

This is because all the time spend in the communication phase is already included in bound

(3.78).

The upper bound on the expected stopping time E[τ ] is obtained by adding the bounds

in equations (3.78) and (3.79), and then replacing N by its definition in equation (3.18):

E[τ ] ≤ log2(M − 1) + C2

C
+

C2

C1

⌈
log2

(
1−ϵ
ϵ

)
C2

⌉
+ 2−C2

1− ϵ
1−ϵ

2−C2

1− 2−C2

(
C2

C
− C2

C1

)
. (3.80)

The proof of Thm. 1 is complete.

3.12 Proof Thm. 2 and Thm. 3

Proof of Thm. 2. Suppose U ′
i(t) is a process that satisfies the constraints (3.22)-(3.26) in

Thm. 1 and constraints (3.28)-(3.30) of Thm. 2 for some B < C2. Because the constraints

of Thm. 1 are satisfied, Lemmas 1-6 all hold for the process U ′
i(t). Then, E[T ′] can be

bounded by the sum on the right side of Lemma 3, which is (3.52), but using the new

process U ′
i(t). Then, to produce the desired result, it suffices to divide the new bound by

C. The proof of Thm. 2 follows the procedure used in the proof of Lemma 6, but replacing

Ui(t) by U ′
i(t), up to the equation (3.328). Note that U ′

i(t
(n)
0 ) = Ui(t

(n)
0 ), by the definition
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of U ′
i(t). From equation (3.25), it follows that, for n > 1, the event {T (n) > 0} implies that

Ui(t
(n)
0 ) = Ui(Tn−1) − C2. Then, from equations (3.328) to (3.336), U ′

i(t
(n)
0 ) can be replaced

by Ui(Tn−1)− C2. Then, from equation (3.336) the following inequality is obtained:

∞∑
n=1

E[U ′
i(T

′
n)−U ′

i(t
(n)
0 ) | θ = i] ≤ −U ′

i(0) +
∞∑
n=1

E[U ′
i(T

′
n)−pf (Ui(Tn)− C2) | T (n)>0, θ= i]pn−1f

From the definition of U ′
i(t), U ′

i(0) can be replaced by Ui(0). Then, by the constraints of

Thm. 2, U ′
i(T

′
n)−pf (Ui(Tn) − C2) ≤ B. This is derived from constraint (3.30): U ′

i(T
′
n) −

p
q
(Ui(Tn) − C2) ≤ B by replacing pf by p

q
. The replacement is possible because pf < p

q
, see

(3.263), and Ui(Tn) − C2 < 0 by constraint (3.23). Therefore, the expectation in the last

sum can be replaced with B for an upper bound, to obtain:

∞∑
n=1

E[U ′
i(T

′
n)−Ui(t

(n)
0 ) |θ = i] ≤ −Ui(0)+

∞∑
n=1

Bpn−1f (3.81)

= B +
Bpf
1−pf

−Ui(0) = B+2−C2
1−2−NC2

1−2−C2
B − Ui(0) . (3.82)

Then, the value in equation (3.82) replaces the inner sum in the left side of (3.77), to obtain:

1

C

M∑
i=1

Pr(θ= i)
∞∑
n=1

E[U ′
i(T

′
n)−U ′

i(t
(n)
0 ) |θ= i]

≤ 1

C

M∑
i=1

Pr(θ= i)

(
Ui(0)+B+2−C2

1−2−NC2

1− 2−C2
B

)
=

B

C

(
1+2−C2

1−2−NC2

1−2−C2

)
− E[Ui(0)]

C
. (3.83)

The proof is complete.

Proof of Thm. 3. Note first, that if ∃i ∈ Ω, with Ui(t) ≥ 0, then constraint (3.32) is the same

as the SED constraint (2.9) and therefore, the constraints (3.25) and (3.24) are satisfied as

shown in [YPA21]. To prove Thm. 3, it suffices to show that constraints (3.22), (3.23) and
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(3.26) are satisfied when Ui(t) < 0 ∀i ∈ Ω. Start the proof by deriving expressions for

E[Ui(t+1)−Ui(t) | Y t, θ= i] to find bounds in terms of the constraints of the theorem. The

posterior probabilities ρi(y
t+1) are computed according to Bayes’ Rule:

ρi(y
t+1) =

Pr(θ = i, Yt+1 = yt+1 | Y t)

Pr(Yt+1 = yt+1 | Y t)
. (3.84)

The top conditional probability in equation (3.84) can be split into P (Yt+1 = yt+1 | θ =

i, Y t = yt) Pr(θ = i | yt). Since the received history yt fully characterizes the vector of

posterior probabilities ρt ≜ [ρ1(y
t), ρ2(y

t), . . . , ρM(yt)], and the new construction of S0 and

S1, then the conditioning event {θ = i} sets the value of the encoding function Xt+1 =

enc(i, Y t), via its definition: enc(i, Y t) = 1i∈S1 . The first probability can be written as

Pr(Yt+1 | enc(i, Y t)), which reduces to q if Yt+1 = enc(i, Y t) and to p if Yt+1 ̸= enc(i, Y t). The

second probability Pr(θ = i | Y t = yt) is just ρi(yt). The bottom conditional probability can

be written as
∑

Pr(Yt+1
xt+1∈{0,1}

= yt+1 | Xt+1, Y
t)P (Xt+1 = xt+1 | Y t). By the channel memoryless

property, the next output Yt+1 given the input Xt+1 is independent of the past Y t, that is:

Pr(Yt+1 = yt+1 | Xt+1, Y
t) = Pr(Yt+1 = yt+1 | Xt+1). Since Pr(Xt+1 = xt+1 | Y t) = Pr(θ ∈

Sxt+1) which is given by
∑

i∈Sxt+1

ρi(y
t), then:

ρi(t+ 1) =
Pr(Yt+1 | i)ρi(yt)∑

j∈Ω Pr(Yt+1 | j)ρj(yt)
=

Pr(Yt+1 | i)ρi(yt)
q
∑

j∈Syt+1
ρj(yt) + p

∑
j∈Ω\Syt+1

ρj(yt)
. (3.85)

For {i = θ} the encoding function Xt+1 = 1θ∈S1 dictates that Xt+1 = 1i∈S1 . Thus Pr(Yt+1 =

1i∈S1 | i = θ) = Pr(Yt+1 = Xt+1) = q, and Pr(Yt+1 = 1i/∈S1 | i = θ) = Pr(Yt+1 = Xt+1 ⊕ 1) =

p. Let P0 =
∑

j∈S0
ρj(y

t) and P1 =
∑

j∈S1
ρj(y

t), and let ∆ ≜ P0 − P1, so that P0 =
1
2
+ ∆

2

and P1 =
1
2
− ∆

2
. The value of Ui(t+1) for each Yt+1 ∈ {0, 1} can be obtained from equation

68



3.85. Assume first that i ∈ S0 to obtain the value of E[Ui(t+ 1)− Ui(t) | Y t = yt, θ = i].

E[Ui(t+ 1) | Y t = yt, θ = i] = q log2

ρi(y
t)q

P0q+P1p

1− ρi(yt)q
P0q+P1p

+ p log2

ρi(y
t)p

P0p+P1q

1− ρi(yt)p
P0p+P1q

= q log2
ρi(y

t)q
1
2
+∆(q−p)

2
−ρi(yt)q

+ p log2
ρi(y

t)p

1
2
−∆(q−p)

2
−ρi(yt)p

.

For i ∈ S1 the only difference is the sign of the term with ∆. Let ιi = 1i∈S0 − 1i∈S1 , that

is 1 if i ∈ S0 and −1 if i ∈ S1 and add a coefficient ιi to each ∆ for a general expression.

Multiply by 2 both terms of the fraction inside the logarithm and expand it to obtain:

E[Ui(t+1)−Ui(t) | Y t,θ= i] = log2(ρi(y
t)) (3.86)

+ q
(
log2(2q)−log2

(
1−ρi(yt)+(q−p)(ιi∆−ρi(yt)

))
+ p

(
log2(2p)−log2

(
1−ρi(yt)−(q−p)(ιi∆−ρi(yt)

))
(3.87)

=q

(
log2(2q)−log2

(
1+(q−p)ιi∆−ρi(y

t)

1− ρi(yt)

))
+ p

(
log2(2p)−log2

(
1−(q−p)ιi∆−ρi(y

t)

1−ρi(yt)

))
(3.88)

≥C − log2

(
1 + (q − p)2

ιi∆− ρi(y
t)

1− ρi(yt)

)
. (3.89)

Now subtract the term log2(1 − ρi(y
t)), and add it back as a factor in the logarithm, to

recover Ui(t) from log2(ρi(y
t)). Note that 2ρi(y

t)q = ρi(y
t) + (q − p)ρi(y

t) and 2ρi(y
t)p =

ρi(y
t)− (q − p)ρi(y

t). And also note that q log2(2q) + p log2(2p) = C.

The logarithm log2(1−ρi(yt)) from (3.87) is split into p log2(1−ρi(yt))+q log2(1−ρi(yt)),

and 1 − ρi(y
t) divides the arguments of the logarithms in (3.88). Equation (3.89) follows
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from applying Jensen’s inequality to the convex function − log2(·). Then:

M∑
i=1

E[Ui(t+1)−Ui(t) |Y t, θ= i]ρi(Y
t) ≥ C−

M∑
i=1

ρi(y
t) log2

(
1+(q−p)2 ιi∆−ρi(y

t)

1−ρi(yt)

)
(3.90)

= C −
∑
i∈S0

ρi(y
t) log2

(
1 + (q − p)2

∆− ρi(y
t)

1− ρi(yt)

)
(3.91)

−
∑
i∈S1

ρi(y
t) log2

(
1− (q − p)2

∆+ ρi(y
t)

1− ρi(yt)

)
. (3.92)

By the SEAD constraints, given by equations (3.33) and (3.32), if i ∈ S0, then ∆ ≤ ρmin ≤

ρi(y
t). For the case where ∆ ≥ 0, then i ∈ S0 =⇒ ∆ − ρi(y

t) ≤ 0 and −∆ − ρi(y
t) < 0.

Then the arguments of the logarithms in (3.92) are both less than 1 for every i. This suffices

to show that the constraints (3.26) and (3.22) are satisfied when P0 ≥ P1 for the case that

∆ ≥ 0.

It remains to prove that constraints (3.26) and (3.22) hold in the case where P1 > P0, or

equivalently ∆ < 0. Let α = −∆ > 0, and note that since 0 < α < 1, then:

α

1−ρmin

≥ α = α
1−ρi(yt)
1−ρi(yt)

≥ α−ρi(yt)
1−ρi(yt)

, (3.93)

and ρi ≥ ρmin =⇒ α + ρi ≥ α + ρmin and 1− ρi < 1− ρmin, therefore:

log2

(
1−(q−p)2α+ρi(y

t)

1−ρi(yt)

)
≤ log2

(
1−(q−p)2α+ρmin

1−ρmin

)
log2

(
1+(q−p)2α−ρi(y

t)

1−ρi(yt)

)
≤ log2

(
1+ (q−p)2 α

1− ρmin

)
.
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Since this holds for all i = 1, . . . ,M , then:

M∑
i=1

E[Ui(t+ 1)− Ui(t) | Y t = yt, θ = i]ρi(y
t) ≥ C (3.94)

− P0 log2

(
1−(q−p)2α+ρmin

1−ρmin

)
−P1 log2

(
1+ α

(q−p)2

1−ρmin

)
(3.95)

≥ C − log2

(
1− (q − p)2

1− ρmin

[P0(α + ρmin)− P1α]

)
. (3.96)

To satisfy constraint (3.26) the logarithm term in (3.96) needs to be non-negative. This only

requires that −∆2+P0ρmin > 0. Since P0−P1 = ∆, then P0(α+ρmin)−P1α = (P0−P1)α+

P0ρmin = −∆2+P0ρmin. To satisfy constraint (3.26) it suffices that −∆2+P0ρmin > 0, which

is equivalent to:

∆2 ≤ P0ρmin . (3.97)

The SEAD constraints, equations (3.33) and (3.32), guarantees that ∆2 ≤ ρ2min. Since

P0 ≥ min
i∈S0

ρi(y
t) = ρmin, then ∆2 ≤ ρ2min ≤ P0ρmin, which satisfies inequality (3.97). Then,

the SEAD constraints guarantee that constraint (3.26) is satisfied, and only restricts the

absolute difference between P0 and P1.

To prove that constraint (3.22) is satisfied, note that equation (3.33) of the SEAD con-

straints guarantees that if ρj(t) ≤ 1
2
∀j = 1, . . . ,M , then |∆| ≤ 1

3
. Starting from equation

(3.89) note that the worst case scenario is when ιi∆ = 1
3
. From (3.98) to (3.99), use (3.93)
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with α = 1
3

to obtain:

E[Ui(t+ 1)− Ui(t) | Y t, θ = i] ≥C − log2

(
1 + (q − p)2

ιi∆− ρi(y
t)

1− ρi(yt)

)
(3.98)

≥C − log2

(
1 +

(q − p)2

3

)
(3.99)

≥C − (q − p)2

3
(3.100)

=C − (q − p)2

2 ln(2)
+

3− 2 ln(2)

6 ln(2)
(q − p)2 (3.101)

≥3− 2 ln(2)

6 ln(2)
(q − p)2 >

(q − p)2

3
. (3.102)

To transition from (3.101) to (3.102), need to show that 2 ln(2)C ≥ (q − p)2. To show this,

it suffices to find a small constant a that makes aC − (q − p)2, the difference between two

convex functions, also convex. Take second derivatives d2

dp2
aC = 1

ln(2)
a
pq

and d2

dp2
(q − p)2 = 8,

and subtract them. The constant a is found by noting that pq ≤ 1
4
.

The SEAD constraints guarantee that both sets, S0 and S1 are non-empty. Since the

maximum absolute value difference | Ui(t + 1) − Ui(t) | is C2, then, constraint (3.23) is

satisfied, see the proof of Claim 2.

For the proof of existence of a process U ′
i(t), with B = 1

q
log2(2q), see Sec. 3.19.

3.13 Proof of Converse Thm. 4

Proof of Thm. 4. By Lemma 1, equation (3.46) the expectation E[τ ] is given by:

E[τ ] =
M∑
i=1

Pr(θ = i)
∑
yt∈Yϵ

Pr(Y t = yt | θ = i) (3.103)
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This expectation can be separated into sums over the sets Aϵ defined in Lemma 2, the set

difference Yϵ
i \ Aϵ, and the set difference Yϵ \ Yϵ

i , see Lemma 1.

E[τ ] =
M∑
i=1

Pr(θ = i)
∑
yt∈Yϵ

Pr(Y t = yt | θ = i) (3.104)

=
M∑
i=1

Pr(θ = i)
∑
yt∈Aϵ

Pr(Y t = yt | θ = i) (3.105)

+
M∑
i=1

Pr(θ = i)
∑

yt∈Yϵ
i \Aϵ

Pr(Y t = yt | θ = i) (3.106)

+
M∑
i=1

Pr(θ = i)
∑

yt∈Yϵ\Yϵ
i

Pr(Y t = yt | θ = i) (3.107)

Let τ0, τ1, τ2 be each of these sums, and also define the sum S by:

Y t
i ≜ {yt ∈ {0, 1}t | ρi(ys1) <

1

2
∀s = 1, 2, . . . , t} (3.108)

Yi ≜ ∪∞t=0Y t
i (3.109)

τ0 =
M∑
i=1

Pr(θ = i)
∑
yt∈Aϵ

Pr(Y t = yt | θ = i) (3.110)

τ1 =
M∑
i=1

Pr(θ = i)
∑

yt∈Yϵ
i \Aϵ

Pr(Y t = yt | θ = i) (3.111)

τ2 =
M∑
i=1

Pr(θ = i)
∑

yt∈Yϵ\Yϵ
i

(3.112)

S =
1

C

M∑
i=1

∑
yt∈Yϵ

i \Aϵ

E[log2(ρi(y
t+1))−log2(ρi(yt))|θ = i, Y t = yt] Pr(Y t = yt, θ = i) . (3.113)
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Then:

E[τ ] = τ0 + τ1 + τ2 = (τ0 + S) + (τ1 − S + τ2) (3.114)

The proof consists of finding bounds on τ0 +S and on τ1−S + τ2. From Lemma 2, the time

τ0 is lower bounded by:

τ0 =
M∑
i=1

Pr(θ= i)
∑
yt∈Aϵ

Pr(Y t = yt | θ= i) (3.115)

≥
M∑
i=1

Pr(θ= i)

C

∑
yt∈Aϵ

E[log2(ρi(y
t+1))−log2(ρi(yt))|Y t=yt, θ= i] Pr(Y t=yt | θ= i) (3.116)

Then, the sum τ0 + S is upper bounded by:

τ0 + S ≥ 1

C

M∑
i=1

Pr(θ= i)
∑
yt∈Aϵ

E[log2

(
ρi(y

t+1))

ρi(yt)

)
|Y t=yt, θ= i] Pr(Y t=yt | θ= i) (3.117)

+
1

C

M∑
i=1

Pr(θ= i)
∑

yt∈Yϵ
i \Aϵ

E[log2

(
ρi(y

t+1))

ρi(yt)

)
|Y t=yt, θ= i] Pr(Y t=yt | θ= i) (3.118)

=
1

C

M∑
i=1

Pr(θ= i)
∑
yt∈Yϵ

i

E[log2

(
ρi(y

t+1))

ρi(yt)

)
|Y t=yt, θ= i] Pr(Y t=yt | θ= i) . (3.119)

By Lemma 3, equation (3.53), the inner sum in (3.119) is given by:

∑
yt∈Yϵ

i

E[log2

(
ρi(y

t+1)

ρi(yt)

)
|Y t =yt, θ = i] Pr(Y t=yt |θ= i) = E[log2

(
ρi(y

T )

ρi(0)

)
| θ= i] . (3.120)

Then:

τ0+S≥ 1

C

M∑
i=1

Pr(θ= i)E[log2(ρi(y
T ))− log2(ρi(0)) | θ= i] (3.121)

=
1

C

M∑
i=1

(−1−log2(ρi(0)) Pr(θ= i)+
1

C

M∑
i=1

E[log2(ρi(y
T ))+1|θ= i] Pr(θ= i) . (3.122)
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Where the expectation in (3.121) is split into two in (3.122) parts and a term −1 is added to

the first expectation and subtracted in the other. The first expectation is a constant given the

initial distribution ρi(0), and only the second expectation depends on the random crossing

point at time t = T , compactly described by E[log2(ρθ(y
T ))] + 1. Note that ρi(y

T ) ∈ [1
2
, q)

when a message i enters the confirmation phase.

If the transmitted message θ reaches its confirmation phase at any point in the transmis-

sion (where {ρi(yT ) ≥ 1
2
, i = θ}), then log2(ρi(y

T )) ∈ [−1, log2(q)), for i = θ. However, there

is a non-zero probability that the process terminates with a wrong estimate θ̂ ̸= θ, without the

event {ρi(yT ) ≥ 1
2
, i = θ} ever occurring. Let H0 be the event where the first message i that

crosses ρi(y
T ) ≥ 1

2
is the transmitted message θ, given by H0 ≜ {t = T, ρi(y

T ) ≥ 0, i = θ},

and let H1 be the complement of H0. Using the law of total probability, the expected time

τ0 defined in (3.110) could be expressed as:

τ0 =
M∑
i=1

Pr(θ = i) Pr(H0)
∑
yt∈Aϵ

Pr(Y t = yt | θ = i,H0) (3.123)

+
M∑
i=1

Pr(θ = i) Pr(H1)
∑
yt∈Aϵ

Pr(Y t = yt | θ = i,H1) . (3.124)

Since Pr(θ̂ ̸= θ) ≤ ϵ, then Pr{H1, θ̂ ̸= θ} < ϵ, where the strict inequality is because

Pr{H0, θ̂ ̸= θ} > 0. Then, Pr{H1, θ̂ = θ} ≥ Pr(H1) − ϵ. By the definition of the posterior

probabilities ρi(y
t) at time t = T , if ρi(yT ) ≥ 1

2
, then Pr(θ = i | Y T = yT ) = ρi(y

T ) ≥ 1
2
.

Then Pr(H1) ≤ 1
2
. This allows a bound on τ that excludes the cases where the transmitted

message θ never makes it to the confirmation phase, with probability bounded by ϵ out of

event H1, at the expense of also excluding some events where θ does reach the confirmation

phase from event H0. The same fraction H1−ϵ
H1

excluded from event H1 must also be excluded

from event H0. Then, the expression for τ0 +S in (3.122) needs to be multiplied by a factor
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rh given by:

rh ≜ (Pr(H1)− ϵ) + Pr(H0)
Pr(H1)− ϵ

Pr(H1)
. (3.125)

The expressions (3.115)-(3.122) may be split into two, each with conditioning events

H0 and H1 and multiplied by the event probabilities Pr(H0) and Pr(H1) as was done with

the expression for τ0 in (3.123) and (3.124). To exclude from Eq. (3.124) the event where

the transmitted message never reaches the confirmation phase (given by {∀t ≤ τ : i =

θ, ρi(y
t) < 1

2
}), both (3.124) with H0 and (3.124) must be multiplied by the factor rh. Then

E[log2(ρθ(y
T ))] + 1 ∈ [0, 1 + log2(q)) when restricted to such events, since ρi(y

T ) ∈ [1
2
, q)

when message i enters its confirmation phase. This leads to the following bound on τ0 + S:

τ0 + S ≥ rh
E[ρθ(0)− 1]

C
+ rh

E[log2(ρθ(y
T ))] + 1

C
. (3.126)

For uniform input distribution over {0, 1}K the value of ρi(0) is exactly −K and bound

(3.126) becomes:

τ0 + S ≥ rh
K − 1

C
+ rh

E[log2(ρθ(y
T ))] + 1

C
. (3.127)

The lower bound on τ0 + S of (3.127) can be further refined by including some part

of the communication phase for the other 1 − rh part of the transmission. Note that the

communication phase stops at a time T when a candidate message i attains ρi(y
t) ≥ 1

2
.

The largest possible step size that the process log2 (ρi(Y
t)) may take, under optimal equal

partitioning, is log2(2q). This step size is taken by a message i whenever i ∈ Syt . Then, the

minimum time for any candidate i to reach the confirmation phase, under equal partitioning

is given by:

min{T} = −1− log2(ρi(0))

log2(2q)
. (3.128)
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Expression (3.128) for uniform input distribution over {0, 1}K becomes K−1
log2(2q)

and the bound

on τ0 + S becomes:

τ0 + S ≥ rh
K − 1

C
+ rh

E[log2(ρθ(y
T ))] + 1

C
+ (1− rh)

K − 1

log2(2q)
. (3.129)

The next step consist of finding an upper bound on S, which needs to be subtracted from

lower bound in the expected decoding time E[τ ]. Let ρn be the posterior at which a wrong

message enters the confirmation phase for the n-th consecutive time, before an initial correct

confirmation phase, and let m denote the number of times such event occurs. Since ρn is the

posterior of a message that has entered confirmation, then, the probability that it is not the

message θ is exactly 1− ρn.

By Lemma 7, the message in the wrong confirmation phase returns to a posterior below 1
2

a.s.. Then n consecutive wrong confirmation rounds happen with probability Pr(m ≥ n) =∏n
r=1(1− ρr). Using Lemma 8, the value of S can be expressed by:

S =
1

C

M∑
i=1

Pr(θ= i)
∞∑
n=1

Vq(ρn) Pr(m≥n) (3.130)

=
1

C

M∑
i=1

Pr(θ= i)
∞∑
n=1

n∏
r=1

(1−ρr) log2
q

q(1−ρn) + pρn
. (3.131)

Each time the n consecutive wrong confirmation phase happens, the term 1
C
Vq(ρn) is added

to S, where:

Vq(ρn) = log2
q

q(1− ρn) + pρn
(3.132)

To obtain the time τ0, the therm S needs to be replaced by the actual time spent in the

wrong confirmation phase, which also requires that the process has not already ended in

wrong decoding. The expected wrong confirmation time, from equation (3.65) of of Lemma
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5, is given by:

E[Sbad] =
C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.133)

Let Wq(y
t) be the boosting update factor at time t, and let Wp(y

t) be the attenuating update

factor. That is, Wq(y
t) applies to items in Syt+1 , and Wp(y

t) to items in set S1⊕yt+1 . Define

the set Eϵ as the set of yt from Aϵ, for which at least one item can enter confirmation when

boosted by Wq(y
t) = 2q, which happens with probability q if the θ ∈ Syt+1 , along with the

item, and p otherwise. The set Eϵ is compactly defined by:

Eϵ ≜ {yt ∈ Aϵ : ∃i : ρi(yt)Wq(y
t) ≥ 1

2
} (3.134)

Note that the second term in (3.122) is:

1

C

M∑
i=1

E[log2(ρi(y
T )) + 1|θ = i] Pr(θ = i) (3.135)

=
1

C

M∑
i=1

Pr(θ = i)
∑
yT∈Eϵ

log2(2ρi(y
T )) Pr(Y t = yT | θ = i) (3.136)

=
1

C

M∑
i=1

Pr(θ = i)
∑
yT∈Eϵ

Pr(Y t = yT ) log2(2ρi(y
T ))ρi(y

T ) (3.137)

Thus, a higher crossing probability ρn, which reduces the probability that the crossing mes-

sage is not θ, also increases the term τ0 + S for each {Y t = yT} event, by exactly:

1

C
ρn log2(2ρn) (3.138)

At the same time, the message crossing into the confirmation phase with posterior ρn has
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probability 1− ρn of being wrong, which increases S by a term:

1

C
(1− ρn) log2

q

q(1− ρn) + pρn
(3.139)

scaled by the probability Pr(m ≥ n).

The time τ0 includes the expected crossing posterior E[log2(2ρi(yT ))|θ = i] for each i, see

(3.122). The next steps consist of lower bounding jointly the terms (τ0+S)+(τ1−S), where

These terms are given by the expectation of:

τ0 + τ1 =
E[ρθ(0)− 1]

C
+

1

C

M∑
i=1

Pr(θ= i)
∞∑
n=1

n∏
r=1

(1−ρr)f(ρn) (3.140)

f(ρn) ≜

(
ρn log2(2ρn)− (1−ρn) log2

q

q(1−ρn) + pρn
+ pnr (1−ρn)E[Sbad]

)
. (3.141)

The last term E[Sbad] has an additional factor pnr , to account for the recovery probability

defined in Lemma 4, since a subsequent wrong confirmation happens only if all previous

ones end in recovery, and not in wrong decoding. The overall expectation can be lower

bounded, using linearity of expectations, by lower bounding each term in (3.141). For each

wrong confirmation event, it suffices to minimize f(ρn). Thus, the single value ρn ∈ [1
2
, q)

minimizes f(ρn) for every n = 1, 2, . . . . The next claim analyzes this minimization.

Claim 4: The value of ρn that minimizes f(ρn) is ρn = 1
2

. Recall from Lemma 5 that

the expected duration of the wrong confirmation phase is:

E[Sbad
n ] =

C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.142)

Note that the factor pnr , the probability of n consecutive recoveries, strictly decreases the

“weight” of the term with E[Sbad
n ] in f(ρn). Since E[Sbad

n ] is positive, as the wrong confir-

mation time is at least one time unit, replacing pnr by 1, strictly increases f(ρn). With this
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replacement, let f(ρn) be:

f(ρn) = −(1− ρn)
1

C
log2

q

q(1− ρn) + pρn
+

ρn
C

log2(2ρn) (3.143)

+ (1− ρn)
C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.144)

To show that τ0+τ1 is minimized if ρn = 1
2

for all n = 1, 2, . . . , it suffices to show that f(ρn),

ρn ∈ [1
2
, 1 − q) or f(1 − x), x ∈ (1 − q, 1

2
] is minimized at 1 − x = 1

2
. Note that the only

difference between the exact correction term and f(ρn), is that in f(ρn), a factor Pn ∈ (0, 1),

of a positive and linear term, was set to 1 in f(ρn). If the relaxed f(ρn) is still minimized at

the largest possible value for that term, then the actual value is also minimized at the same

value of ρn.

The proof is in 3.13

From claim 4, the crossing value ρi(y
T ) = 1

2
, and log2(ρi(y

T )) = −1. If ρi(yT ) = 1
2
, then

Pr(H1) =
1
2

and the value of rh in (3.125) is rh = 1 − 2ϵ. Then, a lower bound on τ0 + τ1

is given by jointly bounding τ0 + S + (τ1 − S) where a bound on τ0 + S for uniform input

distribution over {0, 1}K , is computed from (3.129) with rh = 1− 2ϵ as follows:

τ0 + S ≥ (1− 2ϵ)
K − 1

C
+ (1− 2ϵ)

E[log2(ρθ(y
T ))] + 1

C
+ 2ϵ

K − 1

log2(2q)
(3.145)

≥ (1− 2ϵ)
K − 1

C
+ (1− 2ϵ)

E[−1] + 1

C
+ 2ϵ

K − 1

log2(2q)
(3.146)

= (1− 2ϵ)
K − 1

C
+ 2ϵ

K − 1

log2(2q)
. (3.147)

Where E[log2(ρθ(0)] is replaced by −K since ρi(0) = −K ∀i ∈ {0, 1}K .

With the crossing value of ρi(y
T ) = 1

2
from claim 4, n consecutive bad confirmation
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phases happen with probability Pn = pnr (
1
2
)n:

Pn = pnr

n∏
j=1

(1− 1
2
)j = pnr (

1
2
)n (3.148)

and each Vq(ρn) is exactly 1
C
log2(2q). The value of S from the joint minimization is:

S =
1

C
log2(2q)

∞∑
n=1

2−n =
1

C
log2(2q) (3.149)

Finally, the expected number of bad confirmation phases from the joint minimization is

given by the sum of the first one with probability 1
2
, and every n-th subsequent one with

probability 1
2
pnr 2

−n. Then the time τ1 is given by the expected number of wrong confirmation

rounds and their expected duration E[Sn], see Lemma 7, given by:

τ1 =
1

2
E[Sn]

∞∑
n=0

2−npnr (3.150)

=
1

2
E[Sn]

∞∑
i=0

(
1

2

1− 2−NC2

1− 2−(N+1)C2

)i

(3.151)

=
1

2
E[Sn]

1

1− 1
2

1−2−NC2

1−2−(N+1)C2

(3.152)

=
1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)
E[Sn] (3.153)

=
1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)

C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.154)

The correct confirmation phase happens with the exact same probability, that is, the first

crossing probability ρ0 =
1
2
, and every subsequent nth one with probability 2−(n+1)pnr . That

is, after every recovery and subsequent crossing with ρn(y
T ) = 1

2
, the probability of being

correct is ρn(y
T ). To lower bound τ2, suppose that at every fall back, a new message is in

confirmation, (this maximizes the forward steps of ρθ(yt)). Suppose further that the process

becomes a two way race, that is, S0 = ρθ(y
t), even after a fall back, and a bad decoding

81



is declared if 1 − ρi(y
t) reaches 1 − ϵ. Clearly this could happen and still have no single

item across, and the singleton choice S0 = ρθ(y
t) maximizes the step size for ρθ(y

t). This

results in a two way race, that can be modeled by a Markov Chain with 2N + 1 states

−N,−N+1, . . . ,−1, 0, 1, . . . , N−1, N , where Uθ(t) starts at state 0. The expected duration

of such confirmation phase can be obtained using Corollary 2 by:

E[S2N ] =
C2

C1

(
N − 2−NC2

1− 2−NC2

1− 2−2NC2
2N

)
(3.155)

Then, τ2 from the joint minimization is given by:

τ2 =
1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)
E[S2N ] (3.156)

=
1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)

C2

C1

(
N − 2−NC2

1− 2−NC2

1− 2−2NC2
2N

)
(3.157)

The bound τB is computed by adding the three jointly minimized terms (τ0+S)+(τ1−S)+τ2,

and is given by:

τB ≜ (1− 2ϵ)
K − 1

C
+ 2ϵ

K − 1

log2(2q)
− (1− 2ϵ)

log2(2q)

C

+
1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)

C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
+

1− 2−(N+1)C2

2(1− 2−(N+1)C2)− (1− 2−NC2)

C2

C1

(
N − 2−NC2

1− 2−NC2

1− 2−2NC2
2N

)
(3.158)

Where E[ρθ(0)− 1] = K − 1 for uniform prior distribution.

The part of the proof that adds a factor rh = 1− 2ϵ for uses the bound on τ0+S is more

a sketch than a rigorous mathematical proof. A more rigorous proof of the bound on τ0 + S

is left as future research.

An approximation, which is neither an upper nor a lower bound, can be obtained by

setting N as the ceiling, not unlike an actual system that only stops when the threshold
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Pr(θ̂ ̸= θ) ≤ ϵ is attained. Depending on the crossing value, this larger N might not be

needed, which could partially be offset by the other minimization and optimality assumptions

on the expression.

Proof of claim 4. Need to prove that ρi(T ) = 0.5 minimizes f(ρn), even with the assumption

that pnr = 1. For simplicity, let x = (1 − rhon), then, x ∈ (1 − q, 1
2
], and the proof consists

of showing that x = 1
2

minimizes f(x), which is defined by:

f(x) = −x 1

C
log2

q

qx+ p(1−x)
+

1−x
C

log2(2(1−x)) + xE[Sbad
n ] . (3.159)

To show that f(x) decreases with x, it suffices to show that d
dx
f(x) > 0.

d

dx
f(x) = − 1

C
log2

q

qx+ p(1− x)
+

C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.160)

− 1

C
log2(2(1− x)) + x

log2(e)

C

q − p

qx+ p(1− x)
− (1− x)

log2(e)

C

1

1− x
(3.161)

= − 1

C
log2(2q) +

1

C
log(2p+ 2(q − p)x)− 1

C
log2(2(1− x)) (3.162)

+
C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.163)

+ (q − p)
log2(e)

C

x

x(q − p) + p
− log2(e)

C
(3.164)

≤ − 1

C
log2(2q) +

1

1− 2p
− log2(e)

2p

C
− C2

C1

2−NC2
1− 2−C2

1− 2−(N+1)C2
(1 +N) (3.165)

=
q log2(q) + p log2(p) + 1− log2(q)− 1 + 2p log2(2q)

C(1− 2p)
− log2(e)

2p

C
(3.166)

− C2

C1

2−NC2
1− 2−C2

1− 2−(N+1)C2
(1 +N) (3.167)

=
p(− log2(q)+log2(p)+2 log2(2q))

C(1−2p)
− log2(e)

2p

C
− C2

C1

2−NC2−2−(N+1)C2

1−2−(N+1)C2
(1+N)

=
p(2 + log2(pq))

C(1− 2p)
− log2(e)

2p

C
− C2

C1

2−NC2
1− 2−C2

1− 2−(N+1)C2
(1 +N) (3.168)
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Note that:

log2(pq) = log2(e) ln(p(1− p)) (3.169)

d

dp
log2(pq) = log2(e)

1− 2p

p(1− p)
(3.170)

Then, it is increasing with p ∈ (0, 1
2
), with a maximum of −2 at p = 1

2
, and thus, all terms

are non-positive. This proves that x = 1
2

minimizes the correction term.

3.14 Proof of Lemmas 1-7

Proof of Lemma 1 Equation (3.46). Equation (3.46) of Lemma 1 is the expectation of τ ,

while (3.45) is the expectation of only the communication phase time T =
∑∞

n=1 T
(n), that

removes from the total time τ the time when the process is in the confirmation phase. The

proof equation (3.46) is simpler and helpful to understand the proof of (3.45), and thus is

provided first, but will only be used for the proof of the converse bound of Thm. 4. Need to

show that:

E[τ ] =
M∑
i=1

Pr(θ = i)
∑
yt∈Yϵ

Pr(Y t = yt | θ = i) . (3.171)

First the expectation E[τ ] is expressed as EΩ[E[τ | Θ = i]]:

E[τ ] =
M∑
i=1

Pr(θ = i)E[τ | θ = i] (3.172)

=
M∑
i=1

Pr(θ = i)
∞∑
t=1

Pr(τ > t | θ = i) (3.173)

=
M∑
i=1

Pr(θ= i)
∞∑
t=1

E[1(τ>t)|θ = i] . (3.174)
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In (3.173) the tail sum formula for expectations is used, and in (3.174), the probability

Pr(τ > t | θ = i) is expressed as the expectation of an indicator. Next the definition of

expectation is used to expand the E[1(τ>t)|θ = i]:

E[τ ] =
M∑
i=1

Pr(θ= i)
∞∑
t=1

∑
yt∈{0,1}t

1(yt∈Y(τ>t)) Pr(Y
t = yt | θ = i) (3.175)

=
M∑
i=1

Pr(θ= i)
∞∑
t=1

∑
Pr(Y t

yt∈Y(τ>t)

= yt | θ = i) (3.176)

=
M∑
i=1

Pr(θ = i)
∑

Pr(Y t = yt

yt∈∪∞
t=0Y(τ>t)

| θ = i) (3.177)

=
M∑
i=1

Pr(θ = i)
∑

Pr(Y t = yt

yt∈Yϵ

| θ = i) . (3.178)

The indicator in (3.175) is one if yt ∈ Y(τ>t) and zero if yt ∈ {0, 1}t \Y(τ>t). Equation (3.176)

only includes set Y(τ>t) where the indicator is a constant one, and is omitted. In (3.177) the

sums over t and over Y(τ>t) are expressed as a single sum over the union ∪∞t=0Y(τ>t) of all

Y(τ>t), which is the definition of Yϵ. Replacing the union by the definition Yϵ completes the

proof.

Proof of Lemma 1 Equation (3.45). Need to show that:

E[T ] =
M∑
i=1

Pr(θ = i)
∑
yt∈Yϵ

i

Pr(Y t = yt | θ = i) =
M∑
i=1

∑
yt∈Yϵ

i

Pr(Y t = yt, θ = i) . (3.179)

The proof of Lemma 1 makes use of four special sets that need to be introduced first. For

each sequence yt ∈ Yϵ, define a set Ni(y
t) as the set of time values t

(1)
0 , t

(2)
0 , . . . , t

(n)
0 ≤ t,

where message i begins an interval with Ui(t) < 0. This includes time zero and all the times

s where from time s− 1 to s, message i transitions from Ui(s− 1) ≥ 0 to Ui(s) < 0, i.e. the

85



decoder falls back from confirmation phase to communication phase.

Ni(y
t) ≜ {0} ∪ {s ≤ t : Ui(s) < 0, Ui(s− 1) ≥ 0} . (3.180)

Define the set Yϵ
(i,n) of sequences yt for which the following are all true: 1) the decoder has

not stopped, 2) the decoder has entered the confirmation phase for message i n times, and

3) the decoder is not in the confirmation phase for message i at time t, where the sequence

ends.

Yϵ
(i,n) ≜ {yt∈ Yϵ

i :
∣∣Ni(y

t)
∣∣ = n, Ui(t) < 0} . (3.181)

For each sequence yt ∈ Yϵ
(i,n), define the set Yϵ

(i,n)(y
s), as the subset of sequences from Yϵ

(i,n)

that have the sequence ys as a prefix.

Yϵ
(i,n)(y

s) ≜ {yt ∈ Yϵ
(i,n) | t ≥ s, yt1:s = ys} (3.182)

Finally, let Bϵ
(i,n) be the set containing only the sequences where the final received symbol yt

is the symbol for which the decoder resumes the communication phase for message i for the

nth time, or the empty string, that is:

Bϵ
(i,n) ≜ {yt ∈ Yϵ

(i,n)

∣∣ t ∈ Ni(y
t)} . (3.183)

Each yt ∈ Bϵ
(i,n), sets an initial condition for the communication phase where Ui(t) < 0,

so that T (n) ≥ 1, that is t = t
(n)
0 , as defined in (3.20). By the property of conditional

expectation, E[T ] is given by:

E[T ] =
M∑
i=1

Pr(θ = i)E[T | θ = i] . (3.184)

Next, the resulting expression is explicitly written as a function of all the possible initial
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conditions, for each of the communication phase rounds n. That is, the set Bϵ
(i,n):

M∑
i=1

Pr(θ= i)E[T |θ= i]=
M∑
i=1

Pr(θ= i)E

[(
∞∑
n=1

T (n)

)∣∣∣∣θ = i

]
(3.185)

=
M∑
i=1

Pr(θ= i)
∞∑
n=1

E
[
T (n)

∣∣∣θ = i
]

(3.186)

=
M∑
i=1

Pr(θ= i)
∞∑
n=1

∑
Pr(Y s

ys∈Bϵ
(i,n)

=ys |θ= i)E
[
T (n)

∣∣∣Y s=ys, θ= i
]
. (3.187)

In step (3.188), the expectation E
[
T (n)

∣∣∣Y s = ys, θ = i
]

in (3.187) is transformed using the

tail sum formula for expectations, and then, in (3.189), as an expectation of the indicator

of {T (n) > r}. Since T (n) is a random function of Y t = Y sY r, where Y r ∈ {0, 1}r, given by

1T (n)>r = 1Y sY r∈Yϵ
(i,n)

, equation (3.190) follows:

E
[
T (n)

∣∣∣Y s=ys, θ= i
]
=

∞∑
r=0

Pr(T (n) > r|Y s = ys, θ = i) (3.188)

=
∞∑
r=0

E[1T (n)>r|Y s = ys, θ = i] (3.189)

=
∞∑
r=0

E[1Y s+r∈Yϵ
(i,n)

(ys)|Y s = ys, θ = i] . (3.190)

Expanding the expectation in (3.190), equation (3.191) is obtained. Since the indicator in

(3.191) is 0 outside Yϵ
(i,n) and 1 inside, it is omitted in (3.192), where only values of yszr that

intersect with Yϵ
(i,n) are considered. Since ∪∞r=1{{0, 1}r ∩Yϵ

(i,n)(y
s)} = Yϵ

(i,n)(y
s), then (3.192)
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follows.

∞∑
r=0

E[1[Y s+r∈Yϵ
(i,n)

(ys)]|Y s = ys, θ = i]

=
∞∑
r=0

∑
zr∈{0,1}r

1Y s+r∈Yϵ
(i,n)

(ys) Pr(Y
s+r=yszr | Y s=ys, θ= i) (3.191)

=
∑

Pr(Y s+r=yszr

yszr∈∪∞
r=1{{0,1}r∩Yϵ

(i,n)
(ys)}

| Y s=ys, θ= i) (3.192)

=
∑

Pr(Y s+r

ys+r∈Yϵ
(i,n)

(ys)

= yszr | Y s = ys, θ = i) . (3.193)

The product of conditional probabilities Pr(Y s=ys | θ= i) ·Pr(Y s+r = yszr | Y s = ys, θ = i)

from (3.187) and (3.193) is given by Pr(Y s+r = yszr | θ = i). Replacing the expectation in

(3.187) by (3.193) the inner-most sum in (3.187) becomes (3.194). The summation in (3.194)

is over Yϵ
(i,n)(y

s) for each ys in Bϵ
(i,n), and every sequence in Yϵ

(i,n) has a prefix in Bϵ
(i,n), that

is: ∪
ys∈Bϵ

(i,n)

Yϵ
(i,n)(y

s) = Yϵ
(i,n).

∑
ys∈Bϵ

(i,n)

Pr(Y s=ys |θ= i)E
[
T (n)

∣∣Y s=ys, θ= i
]
=
∑

ys∈Bϵ
(i,n)

∑
Pr(Y s+r

ys+r∈Yϵ
(i,n)

(ys)

=ys+r |Y s=ys, θ= i) (3.194)

=
∞∑
t=1

∑
yt∈Yϵ

(i,n)

Pr(Y t = yt | θ = i) . (3.195)

The expectation E
[
T (n)

∣∣∣θ = i
]

in equation (3.186) is now replaced by (3.195), to write (3.185)

as (3.196). In (3.197) the two sums are consolidated into a single sum of all yt in the union
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∪∞n=0Yϵ
(i,n), of the sets Yϵ

(i,n), over all n:

M∑
i=1

Pr(θ= i)
∞∑
n=1

∞∑
r=0

E[1T (n)>r|θ = i] =
M∑
i=1

Pr(θ= i)
∞∑
n=1

∑
Pr(Y t

yt∈Yϵ
(i,n)

= yt | θ = i) (3.196)

=
M∑
i=1

Pr(θ = i)
∑

Pr(Y t = yt

yt∈∪∞
n=0Yϵ

(i,n)

| θ = i) . (3.197)

To conclude the proof, note that the union ∪∞n=0Yϵ
(i,n) is the set Yϵ

i defined in the statement

of the Lemma 1.

Proof of Lemma 2, inequality 3.50. Need to show that the following inequality holds:

C
M∑
i=1

Pr(θ= i)
∑
yt∈Yϵ

i

Pr(Y t = yt | θ= i) ≤
M∑
i=1

Pr(θ= i)
∑
yt∈Yϵ

i

Vi(y
t) Pr(Y t = yt | θ= i) (3.198)

Let the set Yϵ
i be partitioned into Aϵ and Yϵ

i \Aϵ. Then, the sum in the right side of (3.198),

which is the right side of inequality (3.50) of Lemma 2, can be split into a sum over Aϵ, right

side of (3.199), and a sum over the sets Yϵ
i \ Aϵ, expression (3.200), as follows:

M∑
i=1

Pr(θ= i)
∑
yt∈Yϵ

i

Pr(Y t=yt | θ= i)Vi(y
t) =

M∑
i=1

Pr(θ= i)
∑
yt∈Aϵ

Pr(Y t=yt | θ= i)Vi(y
t) (3.199)

+
M∑
i=1

Pr(θ= i)
∑

Pr(Y t=yt

yt∈Yϵ
i \Aϵ

| θ= i)Vi(y
t) . (3.200)

For yt ∈ Yϵ
i \ Aϵ : ∃j ̸= i s.t. Uj(t) ≥ 0 and Ui(t) < 0. By Claim (2), the set S0 needs to be

the singleton S0 = {j}, in order to satisfy constraint (3.25). Then, the partitions S0 and S1

also satisfy Naghshvar’s SED constraint [NJW15], which guarantees that E[Ui(t+1)−Ui(t) |

Y t = yt, θ = i] ≥ C for every i ∈ Ω, by inequality (3.8). To prove the Lemma, it suffices

to show that the bound holds also for (3.199). The product of conditional probabilities:

Pr(θ = i) and Pr(Y t = yt | θ = i) in (3.199) is equal to Pr(Y t = yt, θ = i), and can be
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factored into Pr(Y t = yt) Pr(θ = i | Y t = yt). Since 0 < Vi(y
t) ≤ C2, and Aϵ does not

depend on i, the summation order in (3.199) can be reversed, to obtain:

M∑
i=1

∑
yt∈Aϵ

Pr(Y t=yt)Pr(θ= i |Y t=yt)Vi(y
t)=
∑
yt∈Aϵ

Pr(Y t=yt)
M∑
i=1

Pr(θ= i |Y t=yt)Vi(y
t) . (3.201)

The inner sum in (3.201) is lower bounded by constraint (3.26) of Thm. 1. Note that the

probability Pr(θ = i | Y t = yt) in (3.201) is just ρi(y
t). The term Vi(y

t) is replaced by its

definition (3.47), to obtain:

M∑
i=1

Pr(θ = i | Y t = yt)Vi(y
t) =

∑
i∈Ω

ρi(y
t)E[Ui(t+1)−Ui(t)|Y t=yt, θ= i] (3.202)

= E[Uθ(t+ 1)− Uθ(t)|Y t = yt] ≥ C . (3.203)

Note that the right of (3.202) is the definition of E[Uθ(t+1)−Uθ(t)|Y t = yt]. Equation (3.204)

follows by applying bound C from constraint (3.26) in Thm. 1 to (3.203). The marginal

probability Pr(Y t = yt) is replaced by the sum over the joint probability Pr(Y t = yt, θ = i)

in (3.205), and (3.206) follows from the chain rule of probabilities:

∑
yt∈Aϵ

Pr(Y t = yt)
M∑
i=1

ρi(y
t)Vi(y

t) ≥
∑
yt∈Aϵ

Pr(Y t = yt)C (3.204)

= C
M∑
i=1

∑
yt∈Aϵ

Pr(Y t = yt, θ = i) (3.205)

= C

M∑
i=1

Pr(θ = i)
∑
yt∈Aϵ

Pr(Y t = yt | θ = i) . (3.206)

The proof is complete.
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Proof of Lemma 2 inequality (3.51).

Define: t0 ≜
M∑
i=1

Pr(θ= i)
∑
yt∈Aϵ

Pr(Y t = yt | θ= i) (3.207)

Need to show that: t0 ≥ 1

C

M∑
i=1

Pr(θ= i)
∑
yt∈Aϵ

Ψi(y
t) Pr(Y t=yt | θ= i) (3.208)

Definition (3.48): Ψi(y
t) ≜ E[log2(ρi(y

t+1))−log2(ρi(yt))|Y t = yt, θ = i] . (3.209)

Since both Pr(θ= i) and Pr(Y t = yt | θ= i) are probabilities, the order of summation in the

definition of t0 can be reversed:

t0 =
M∑
i=1

Pr(θ= i)
∑
yt∈Aϵ

Pr(Y t = yt | θ= i) (3.210)

=
M∑
i=1

∑
yt∈Aϵ

Pr(Y t = yt, θ= i) (3.211)

=
∑
yt∈Aϵ

M∑
i=1

Pr(Y t = yt, θ= i) (3.212)

=
∑
yt∈Aϵ

Pr(Y t = yt)
M∑
i=1

Pr(θ= i | Y t = yt) (3.213)

=
∑
yt∈Aϵ

Pr(Y t = yt)
M∑
i=1

ρi(y
t) . (3.214)

Note that
∑M

i=1 ρi(y
t) = 1. The next part of the proof consists of showing that:

C ≥ E[Ψθ(y
t) | Y t = yt] (3.215)

=
M∑
i=1

Pr(θ = i | Y t = yt)E[ρi(y
t+1))− log2(ρi(y

t)) | Y t = yt, θ = i] (3.216)

By the definition of Aϵ, yt ∈ Aϵ =⇒ ρi(y
t) < 1

2
,∀i ∈ Ω. To show that equation (3.216)

holds, it suffices to show that it is a concave function, with a unique maximum of C, when
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∆ = 0. First, note that,given yt, the value of ρi(yt) is constant, an can thus be extracted

from the expectation. The ratio ρi(y
t+1)

ρi(yt)
is exactly the weight update coefficient Wi(yt+1) ≜

Pr(Yt+1=yt+1|θ=i,Y t=yt)
Pr(Yt+1=yt+1|Y t=yt)

. Since {Y t = yt} fully determines the partitions S0 and S1, the top

probability Pr(Yt+1 = yt+1 | θ = i, Y t = yt) is q if i ∈ Syt+1 and p otherwise. The bottom

probability Pr(Yt+1 = yt+1 | Y t = yt) is qPyt+1 + p(1−Pyt+1). When the events {i ∈ S0} and

{i ∈ S1} are considered separately, it can be expressed by:

M∑
i=1

ρi(y
t)E[ρi(y

t+1))− log2(ρi(y
t)) | Y t = yt, θ = i] (3.217)

=
∑
i=∈S0

ρi(y
t)

(
q log2

q

P0q + P1p
+ p log2

p

P0p+ P1q

)
(3.218)

+
∑
i=∈S1

ρi(y
t)

(
q log2

q

P1q + P0p
+ p log2

p

P1p+ P0q

)
(3.219)

M∑
i=1

ρi(y
t)E[ρi(y

t+1))− log2(ρi(y
t)) | Y t = yt, θ = i] (3.220)

=
∑
i=∈S0

ρi(y
t)

(
q log2

2q

1 + ∆(q − p)
+ p log2

2p

1−∆(q − p)

)
(3.221)

+
∑
i=∈S1

ρi(y
t)

(
q log2

2q

1−∆(q − p)
+ p log2

2p

1 + ∆(q − p)

)
(3.222)

= C − 1 + ∆

2
(q log2(1 + ∆(q − p)) + p log2(1−∆(q − p))) (3.223)

− 1−∆

2
(q log2(1−∆(q − p)) + p log2(1 + ∆(q − p))) (3.224)

= C + f(∆, p, q) (3.225)
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Where f(∆, p, q) is given by:

f(∆, p, q) = −1 + ∆

2
(q log2(1 + ∆(q − p)) + p log2(1−∆(q − p))) (3.226)

− 1−∆

2
(q log2(1−∆(q − p)) + p log2(1 + ∆(q − p))) (3.227)

= −(q 1+∆
2

+ p1−∆
2

) log2(1+∆(q−p))− (q 1−∆
2

+ p1+∆
2

) log2(1−∆(q−p)) (3.228)

= −1 + (q − p)∆

2
log2(1+∆(q−p))− 1− (q − p)∆

2
log2(1−∆(q−p)) (3.229)

= −1 + (q − p)∆

2 ln(2)
ln(1 + ∆(q − p))− 1− (q − p)∆

2 ln(2)
ln(1−∆(q − p)) (3.230)

To find the maximum of E[Ψθ(y
t) | Y t = yt], it suffices to maximize f(∆, p, q), or g(∆, p, q) ≜

2 ln(2)f(∆), the latter which ignores the additive constant C of the expectation, as well as

the multiplicative constant 1
ln(2)

in f(∆, p, q). The proof consists of showing that g(∆, p, q)

is concave, with a maximum of 0 at ∆ = 0. It suffices to show that the first derivative of

g(∆, p, q) is zero at ∆ = 0 and that the second derivative is negative.

g(∆, p, q) = −(1+(q−p)∆) ln(1 + ∆(q − p))− (1−(q−p)∆) ln(1−∆(q − p)) (3.231)

d

d∆
g(∆, p, q) = −(q − p) ln(1 + ∆(q − p)) + (q − p) ln(1−∆(q − p)) (3.232)

− (1 + (q − p)∆)
(q − p)

1 + ∆(q − p)
− (1− (q − p)∆)

−(q − p)

1−∆(q − p)
(3.233)

= −(q − p) ln(1 + ∆(q − p)) + (q − p) ln(1−∆(q − p)) (3.234)

− (q − p)
1 + (q − p)∆

1 + ∆(q − p)
+

1− (q − p)∆

1−∆(q − p)
(3.235)

= −(q − p) ln(1 + ∆(q − p)) + (q − p) ln(1−∆(q − p)) (3.236)

The first derivative of g(∆, p, q) is zero at ∆ = 0, since ln(1) = 0. Next the second derivative
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is derived:

d2

d∆2
g(∆, p, q) =

d

d∆
(− ln(1 + ∆(q − p)) + ln(1−∆(q − p))) (3.237)

= − q − p

1 + ∆(q − p)
− q − p

1−∆(q − p)
(3.238)

= −(q − p)
1−∆(q − p) + (1 + ∆(q − p))

1−∆2(q − p)2
(3.239)

= −2 (q − p)

1−∆2(q − p)2
(3.240)

For every ∆(q − p) ∈ (0, 1) the second derivative is negative, which proves the concavity.

Thus, the expectation E[Ψθ(y
t) | Y t = yt] has a maximum of C at ∆ = 0. To complete the

proof, not that for each i ∈ Ω:

i ∈ S0 =⇒ Ψi(y
t) = C − q log2(1 + ∆(q − p))− p log2(1−∆(q − p)) (3.241)

i ∈ S1 =⇒ Ψi(y
t) = C − q log2(1−∆(q − p))− p log2(1 + ∆(q − p)) (3.242)

In both cases Ψi(y
t) has a minimum of 0 at ∆ = 1 and ∆ = −1 respectively. Thus, Ψi(y

t) is

non-negative, which allows to revert the order of summation. Furthermore, these extremes

are only achieved with either S0 = ∅ or S1 = ∅, which is not a valid partitioning, and thus

Ψi(y
t) > 0. The proof is complete.

Proof of Lemma 3, equation (3.52). Define Vi(y
t) ≜ E[Ui(t + 1) − Ui(t) | Y t = yt, θ = i] to

rewrite the left side of (3.52) as (3.243):

∑
yt∈Yϵ

i

E[Ui(t+1)−Ui(t) |Y t=yt, θ= i]Pr(Y t=yt |θ= i) =
∑
yt∈Yϵ

i

Vi(y
t)Pr(Y t=yt |θ = i) . (3.243)

An equivalent form of Yϵ
i , given by ∪∞n=0Yϵ

(i,n), is used to write (3.243) as the left side of

(3.245). This form was also used in the proof of Lemma 1. The sum over the union is again
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split into a double sum, see right side of (3.245), first over n, and then over Yϵ
(i,n):

∑
yt∈Yϵ

i

Vi(y
t)Pr(Y t=yt |θ = i) =

∑
yt∈∪∞

n=0Yϵ
(i,n)

Vi(y
t) Pr(Y t=yt |θ = i) (3.244)

=
∞∑
n=1

∑
Vi

yt∈Yϵ
(i,n)

(yt) Pr(Y t=yt |θ= i) . (3.245)

The set Yϵ
(i,n) is a subset of ∪∞t=0{0, 1}t, therefore, it can be expressed a union of all the

intersections over n: Yϵ
(i,n) = ∪∞

t=0{Yϵ
(i,n) ∩ {0, 1}t}. This new form is used to rewrite the

sum in (3.245), see in left of (3.246). In the right of (3.246), the intersections with Yϵ
(i,n) are

removed, and replaced by the indicator of Yϵ
(i,n):

∞∑
t=0

∑
yt∈Yϵ

(i,n)
∩{0,1}t
Vi(y

t) Pr(Y t=yt | θ= i) =
∞∑
t=0

∑
yt∈{0,1}t

1yt∈Yϵ
(i,n)

Vi(y
t) Pr(Y t=yt | θ= i) . (3.246)

Recall that Vi(y
t) = E [Ui(t+ 1)−Ui(t) |Y t = yt, θ= i] from (3.47). Also recall from (7.2)

that Ui(t) = Ui(Y
t), a random function of Y t. Define Di(Y

t+1) ≜ Ui(Y
t+1) − Ui(Y

t), to

expand Vi(y
t) as:

E[Ui(t+1)−Ui(t) | Y t=yt, θ= i] =
∑

z∈{0,1}

Di(y
tz) Pr(Yt+1=z | Y t=yt, θ= i) . (3.247)

The product of the probabilities in (3.246) and (3.247) is given by Pr(Y t+1 = ytz | θ = i).

Then, replace Vi(y
t) in (3.246) with (3.247), to obtain the left side of (3.248). The equality

in (3.248) follows by the definition of expectation:

∞∑
t=0

∑
yt+1∈{0,1}t+1

Di(y
t+1)1yt∈Yϵ

(i,n)
Pr(Y t+1=yt+1 |θ= i) =

∞∑
t=0

E[Di(Y
t+1)1Y t∈Yϵ

(i,n)
| θ= i] . (3.248)

Then, expand Di(Y
t) using its definition, to rewrite (3.248) in (3.249), and use linearity of

expectations in (3.250). The indicator 1Y t∈Yϵ
(i,n)

is zero before time t = t
(n)
0 , is zero after time
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t = t
(n)
0 + T (n) − 1, and is one when t is between the two times: t

(n)
0 ≤ t < t = t

(n)
0 + T (n).

Thus, the limits of summation are adjusted in (3.251), and the indicator of Yϵ
(i,n) removed.

Note that the times t
(n)
0 and T (n) are themselves random variables. Lastly, observe that

(3.251) is a telescopic sum, which is replaced by its end points in (3.252):

∞∑
t=0

E[Di(Y
t+1)1Y t∈Yϵ

(i,n)
| θ= i] =

∞∑
t=0

E
[(
Ui

(
Y t+1

)
−Ui

(
Y t
))
1Y t∈Yϵ

(i,n)

∣∣θ= i
]

(3.249)

= E

[
∞∑
t=0

(
Ui

(
Y t+1

)
−Ui

(
Y t
))
1Y t∈Yϵ

(i,n)

∣∣∣θ = i

]
(3.250)

= E

[
T (n)+t

(n)
0 −1∑

t=t
(n)
0

(Ui(Y
t+1)−Ui(Y

t))
∣∣∣θ = i

]
(3.251)

= E
[
Ui

(
t
(n)
0 + T (n)

)
− Ui

(
t
(n)
0

) ∣∣θ = i
]
. (3.252)

Finally, the inner most summation in (3.245) is replaced with (3.252):

∞∑
n=1

∑
Vi

yt∈Yϵ
(i,n)

(yt) Pr(Y t=yt | θ= i) =
∞∑
n=1

E
[
Ui

(
t
(n)
0 +T (n)

)
−Ui

(
t
(n)
0

)
|θ= i

]
. (3.253)

The proof is complete.

Proof of lemma 3, equation (3.53). Equation (3.53) differs from (3.52) in that it the logs of

the posteriors log2(ρi(yt)), i ∈ Ω replace the log likelihood ratio Ui(t), i ∈ Ω . Need to show

that:

∑
yt∈Yi

E[log2

(
ρi(y

t+1)

ρi(yt)

)
|Y t=yt, θ= i] Pr(Y t=yt |θ= i) = E[log2

(
ρi(y

T0)

ρi(y0)

)
| θ= i] . (3.254)

The same proof used in (3.52) can be used, but only the first time T1 = T (1) is needed, since

only the first crossing of the correct message into the confirmation phase is considered, and

the difference Di(Y
t+1) needs to be replaced. The new definition is given by: Di(Y

t+1) ≜
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ρi(Y
t+1)− ρi(Y

t).

Proof of Lemma 4, fall back probability pf of equation (3.54). The confirmation phase starts

at a time t of the form Tn defined in (3.19), at which the transmitted message i attains

Ui(Tn) ≥ 0 and Ui(Tn − 1) < 0. Then, similar to the product martingale in [Dur19a], the

process ζi(t), t ≥ Tn, is a martingale respect to Ft = σ(Y t), where:

ζi(t) =

(
p

q

)Ui(t)

C2

. (3.255)

Note that Ui(t) is a biased random walk, see the Markov Chain in [YPA21], with

Ui(t) = Ui(Tn) +
∑t

m=Tn
ξm, where ξm is an R.V. distributed according to:

ξm =


+C2 w.p. q

−C2 w.p. p

, (3.256)

To prove that ζi(t) is a martingale, need to show that E[ζi(t+ 1) | Ft] = ζi(t):

E[ζi(t+ 1) | Ft] = ζi(t)

(
p

(
p

q

)−1

+ q

(
p

q

)1
)

= ζi(t) (p+ q) = ζi(t) . (3.257)

Let Sn be the first time t at which decoding terminates, if Ui(t) = Ui(Tn) + NC2, or a fall

back occurs, if Ui(t) = Ui(Tn)− C2 < 0, that is:

Sn ≜ min{t ≥ Tn : Ui(t) ∈ {Ui(Tn)− C2, Ui(Tn) +NC2}} . (3.258)
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Then, the process ζi(t ∧ Sn) is a two-side bounded martingale and:

E[ζi(Sn)] = pf

(
p

q

)Ui(Tn)

C2
−1

+ (1−pf )
(
p

q

)Ui(Tn)

C2
+N

(3.259)

E[ζi(Tn)] =

(
p

q

)Ui(Tn)

C2

(3.260)

By Doob’s optional stopping theorem [Dur19b], E[ζi(Sn)] is equal to E[ζi(Tn)] . Let the fall

back probability be pf ≜ Pr(Ui(Sn) = Ui(Tn)−C2 | t = Tn), then, the value of pf is obtained

from equations (3.259) and (3.260), by setting both right sides equal. The term (p/q)Ui(Tn)/C2

is cancelled from both sides in (3.261), the terms with pf are collected in (3.262), and the

value of pf is obtained in (3.263).

1 = pf
q

p
+ (1− pf )

(
p

q

)N

(3.261)

0 = pf
q

p

(
1−

(
p

q

)N+1
)
−

(
1−

(
p

q

)N
)

(3.262)

pf =
p

q

1−
(

p
q

)N
1−

(
p
q

)N+1
. (3.263)

Since pf is just a function of N and p, then it is the same constant, as long as {θ = i}

independent of the value of i ∈ Ω, and independent of the index n ∈ N. The definition of C2

in equation (7.5), given by C2 = log2

(
q
p

)
is used to replace p

q
and obtain pf in terms of C2:

pf = 2− log2(
q
p
) 1− 2−N log2(

q
p
)

1− 2−(N+1) log2(
q
p
)
= 2−C2

1− 2−NC2

1− 2−(N+1)C2
(3.264)

The proof is complete.

Proof of Lemma 4 recovery probability pr of equation (3.56). When the message i in confir-

mation comprises the entire set S0, by claim 2 and and constraint (3.24), the magnitude of
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the step size taken by Ui(t) every time step is C2. However, when the wrong message is in

confirmation, the encoder sends Xt = 1. Thus, Ui(t) moves backwards when Yt = Xt, with

probability q, and forward when Yt ̸= Xt, with probability p. To obtain the recovery prob-

ability, a martingale ζi(t), t ≥ Tn is constructed, starting at time t = Tn. The martingale

ζi(t) is similar that used in the proof of (3.54), but q
p

replaces p
q
, and is given by:

ζi(t) =

(
q

p

)Ui(t)

C2

(3.265)

The process Ui(t) is again a biased random walk: Ui(t) = Ui(Tn) +
∑t

m=Tn
ξm, where Ui(Tn)

is the value of Ui(t) when crossing into the confirmation phase, and ξm is an R.V. distributed

according to:

ξm =


−C2 w.p. q

+C2 w.p. p

(3.266)

To show that ζi(t) is a martingale, it suffices to show that E[ζi(t+ 1) | Ft] = ζi(t):

E[ζi(t+ 1) | Ft] = ζi(t)

(
p

(
q

p

)1

+ q

(
q

p

)−1
)

= ζi(t) (p+ q) = ζi(t) (3.267)

Let Sn be again a stopping time as defined in (3.258). Then, the martingale ζi(t ∧ Sn) is

two-side bounded. Define the recovery probability by pr ≜ Pr(Ui(Sn) = Ui(Tn) − C2), the
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probability that the confirmation phase ends in a recovery, then:

E[ζi(Sn)] = E[ζi(Tn)] =

(
q

p

)Ui(Tn)

C2

(3.268)

= pr

(
q

p

)Ui(Tn)

C2
−1

+ (1− pr)

(
q

p

)Ui(Tn)

C2
+N

(3.269)(
q

p

)Ui(Tn)

C2

= pr

(
q

p

)Ui(Tn)

C2
−1

+ (1− pr)

(
q

p

)Ui(Tn)

C2
+N

(3.270)

1 = pr
p

q
+

(
q

p

)N

− pr

(
q

p

)N

(3.271)

0 = pr
p

q

(
1−

(
q

p

)N+1
)
−

(
1−

(
q

p

)N
)

(3.272)

Solving for pr:

pr =
q

p

1−
(

q
p

)N
1−

(
q
p

)N+1
= 2C2

1− 2NC2

1− 2(N+1)C2
(3.273)

=
1− 2−NC2

1− 2−(N+1)C2
(3.274)

The probability that the process ends in a wrong decoding is given by 1− pr, where:

(1− pr) = 1− 1− 2−NC2

1− 2−(N+1)C2
=

1− 2−(N+1)C2 − 1 + 2−NC2

1− 2−(N+1)C2
(3.275)

=
2−NC2 − 2−(N+1)C2

1− 2−(N+1)C2
= 2−NC2

1− 2−C2

1− 2−(N+1)C2
(3.276)

The proof is complete.

Proof of Lemma 4 Corollary 1. Suppose now, that the correct message is in the confirmation

phase, and replace N by m + n. Suppose that the process starts at a time tn with a

value Ui(tn) = Ui(tn) + nC2, and let the stopping time Sn be the time at which Ui(t) ∈

{Ui(tn) − nC2, Ui(tn) + (n +m)C2}. Define pm as the probability that the process ends at

100



Ui(t) = Ui(tn)+(n+m)C2, which could be associated with a correct decoding, and pn as the

probability that the process ends at Ui(t)=Ui(tn)− nC2, a fall back. Then, the martingale

ζ(t) in (3.255), used in the proof of the fall back probability pf (3.54), can be used to compute

pm, and pn− :

E[ζi(Sn)] = E[ζi(tn)] =

(
p

q

)Ui(tn)

C2

(3.277)

= pm

(
p

q

)Ui(tn)

C2
+m

+ (1− pm)

(
p

q

)Ui(tn)

C2
−n

(3.278)(
p

q

)Ui(tn)

C2

= pm

(
p

q

)Ui(tn)

C2
+m

+ (1− pm)

(
p

q

)Ui(Tn)

C2
−n

(3.279)(
p

q

)n

= pm

(
p

q

)n+m

− pm + 1 (3.280)

0 = pm

((
p

q

)n+m

− 1

)
−
((

q

p

)n

− 1

)
(3.281)

pm =

(
p
q

)n
− 1(

p
q

)n+m

− 1
(3.282)

=
1− 2−nC2

1− 2(n+m)C2
(3.283)

And pn− = 1− pm, given by:

pn− = 1− 1− 2−nC2

1− 2−(n+m)C2
=

2−(n+m)C2 − 2−nC2

1− 2−(n+m)C2
(3.284)

= 2−nC2
1− 2−mC2

1− 2−(n+m)C2
(3.285)

The proof is complete.

Proof of Lemma 5, equation (3.63). Let βn(t) = Ui(t)− (t− t
(n)
0 −T (n))C1 for t > Tn, where
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Tn = t
(n)
0 + T (n), and let Sn be a stopping time, defined by:

Sn ≜ min{t ≥ Tn : βn(t) ∈ {βn(Tn)− C2, βn(Tn) +NC2}} − Tn . (3.286)

Then, βn(t) is a martingale, and βn(t∧Sn) is a two-side bounded martingale, and at t = Sn,

β(Sn) ∈ {Ui(0)−C2, Ui(0) +NC2}. The expected duration E[Sn]− Tn, of the n-th round of

the correct confirmation phase, can be computed from E[Sn], using the martingale βn(t) as

follows:

E[β(Sn)] = βn(Tn) = Ui(Tn) = E[Ui(Sn)]− C1E[Sn] (3.287)

= pf (Ui(Tn)− C2) + (1− pf )(Ui(Tn) +NC2)− E[Sn]C1 (3.288)

Ui(Tn) = Ui(Tn)− pfC2 + (1− pf )NC2 − E[Sn]C1 (3.289)

C1E[Sn] = −C2pf + (1− pf )NC2 (3.290)

E[Sn] =
C2

C1

((1− pf )N − pf ) (3.291)

Then E[Sn]− Tn = E[Sm]− Tn ∀n,m ≥ 1, i.e. it is a constant E[S]△E[Sn]− Tn, that does

not depend on n. The confirmation phase will happen by average of
∑∞

j=0 p
i
f = 1

1−pf
times.

Let τ − T denote the total spent by the correct message in the confirmation phase, then:

E[τ − T ] = E[S]
1

1− pf
= (N − pf

1− pf
)
C2

C1

=

(
N − 2−C2

1− 2−NC2

1− 2−C2

)
C2

C1

(3.292)

The proof is complete.

Proof of Lemma 5, expected wrong confirmation time, equation (3.65). Similar to the proof

of equation (3.63), Let βn(t) = Ui(t) + (t − t
(n)
0 − T (n))C1 for t > Tn = t

(n)
0 + T (n), and let

Sn be the stopping time defined in (3.286). Then, βn(t) is a martingale, and βn(t ∧ Sn) is

a two-side bounded martingale, and at t = Sn, β(Sn) ∈ {Ui(0) − C2, Ui(0) + NC2}. The

expected duration of the n-th round of a wrong confirmation phase is E[Sn]−Tn, where E[Sn]
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is given by:

E[β(Sn)] = βn(Tn) = Ui(Tn) = E[Ui(Sn)] + C1E[Sn] (3.293)

= pr(Ui(Tn)− C2) + (1− pr)(Ui(Tn) +NC2) + E[Sn]C1 (3.294)

Ui(Tn) = Ui(Tn)− prC2 + (1− pr)NC2 + E[Sn]C1 (3.295)

C1E[Sn] = C2pr − (1− pr)NC2 (3.296)

E[Sn] =
C2

C1

(pr − (1− pr)N) (3.297)

=
C2

C1

(pr(1 +N)−N) (3.298)

=
C2

C1

(
1− 2−NC2

1− 2−(N+1)C2
(1 +N)−N

)
(3.299)

=
C2

C1

(
1− 2−(N+1)C2 − 2−NC2 + 2−(N+1)C2

1− 2−(N+1)C2
(1 +N)−N

)
(3.300)

=
C2

C1

(
N + 1−N − 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.301)

=
C2

C1

(
1− 2−NC2

1− 2−C2

1− 2−(N+1)C2
(1 +N)

)
(3.302)

And is a constant that does not depend on the round n and times Tn or t
(n)
0 .

Proof of Lemma 5 Corollary 2. Suppose that at some time t = t′ > Tn, Ui(t
′) = UI(TN) +

nC2, and define the martingale βn(t) = Ui(t)− (t− t′)C1 for t > t′, similar to the martingale

in the proof of (3.63). Let the stopping time Sn+m by:

Sn+m ≜ min{t ≥ t′ : βn(t) ∈ {βn(Tn), βn(Tn) + (n+m)C2}} − t′ , (3.303)
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and let pm and pn− be as defined in Lemma 4 Corollary 1:

pm =
1− 2−nC2

1− 2−(n+m)C2
(3.304)

pn− = 2−nC2
1− 2−mC2

1− 2−(n+m)C2
(3.305)

Then, β(t), t ≥ t′ is a two side bounded martingale, and:

E[β(Sn+m)] = βn(t
′) = Ui(Tn) + nC2 = E[Ui(Sn+m)]− C1E[Sn+m] (3.306)

Ui(Tn) + nC2 = (1− pm)Ui(Tn) + pm(Ui(Tn) + (n+m)C2)− E[Sn+m]C1 (3.307)

nC2 = pm(n+m)C2 − E[Sn+m]C1 (3.308)

C1E[Sn+m] = pm(n+m)C2 − nC2 (3.309)

E[Sn+m] =
C2

C1

(mpm − n(1− pm)) =
C2

C1

(m(1− pn−)− npn−) (3.310)

=
C2

C1

(pm(m+ n)− n) =
C2

C1

(m− pn−(m+ n)) (3.311)

=
C2

C1

(
1− 2−nC2

1− 2−(n+m)C2
(m+ n)− n

)
(3.312)

=
C2

C1

(
m− 2−nC2

1− 2−mC2

1− 2−(n+m)C2
(m+ n)

)
. (3.313)

And if m = n = N , then, using pN and pN− , then E[S2N ] is given by:

E[S2N ] =
C2

C1

(
1− 2−NC2

1− 2−2NC2
2N −N

)
(3.314)

=
C2

C1

(
N − 2−NC2

1− 2−NC2

1− 2−2NC2
2N

)
(3.315)

The proof is complete.

Proof of Lemma 6. Start by conditioning the expectation in the left side of equation (3.68),

in Lemma 6, on the events {T (n) > 0, θ = i}, {T (n) = 0, θ = i}, and {T (n) < 0, θ = i}, whose

union results in the original conditioning event, {θ = i}, to express the original conditional
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probability using Bayes rule:

E[Ui(Tn)−Ui(t
(n)
0 ) | θ = i] = E[Ui(Tn)−Ui(t

(n)
0 ) |T (n)>0, θ= i] Pr(T (n)>0 |θ= i) (3.316)

+ E[Ui(Tn)−Ui(t
(n)
0 ) |T (n)=0, θ= i] Pr(T (n)=0 |θ= i) (3.317)

+ E[Ui(Tn)−Ui(t
(n)
0 ) |T (n)<0, θ= i] Pr(T (n)<0 |θ= i) . (3.318)

Note that T (n) is non-negative, and thus Pr(T (n) < 0) = 0, and term (3.318) vanishes. When

T (n) = 0, then Tn = t
(n)
0 + T (n) = t

(n)
0 so that Ui(Tn) = Ui(t

(n)
0 ), and the term (3.317) also

vanishes, leaving only the first term conditioned on {T (n) > 0, θ = i}. Let C(t(n)0 ) be the event

that message i enters confirmation after time t
(n)
0 , rather than another message j ̸= i ending

the process by attaining Uj(t) ≥ log2(1−ϵ)−log2(ϵ), that is: C(t(n)0 ) ≜ {∃t > t
(n)
0 : Ui(t) ≥ 0}.

Then, the probability Pr(T (n+1) ≥ 0 | θ = i) can be expressed as:

Pr(T (n+1)≥0 |θ= i)=Pr(T (n+1)≥0 |T (n)>0, C(t(n)0 ), θ= i) Pr(T (n)>0, C(t(n)0 ) |θ= i). (3.319)

Note that the first probability in the right side of (3.319) is just the fall back probability pf

computed in Lemma 4. The last probability in (3.319) can be also expressed as a product of

conditional probabilities, see (3.320). In (3.320) note that event C(t(n)0 ) is the event that an

n-th confirmation phase phase occurs, which implies that a preceding n-th communication

phase round occurs. Then, C(t(n)0 ) =⇒ T (n) > 0, and the first factor in the product of

probabilities in (3.320) vanishes:

Pr(T (n)>0, C(t(n)0 ) |θ= i) = Pr(T (n)>0 |C(t(n)0 ), θ= i) Pr(C(t(n)0 ) |θ= i) (3.320)

= Pr(C(t(n)0 ) |θ= i) . (3.321)

Combine (3.319) and (3.320) to obtain:

Pr(T (n+1)>0 | θ= i) = Pr(C(t(n)0 ) | θ = i)pf , (3.322)
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and bound Pr(C(t(n)0 ) | θ = i) as follows:

Pr(C(t(n)0 ) |θ= i) = Pr(C(t(n)0 ) |T (n)>0, θ= i) Pr(T (n)>0 |θ= i) ≤ Pr(T (n)>0 |θ= i) . (3.323)

Then, recursively bound Pr(T (n+1) > 0 | θ = i) by Pr(T (n) > 0 | θ = i)pf using (3.322) and

(3.323). For n ≥ 1, this results in the general bound:

Pr(T (n)≥0 | θ= i) ≤ pn−1f . (3.324)

Using (3.324), the expectation E[Ui(Tn)−Ui(t
(n)
0 ) | θ= i], in (3.316), is bounded by:

E[Ui(Tn)− Ui(t
(n)
0 ) | θ = i] ≤ E[Ui(Tn)−Ui(t

(n)
0 ) |T (n)>0, θ= i]pn−1

f . (3.325)

The value of Ui(t
(n)
0 ) at n = 1, when t

(1)
0 = 0 is a constant that can be directly computed

for every i from the initial distribution. Using (3.325), the second sum in the left side of

equation (3.68) can be bounded by:

∞∑
n=1

E[Ui(Tn)−Ui(t
(n)
0 ) |θ= i] (3.326)

≤ E[Ui(T
(1))−Ui(0) |T (1)>0, θ= i]p0f+

∞∑
n=2

E[Ui(Tn)−Ui(t
(n)
0 ) |T (n)>0, θ= i]pn−1f (3.327)

=−Ui(0)+
∞∑
n=1

E[Ui(Tn) |T (n)>0, θ= i]pn−1
f −

∞∑
n=2

E[Ui(t
(n)
0 ) | T (n)>0, θ= i]pn−1

f . (3.328)

The conditioning event {T (n) > 0} implies events {T (m) > 0} for m = 1, . . . , n because if

T (m) = 0 means the process has stopped and no further communication rounds occur. Event

{T (n) > 0} also implies that the n-th round of communication occurs, and therefore Ui(t
(n)
0 )
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is given by the previous crossing value Ui(Tn−1) minus C2 by constraint (3.25), then:

∞∑
n=2

E[Ui(t
(n)
0 ) | T (n) > 0, θ = i]pn−1

f =
∞∑
n=2

E[Ui(Tn−1)−C2 | T (n) > 0, θ= i]pn−1
f (3.329)

=
∞∑
n=1

E[Ui(Tn)−C2 |T (n+1)>0, θ= i]pnf ≥
∞∑
n=1

E[Ui(Tn)−C2 | T (n)>0, θ= i]pnf . (3.330)

The following inequality was used in (3.330), and the proof is provided in Sec. 3.22:

E[Ui(Tn) | T (n+1)>0, θ= i] ≥ E[Ui(Tn) | T (n)>0, θ= i] , (3.331)

From (3.330) it follows that:

−
∞∑
n=1

E[Ui(Tn)−C2 |T (n+1)>0, θ= i]pnf ≤−
∞∑
n=1

E[Ui(Tn)−C2 | T (n)>0, θ= i]pnf (3.332)

=−
∞∑
n=1

E[pf (Ui(Tn)−C2) |T (n)>0, θ= i]pn−1
f . (3.333)

Note that in (3.333), a factor pf from the power pnf is moved inside the expectation. Replace

(3.328) by (3.333) to upper bound (3.326) by:

∞∑
n=1

E[Ui(Tn)− Ui(t
(n)
0 ) | θ = i] ≤ −Ui(0) (3.334)

+
∞∑
n=1

E[Ui(Tn) | T (n) > 0, θ = i]pn−1
f −

∞∑
n=1

E[pf (Ui(Tn)−C2) | T (n)>0, θ= i]pn−1f (3.335)

=
∞∑
n=1

E[Ui(Tn)−pf (Ui(Tn)−C2) |T (n)>0, θ= i]pn−1f − Ui(0) . (3.336)

The expectation in (3.336) combines the two sums in (3.335) by subtracting pf (Ui(Tn)−C2)

from Ui(Tn). The first term Ui(Tn) is the value of Ui(t) at the communication-phase stopping

time t = Tn. In the second term pf (Ui(Tn)−C2), the difference Ui(Tn)−C2 is the unique value

that Ui(t
(n+1)
0 ) can take once the n-th confirmation phase round starts at a point Ui(Tn).
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Equation (3.336) is an important intermediate result in the proof of Thm. 2. This is because

when considering the process U ′
i(t), the starting value of each communication-phase round

U ′
i(t

(n+1)
0 ) is still that of the original process Ui(Tn)−C2, and therefore, the argument of the

expectation would change to U ′
i(T

′
n) − pf (Ui(Tn) − C2). To proof Lemma 6, it suffices to

bound (3.336), for which the sum in (3.336) is written as:

∞∑
n=1

E[Ui(Tn)(1−pf )+pfC2) |T (n)>0, θ= i]pn−1f

=
∞∑
n=1

E[Ui(Tn) | T (n)>0, θ= i](1−pf )pn−1f +
∞∑
n=1

C2p
n
f . (3.337)

By constraint (3.23), Ui(Tn) ≤ Ui(Tn − 1) + C2, and since Ui(Tn − 1) < 0, then, Ui(Tn) is

bounded by C2. Thus, the expectation E[Ui(Tn) | T (n)>0, θ= i] is also bounded by C2. Then

(3.337) is bounded by:

∞∑
n=1

C2(1−pf )pn−1f +
∞∑
n=1

C2p
n
f = C2 +

pf
1− pf

C2 (3.338)

Finally, the left side of equation (3.68) in Lemma 6, (the left side of (3.339)), is upper

bounded using the bounds (3.336) and (3.338) on the inner sum (3.332) as follows:

M∑
i=1

Pr(θ= i)
∞∑
n=1

E[Ui(Tn)−Ui(t
(n)
0 ) | θ= i] ≤

M∑
i=1

Pr(θ= i)

(
pf

1−pf
C2+C2−Ui(0)

)
(3.339)

= 2−C2
1− 2−NC2

1− 2−C2
C2 + C2 − E[Ui(0)] . (3.340)

To transition from (3.339) to (3.340), the definition of pf from Lemma 4 is used. The proof

of Lemma 6 is complete.

Proof of lemma7. The wrong communication phase starts at some time t = t′, when a mes-

sage i ∈ Ω \ θ has attained a posterior Ui(t
′) ≥ 0. Let r1, r2, . . . , rn denote the expected

times that the wrong message i spends in each state k, that is: Ui(t) = Ui(t
′) + kC2. Let
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the last state in the Markov Chain be n, from which there is no return. Note that, Ui(t)

takes a step back with probability q and a step forward with probability p, Therefore, each

time i visits a state k, it spends one time unit in state k, and then moves to state k− 1 with

probability q and to state k + 1 with probability p. The time r0 spent at state 0 is given by

1 + qr1, and since there is no return from state n, the time rn spent in state n is just rn−1p.

The times spent on all intermediate states: r2, r3, . . . , rn−1 can be expressed recursively by

rk = prk−1 + qrk, starting by state r1 as follows:

r1 = pr0 + qr2 (3.341)

r2 = pr1 + qr3 (3.342)

r3 = pr2 + qr4 (3.343)

r4 = pr3 + qr5 (3.344)

. . . = . . . (3.345)

rk = prk−1 + qrk+1 (3.346)

. . . = . . . (3.347)

rn−2 = prn−3 + qrn−1 (3.348)

rn−1 = prn−2 + qrn (3.349)

rn = prn−1 (3.350)

Adding all the left sides and right sides separately the following inequality is obtained:

n∑
i=1

ri =
n−1∑
i=0

pri +
n∑

i=2

qri (3.351)

= pr0 + pr1 +
n−1∑
i=2

ri + qrn (3.352)
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Then subtract the two sums:

n∑
i=1

ri −
n−1∑
i=2

= r0 + pr1 + qrn (3.353)

r1 + rn = pr0 + pr1 + qrn (3.354)

r1(1− p) + prn = pr0 (3.355)

r1 = r0
p

1− p
− prn (3.356)

r1 = r0
p

q
− prn (3.357)

The process ends if the state n is reached. In such case, a single time unit is spent on state

n. Then, rn is also the probability of reaching state n: rn = Pr(∃t > t′ : Ui(t) = Ui(t)+nC2).

This is the probability (1− pr) of no recovery in Lemma 4 equation 3.57, with N = n:

rn = 2−nC2
1− 2−C2

1− 2−(n+1)C2
(3.358)

When the number of states goes to infinity, the probability rn goes to zero:

lim
n→∞

rn = lim
n→∞

2−nC2
1− 2−C2

1− 2−(n+1)C2
(3.359)

= 0 (3.360)

lim
n→∞

r1 =
p

q
(3.361)

Solving for the other states:

r1 = r0
p

q
= r0p+ qr2 =⇒ r2 = r0(

p

q
− p)

1

q
= r0

p− pp

q2
= r0

p(1− q)

q2
= r0

p2

q2
(3.362)
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Assume rk = r0
pk

qk
and inductively compute rk+1:

rk = r0
pk

qk
= r0prk−1 + qrk+1 = r0

pk

qk−1
+ qrk+1 = r0

pkq

qk
+ qrk+1 (3.363)

qrk+1 = r0
pk

qk
− r0

pkq

qk
(3.364)

rk+1 = r0
1

q

pk(1− q)

pk
= r0

pk+1

qk+1
(3.365)

It only remains to determine r0. For an infinite Markov chain with states 0, 1, 2, . . . , the

message returns to s0 after leaving to state s1 a.s.. Then the time at s0 is given by:

r0 =
∞∑
i=0

pi =
1

1− p
=

1

q
. (3.366)

The proof is complete.

Proof of Lemma 8. Suppose that the process in in the wrong confirmation phase. That is,

for i ∈ Ω \ θ, Ui(t) ≥ 0. Let t′ denote the start of such confirmation phase, then, for the

duration of the confirmation phase, Ui(t) = Ui(t
′) + nC2, forming a Markov Chain. Denote

by ρn the posterior of the wrong message i, when i is at state n, where ρ0 = ρi(y
t′). Denote

by Wq(n) the log of the weight update of messages in Ω \ {i}, when Yt = Xt = 1, and by

Wp(n) the log of the weight update, when Yt = 0 ̸= Xt. The first part of the proof is to

show that that Wq(n + 1) = −Wp(n), and thus, the wrong confirmation phase becomes a

telescopic sum where every update Wq(n) cancels, except for the very first step Wq(0). The

update Wq(0) is only used when a recovery occurs, with probability q every time i is at state

0. For the infinite Markov Chain of Lemma 7 this recovery happens a.s. Note that {i} is

the set S0 and S1 = Ω \ {i}. Thus, P0 = ρn and P1 = (1 − ρn) when i is at state n. The

weight updates Wq(n) and Wp(n), of items in S1 are obtained from the coefficient of ρi(yt)
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in (2.6) where S0 = {i}, and are given by:

Wq(n) = log2
q

q(1− ρn) + pρn
(3.367)

Wp(n) = log2
p

p(1− ρn) + qρn
(3.368)

To show that Wq(n+1) = −Wp(n), need to obtain ρn+1 in terms of ρn, or equivalently, both

in terms of ρ0:

Ui(t
′) = log2

ρ0
1−ρ0

(3.369)

Ui(t
′) + nC2 = log2

ρn
1−ρn

= (3.370)
ρn

1− ρn
=

ρ0
1− ρ0

qn

pn
(3.371)

ρn(1 +
ρ0

1−ρ0

qn

pn
) =

ρ0
1− ρ0

qn

pn
(3.372)

ρn =
ρ0

1− ρ0

qn

pn
1

1 + ρ0
1−ρ0

qn

pn

(3.373)

=
ρ0q

n

pn(1− ρ0) + ρnqn
(3.374)

1− ρn =
(1− ρ0)p

n

pn(1− ρ0) + ρnqn
(3.375)

Now compute Wq(n+ 1) and Wp(n):

Wp(n) = log2
p

p(1− ρn) + qρn
= log2

p

p (1−ρ0)pn

pn(1−ρ0)+ρ0qn
+ q ρ0qn

pn(1−ρ0)+ρ0qn

(3.376)

= log2
ppn(1− ρ0) + ρ0pq

n

p(1− ρ0)pn + qρ0qn
(3.377)

Wq(n+1) = log2
qpn+1(1− ρ0) + ρ0qq

n+1

q(1− ρ0)pn+1 + pρ0qn+1
= log2

qpn+1(1− ρ0) + ρ0qq
n+1

qp(1− ρ0)pn + pqρ0qn
(3.378)

= log2
pn+1(1− ρ0) + ρ0q

n+1

(1− ρ0)ppn + ρ0pqn
(3.379)

= −Wp(n) . (3.380)
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At each state, the log of the posterior of the correct message, and every other message in

S1 = Ω \ {i}, gets the additive update Wq(n) with probability q and Wp(n) with probability

p. Then, for each ρ0 crossing the process leaves the confirmation phase with Sm given by:

S =
∞∑

m=1

Pm(1− ρm)Sm (3.381)

Sm =
(1− ρm)

q

∞∑
i=0

pi

qi
(qWq(n) + pWp(n)) (3.382)

S =
∞∑

m=1

Pm
(1− ρm)

q

∞∑
i=0

pi

qi
(qWq(n) + pWp(n)) (3.383)

Where Sm is given by:

Sm =
(1− ρm)

q

∞∑
i=0

pi

qi
(qWq(n) + pWp(n)) (3.384)

=
(1− ρm)

q
q

∞∑
i=0

pi

qi
Wq(n) +

(1− ρm)

q
p

∞∑
i=0

pi

qi
Wp(n) (3.385)

= (1− ρm)
∞∑
i=0

pi

qi
Wq(n) + (1− ρm)

∞∑
i=0

pi+1

qi+1
Wp(n) (3.386)

= (1− ρm)Wq(0) + (1− ρm)
∞∑
i=1

pi

qi
Wq(n) + (1− ρm)

∞∑
i=0

pi+1

qi+1
Wp(n) (3.387)

= (1− ρm)Wq(0) + (1− ρm)
∞∑
i=0

pi+1

qi+1
Wq(n+ 1) + (1− ρm)

∞∑
i=0

pi+1

qi+1
Wp(n) (3.388)

= (1− ρm)Wq(0) + (1− ρm)
∞∑
i=0

pi+1

qi+1
(Wq(n+ 1) +Wp(n)) (3.389)

= (1− ρm)Wq(0) (3.390)

Then:

S =
∞∑

m=1

Pm(1− ρm)Wq(0) =
∞∑

m=1

Pm(1− ρm) log2
q

q(1− ρm) + pρm
(3.391)
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V0 =
1

C
log2

q

q(1− ρ0) + pρ0
(3.392)

3.15 Extension to Arbitrary Initial Distributions

The proof of Thm. 1 only used the uniform input distribution to assert Ui(0) = U1(0) and

replace E[Ui(0)] by U1(0) = log2(M − 1) in equation (3.78). In Lemma 6, we have required

that Ui(0) < 0 ∀i. However, even with uniform input distribution this is not the case when

Ω = {0, 1}. To avoid this requirement, the case where ∃i : Ui(0) ≥ 0, and therefore T (1) = 0,

needs to be accounted for. Also, if Ui(t) ≥ C2, the probability that an initial fall back

occurs is only upper bounded by pf , which can be inferred from the proof of Lemma 4.

Then, to obtain an upper bound on the expected stopping time E[τ ] for an arbitrary input

distribution, it suffices to multiply the terms E[Ui(T
(1)) | T (1) > 0, θ = i] − Ui(0) in the

proof of Lemma 6, equation (3.327), by the indicator 1Ui(0)<0. Then, the bound on Lemma

6 becomes:

M∑
i=1

∞∑
n=1

E[Ui(t
(n)
0 +T (n))−Ui(t

(n)
0 ) |θ= i] Pr(θ= i) ≤ C2

p

q

1−
(

p
q

)N
1− p

q

+E[(C2−Ui(0))1Ui(0)<0] .

(3.393)

By Thm. 3, the constant C2 may be replaced with q−1 log2(2q) in (3.393). Using the definition

of pf from (3.54) the following bound is obtained:

E[T ] ≤ E[T ′] ≤ 2−C2
1− 2−NC2

1− 2−C2

log2(2q)

qC
+ E

[(
log2(2q)

q
− Ui(0)

)
1Ui(0)<0

C

]
. (3.394)
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3.15.1 Generalized Achievability Bound

An upper bound on E[τ ], for an arbitrary initial distribution ρ0, can be derived using bound

(3.394) on E[T ], and bound (3.79) on E[τ − T ], to obtain:

E[τ ] ≤
M∑
i=1

 log2

(
1−ρi(0)
ρi(0)

)
C

+
log2(2q)

q · C

 ρi(0)1ρ
(i)
0 <0.5

(3.395)

+

⌈
log2(

1−ϵ
ϵ
)

C2

⌉
C2

C1

+

(
log2(2q)

qC
− C2

C1

)
1− ϵ

1−ϵ2
−C2

1−2−C2
2−C2 . (3.396)

For the special case where ρi(0)≪ 1
2
∀i = 1, . . . ,M , the log likelihood ratio can be approx-

imated by log2(
ρi(0)

1−ρi(0)
) ⪅ log2(ρi(i)) to obtain a simpler expression of the bound (3.396):

E[τ ] <
H(ρ0)

C
+

log2(2q)

q · C
+

⌈
log2(

1−ϵ
ϵ
)

C2

⌉
C2

C1

+

(
log2(2q)

qC
− C2

C1

)
1− ϵ

1−ϵ2
−C2

1−2−C2
2−C2 , (3.397)

where H(ρ(0)) is the entropy of the p.d.f. ρ0 in bits.

3.15.2 Uniform and Binomial Initial Distribution

Using the bound of equation (3.396), a better upper bound on the blocklength for a sys-

tematic encoder can be computed for uniform input distribution when Ω = {0, 1}K . It can

be shown that the systematic transmissions transform the uniform distribution into a bi-

nomial distribution, see [AYW20]. The bound is constructed by adding the K systematic

transmissions to the bound in (3.396) applied to the binomial distribution as follows:

E[τ ] ≤ K+
K∑
i=0

[
log2(

1−piqK−i

piqK−i )

C
+
log2(2q)

qC

](
K

i

)
piqK−i1(qK−ipi<0.5)

+

⌈
log2(

1−ϵ
ϵ
)

C2

⌉
C2

C1

+

(
log2(2q)

qC
−C2

C1

)
1− ϵ

1−ϵ2
−C2

1−2−C2
2−C2 . (3.398)
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This bound, which assumes SEAD and systematic transmission, is the tightest achievability

bound that we have developed for the model.

Theorem 5. [from [AYW20]] Suppose that Ω = {0, 1}K and ρi(0) = 2−K ∀i ∈ Ω. Then, for

t = 1, . . . , K the partitioning rule S0 = {i ∈ Ω | b(i)t = 0}, S1 = {i ∈ Ω | b(i)t = 1}, results in

systematic transmission: xK = θ, and achieves exactly equal partitioning P0 = P1 =
1
2
.

Proof. First note that if Ω = {0, 1}K , then for each t = 1, . . . , K, exactly half of the items

in i ∈ Ω have bit b
(i)
t = 0, and the other half have bit b

(i)
t = 1. The theorem holds for t = 1,

since the partitioning S0 = {i ∈ Ω | b(i)1 = 0}, S1 = {i ∈ Ω | b(i)1 = 1} results in half the

messages in each partition, and all the messages have the same prior. For t = 1, . . . , K − 1

note the partitioning S0 = {i ∈ Ω | b(i)t = 0}, S1 = {i ∈ Ω | b(i)t = 1} only considers the first

t bits b
(i)
1 , . . . , b

(i)
t of each message i. Thus, all item {j ∈ Ω | b(j)1 , . . . , b

(j)
t = b1, . . . , bt} that

share a prefix sequence b1, . . . , bt have shared the same partition at times s = 1, . . . , t, and

therefore share the same posterior. There are exactly 2K−t such difference posteriors. Also,

exactly half of the items that share the sequence b1, . . . , bt have bit bt+1 = 0 and are assigned

to S0 at time t+1, and the other half have bit bt+1 = 1 and are assigned to S1 at time t+1.

Then, S0 and S1 will each hold half the items in each posterior group at each next time t+1

for t = 1, . . . , K − 1, and therefore equal partitioning holds also at times t = 2, . . . , K.

3.16 Achievability and Converse Bounds Graphs and Simulations

The achievability and converse bound in Thms. 1-5 are graphed in Fig. 3.5-3.8 vs. block-

length τ , for channels with capacities C = 0.90, 0.75, 0.50, 0.25, and with decoding threshold

ϵ = 10−3. The analytical bounds are validated with simulated rate results of the SEAD

encoder implemented via the SPM algorithm with TOP partitioning shown in chapter 2.

Fig. 3.5 shows all the curves for a channel with capacity C = 0.50. For this channel, the
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Figure 3.5: Achievability and converse rate bounds vs. blocklength τ over a channel with
capacity C = 0.50, horizontal blue line. From top to bottom, the top red dotted curve ·· is
Polyanskyi’s converse bound [PPV11]; The magenta dash dot −· curve is the converse bound
of Thm. 4; the solid green line −◦ with circles is the approximation of the SEAD encoder
described in equation (3.41); the solid purple and burgundy curves −• with circles are a the
simulations from chapter 2 of the SEAD encoder with TOP partitioning with pseudo-random
stopping rule, purple curve −•, and with the standard rule (2.1), red curve −•; the orange
dash dot −· curve is the achievability bound of Thm. 5 for the systematic SPM algorithm.
The bottom six curves are the curves described in Fig. 3.2. For all the curves, the decoding
threshold is ϵ = 10−3.

converse bound of Thm. 4, see magenta curve labeled “Upper Bound” is below Polyanskiy’s

converse bound [PPV11], and the bound is validated by the simulations, with a rate perfor-

mance below the bound. The approximation in equation (3.41), and described in the proof

of Thm. 4, shown by the green solid line with circles, lies very close to the simulated rate,

which shows that it is good approximation, when the channel’s capacity is C = 0.50 and

the decoding threshold ϵ = 10−3, this approximation is also very close when the channel’s

capacity changes to C = 0.90, C = 0.75, and C = 0.25, see Figs. 3.6-3.8.

The three achievability bounds introduced in this dissertation are shown in Fig. 3.5, for a
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Figure 3.6: Achievability and Converse rate bounds vs. blocklength τ for a channel with
capacity C = 0.90, horizontal blue line. These are the same curves shown in 3.5, but without
Polyanskiy’s converse bound and Polyanskiy’s VLF lower bounds, and for a channel with
higher capacity C = 0.90. For this channel, the converse bound of Thm. 4 is above the
channel’s capacity, the achievability bound of Thm. 5 for the systematic SPM algorithm,
orange dash dot −· curve labeled “Systematic SEAD Lower Bound,” closely approximates
from below the simulation with standard stopping, solid burgundy line−• with circles labeled
“SEAD-TOP Standard Pr(θ̂ ̸= θ) ≤ ϵ.

channel with capacity C = 0.50, and error probability Pr(θ̂ ̸= θ) threshold ϵ = 10−3, and for

channels with capacity C = 0.90, C = 0.75, and C = 0.25 in Fig. 3.6, 3.7, and 3.8. The high-

est bound is the bound of Thm. 5, for an encoder that enforces the SEAD constraints, when

systematic transmission are used, and the input distribution is uniform over Ω = {0, 1}K ,

see orange dash dot line labeled “Systematic SEAD Lower Bound.” The next highest bound

is the lower bound (3.34) introduced in Thm. 3 for a system that enforces the SEAD con-

straints, see red solid curve labeled “SEAD-TOP Bound with Surrogate.” This bound is

a slight improvement over the SED lower bound by Yang et al. [YPA21] that is shown for

comparison, see red dash-dot curve −· labeled “Yang’s SED Bound with Surrogate.” The fun-
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Figure 3.7: Achievability and Converse rate bounds vs. blocklength τ for a channel with
capacity C = 0.75, horizontal blue line. These are the same curves in Fig. 3.6, but for a
channel with capacity C = 0.75. Note that for this channel the converse becomes relevant,
as it is below the channel’s capacity.

damental achievability bound (3.27) of Thm. 1, without he surrogate process optimization, is

shown to highlight the difference, see yellow solid line labeled “Fundamental SEAD Bound.”

This bound is also a slight improvement over Yang’s original bound [YW19,YPA21], without

the optimization of the surrogate martingale, see yellow dash dot −· line labeled “Original

Yang’s SED Bound.” For comparison, Polyanskiy’s lower bound [PPV11] for variable-length

stop-feedback codes, labeled “Polyanskiy’s VLF Lower Bound,” is included in Fig. 3.5, and

Williamnson’s approximation [Wil14] of Polyanskiy’s VLF bound is shown in Figs. 3.5-3.8.

Since a stop feedback system is less capable than a full feedback system, a lower bound

analyzed for the full feedback system is expected approaches capacity faster than the VLF

bound, which is what the previous three bounds achieve.

119



0 20 40 60 80 100 120 140 160 180 200

Block Size =

0.00

0.03

0.05

0.08

0.10

0.12

0.15

0.17

0.20

0.23

0.25

R
a
te

Channel Capacity
Upper Bound
SEAD Rate Approximation

SEAD-TOP Random Pr(3̂ 6=3):0
SEAD-TOP Standard Pr(3̂ 6=3)50
Systematic SEAD Lower Bound
SEAD-TOP Bound with Surrogate
Yang's SED Bound with Surrogate
Fundamental SEAD Bound
Original Yang's SED Bound
Williamson's VLF Approx.

Figure 3.8: Achievability and Converse rate bounds vs. blocklength τ for a channel with
capacity C = 0.75, horizontal blue line. These are the same curves in Fig. 3.6 and Fig. 3.7,
but for a channel with capacity C = 0.25. Note that the converse bound is tighter and the
achievability bounds are looser for this channel with lower capacity, compared to Figs. 3.5,
3.6, and 3.7.

3.17 Conclusions

Naghshvar et al. [NJW15] established the “small enough difference” (SED) rule for posterior

matching partitioning, and used martingale theory to study asymptotic behavior, and then,

also showed how to develop a non-asymptotic lower bound on the achievable rate. Yang et al.

[YPA21] significantly improved the non-asymptotic achievable rate bound using martingale

theory for the communication phase, and a Markov model for the confirmation phase, still

maintaining the SED rule. However, partitioning algorithms that enforce the SED rule

require a complex process of swapping messages back and forth between the two message

sets S0 and S1, and updating the posteriors.

The fundamental Thm. of this section shows that the SEAD constraints suffice to achieve
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at least the same lower bound that Yang et al. [YPA21] analyzed for more constrained SED

encoder, before being optimized with a “surrogate martingale.” The analysis forgoes mar-

tingale theory for the communication phase, in favor of a new method that requires looser

encoding constraints. The new analysis necessitates a different definition of the communi-

cation phase time to include the time spent after possible events where the communication

phase resumes after a fall back from the confirmation phase. The new communication phase

time definition not only makes the analysis feasible, but also allows to slightly tighten the

achievability bound. A significantly tighter bound was derived in this dissertation, that ap-

plies the analysis in the fundamental Thm. to an optimized “surrogate process” that lower

bounds the decoding time of the original process. Moreover, the slight improvement, derived

from the new definition of the communication phase time, is carried over to the bound an-

alyzed with the “surrogate process,” to yield an achievability bound higher than the bound

optimized by a “surrogate martingale” by Yang et al [YPA21]. An initial systematic transmis-

sion phase, for which a tight analysis is possible, was used to obtain the highest achievability

bounds in this dissertation.

A converse bound on the achievable rate is analyzed in this dissertation, for a system

that decodes with an error probability bounded by a small threshold. The converse bound

used the communication phase analysis introduced in the fundamental Thm., and separately

analyzes the time spent in correct and wrong confirmation phases. Also, this dissertation ap-

proximates the performance of the SED and SEAD encoders by an expression that combines

elements from the achievability and the converse bounds.

The simulation results obtained with the methods of chapter 2 validate the analytical

results in this chapter, and show that, for some channels, the new analytical bounds bridge

most of the rate gap between the previous achievability bounds and the rate from the simu-

lated.

121



3.18 Proof of claim 2

Proof that | Ui(t + 1) − Ui(t) |= C2 is equivalent to S0 = {j} ( or S1 = {j}). First let’s

prove the converse, if the set containing j is not singleton, then constraint (3.25) does not

hold. Without loss of generality, assume j ∈ S0, and suppose ∃l ̸= j s.t. l ∈ S0. Since

P0 ≥ ρj(y
t)+ρl(t), then, ∆ = 2P0−1 ≥ 2ρi(y

t)+2ρj(y
t)−1 ≥ 2ρj(y

t)−1 > 0. By equation

(3.88), when j ∈ Sy, then:

Uj(t+ 1)− Uj(t) = log2(2q)− log2

(
1 + (q − p)

∆− ρj(y
t)

1− ρj(yt)

)
(3.399)

≤ log2(2q)−log2
(
1+(q−p)2ρj(y

t) + 2ρl(t)−1−ρj(yt)
1−ρj(yt)

)
= log2(2q)−log2

(
1−(q−p)+(q−p) 2ρl(t)

1−ρj(yt)

)
< log2(2q)− log2 (1− (q − p)) = C2 . (3.400)

Note from equation (3.399) that Uj(t + 1)− Uj(t) decreases with ∆, therefore, replacing ∆

with a lower bound gives an upper bound of difference (3.399). For a lower bound, note that

∆ ≤ 1, and that setting ∆ = 1 in (3.399), results in Uj(t+1)−Uj(t) = 0. In the case where

Yt+1 = Xt+1 ⊕ 1, or j ∈ Syc , by equation (3.88), the difference Uj(t+ 1)− Uj(t) is:

Uj(t+ 1)− Uj(t) = log2(2p)− log2

(
1− (q − p)

∆− ρj(y
t)

1− ρj(yt)

)
(3.401)

≥ log2(2p)−log2
(
1− (q−p)2ρj(y

t)+2ρl(t)−1−ρj(yt)
1− ρj(yt)

)
(3.402)

= log2(2p)−log2
(
1+(q−p)

(
1− 2ρl(t)

1−ρj(yt)

))
(3.403)

> log2(2p)− log2 (2q) = −C2 . (3.404)

To prove that if the set containing j is singleton, then |Uj(t + 1) − Uj(t)| = C2, note that

S0 = {j} =⇒ ∆ = 2ρj(y
t)−1. The inequalities, therefore, become equalities and equations

(3.399) and (3.401) become C2 and −C2 respectively.
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3.19 Proof of existence of U ′i(t) in Thm. 3

The proof that a process like the one described in Thm. 3 exists, consists of constructing one

such process. Define the process U ′
i(t) by U ′

i(t) = Ui(t) when Y t ∈ Bϵ
(i,n), for some n ∈ N,

otherwise U ′
i(t + 1) = U ′

i(t) +W ′
i (t + 1), where W ′

i (t + 1) is a weight update to be defined,

or just C2(1(Yt+1=0) − 1(Yt+1=1)) if Y t /∈ Yϵ
(i,n). The update W ′

i (t + 1) needs to meet at the

same time the constraints (3.22), (3.24), (3.26), and (3.25) of Thm. 1, and the constraints

of Thm. 2 with B = C.

Denote the transmitted symbol Xt+1 by X, and the received symbol Yt+1 by Y , and let

Xc = X ⊕ 1. The symbol Y could either be X or Xc, and a message i could be in either

set: {i ∈ S0} or {i ∈ S1}. These cases combine to four distinguishable events. Define

Wi(t + 1) ≜ Ui(t + 1)− Ui(t), and note that Wi(t + 1) can be derived from equation (3.88)

as follows:

Wi(t+1) =



log2(2q)+ai if i ∈ S0, Y = X

log2(2p)+bi if i ∈ S0, Y = Xc

log2(2p)+ci if i ∈ S1, Y = Xc

log2(2q)+di if i ∈ S1, Y = X

, (3.405)

where ai, bi, ci and di are given by:

ai = − log2

(
1− (q − p)

ρj(y
t)−∆

1− ρj(yt)

)
(3.406)

bi = − log2

(
1 + (q − p)

ρj(y
t)−∆

1− ρj(yt)

)
(3.407)

ci = − log2

(
1 + (q − p)

ρj(y
t) + ∆

1− ρj(yt)

)
(3.408)

di = − log2

(
1− (q − p)

ρj(y
t) + ∆

1− ρj(yt)

)
. (3.409)
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Let a′i and d′i be defined by:

a′i ≜ 1(∆<0)
1−∆

1 +∆
log2 (1− (q − p)∆)− p

q
bi, (3.410)

d′i ≜ 1(di<0)di − 1(di≥0)
p

q
ci , (3.411)

then, define the update W ′
i (t+ 1) by:

W ′
i (t+1) =



log2(2q)+a′i if i ∈ S0, Y = X

log2(2p)+bi if i ∈ S0, Y = Xc

log2(2p)+ci if i ∈ S1, Y = Xc

log2(2q)+d′i if i ∈ S1, Y = X

. (3.412)

Need to show that the constraints (3.26)-(3.25) of Thm. 1, and constraints (3.28) and (3.30)

are satisfied. When U ′
i(t) ≥ 0, since W ′

i (t + 1) is defined in the same manner as Wi(t + 1),

then constraints (3.24) and (3.25) are satisfied.

The proof that U ′
i(t) satisfies constraints (3.26), (3.22), and (3.28) is split into the case

where ∆ ≥ 0, and the case where ∆ < 0.

3.20 Proof that U ′i(t) satisfies (3.26), (3.22), and (3.28) when ∆ ≥ 0.

It suffices to show that for all yt ∈ Yϵ
(i,n) and for all i = 1, . . . ,M , if ∆ ≥ 0, then E[W ′

i (t+1) |

θ = i, Y t = yt] = C, Since C > 0 (constraint (3.22)), and any weighted average would add

up to C (constraint (3.26)).

When ∆ ≥ 0, then ρi(y
t) + ∆ > 0, and a′i = −p

q
bj since di > 0. The expectation

E[W ′
j(t + 1) | θ = i, Y t = yt] can be computed from (3.88), where ιi depends on whether
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i ∈ S0 or i ∈ S1. The expectation is given by either (3.413) or (3.414) respectively:

q log2(2q)− pbi + p log2(2p) + pbi = C if i ∈ S0 (3.413)

q log2(2q)− pci + p log2(2p) + pci = C if i ∈ S1 . (3.414)

This proofs constraints (3.26) and (3.22) satisfied. To proof that constraint (3.28) is satisfied,

need to show that W ′
i (t+1) ≤ Wi(t+1). If suffices to compare the cases where W ′

i (t+1) ̸=

Wi(t+1), that is, when Y = X. Need to show that a′i ≤ ai and d′i ≤ di. For this comparison,

express ai and di as positive logarithms as follows:

ai = log2

(
1 +

(q − p)(ρi(y
t)−∆)

1− ρi(yt)− (q − p)(ρi(yt)−∆)

)
(3.415)

a′i =
p

q
log2

(
1 +

(q − p)(ρi(y
t)−∆)

1− ρi(yt)

)
(3.416)

di = log2

(
1 +

(q − p)(∆ + ρi(y
t))

1− ρi(yt)− (q − p)(∆ + ρi(yt))

)
(3.417)

d′i =
p

q
log2

(
1 +

(q − p)(ρi(y
t) + ∆)

1− ρi(yt)

)
. (3.418)

Since p ≤ 1
2
→ p

q
≤ 1, then, it suffices to show that the argument of the logarithm in (3.415)

is greater than that of (3.416), and similarly for (3.417) and (3.418). Furthermore, since all

arguments share the term 1, with inequalities (3.419) and (3.420), shown below, suffices:

(q − p)(ρi(y
t)−∆)

1−ρi(yt)−(q−p)(ρi(yt)−∆)
≥ (q − p)(ρi(y

t)−∆)

1−ρi(yt)
(3.419)

(q − p)(∆ + ρi(y
t))

1−ρi(yt)−(q−p)(ρi(yt)+∆)
≥ (q − p)(ρi(y

t) + ∆)

1−ρi(yt)
. (3.420)

The numerators on both inequalities are the same, and positive, since q − p > 0 and i ∈

S0 =⇒ ρi(y
t)−∆ ≥ 0. Also, ∆ ≥ 0 =⇒ ρi(y

t) + ∆ ≥ 0, thus, both denominators on the

left hand side are smaller than those in the right side. Since the numerators are exactly the

same, then, the inequalities hold.
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3.20.1 Proof that U ′
i(t) satisfies (3.26), (3.22), and (3.28) when ∆ < 0.

Next, need to show that constraints (3.26), (3.22), and (3.28) are also satisfied when ∆ < 0.

In the case where ρi(y
t) + ∆ > 0, then d′i is still −p

q
ci ≤ di by equation (3.417). How-

ever, whenever ∆ < 0, the term 1−∆
1+∆

log2 (1− (q − p)∆) ≥ 0 is added to a′i. To show that

constraint (3.26) holds, recall from (3.92) that:

M∑
i=1

ρiE[Wi(t+1) | θ= i, Y t=yt]− C =
∑
i∈S0

ρi(y
t) (qai +pbi) +

∑
i∈S0

ρi(y
t) (qdi +pci) (3.421)

≥
∑
i∈S0

ρi(y
t) (qai +pbi)−

∑
i∈S1

ρi(y
t) log2

(
1− (q − p)2

ρi(y
t)− α

1− ρi(yt)

)
(3.422)

≥
∑
i∈S0

ρi(y
t) (qai+pbi)−

1+α

2
log2

(
1+(q−p)2α

)
. (3.423)

To obtain E[W ′
i (t + 1) | Ft, θ = i], replace ai by a′i in equation (3.423), and let ei ≜

1+α
1−α

log2 (1 + (q − p)2α). Then a′i = ei − p
q
bi and qa′i + pbi = qei, and replace to obtain:

M∑
i=1

ρiE[W
′
i (t+ 1) | θ = i, Y t = yt]− C =

∑
i∈S0

ρi(y
t)qei+

∑
i∈S1

ρi(y
t) (qdi + pci) (3.424)

≥qe1
∑
i∈S0

ρi(y
t)− 1 + α

2
log2

(
1 + (q − p)2α

)
(3.425)

=
1− α

2
e1 −

1 + α

2
log2

(
1 + (q − p)2α

)
(3.426)

=

(
1−α
2

1+α

1−α
− 1+α

2

)
log2

(
1 + (q−p)2α

)
(3.427)

= 0 . (3.428)

To show that E[W ′
i (t + 1) | θ = i, Y t = yt] ≥ 0, (constraint (3.22)), note that d′i is either

unchanged from di, or it takes the same value of the case when ∆ ≥ 0, therefore, it holds

for i ∈ S1. For i ∈ S0. Note from the first term of equation (3.424), that E[W ′
i (t + 1) | θ =

i, Y t = yt]− 0 = ρi(y
t)qei. Since ei ≥ 0, then the expectation is either C or greater.
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Need to show that W ′
i (t + 1) ≤ Wi(t + 1) (constraint (3.28)). It suffices to show that

a′i ≤ ai and d′i ≤ di. Again, since d′i is either di or it takes the same value of the case when

∆ ≥ 0, it is only necessary that the inequality a′i = ei − p
q
bi ≤ ai holds. It suffices to show

that for a positive scalar γ:

γ

(
q

(
ei −

p

q
bi

)
+ pbi

)
≤ γ (qai + pbi) . (3.429)

When ∆ < 0, then ei > 0, leading to the following equality:

q

(
ei −

p

q
bi

)
+pbi =

1 + α

1− α
log2

(
1 + (q − p)2α

)
. (3.430)

Recall from equation (3.96) that:

qai + pbi ≥ − log2

(
1− (q − p)2

ρmin + α

1− ρmin

)
, (3.431)

and let γ = 1−α
2

, then, the scaled difference between the left and right terms in (3.429) is:

1−α
2

(qai + pbi)−
1+α

2
log2(1 + (q−p)2α) (3.432)

≥ −1−α
2

log2

(
1−(q−p)2ρmin+α

1−ρmin

)
− 1 + α

2
log2

(
1−(q−p)2αρmin−1

1−ρmin

)
(3.433)

≥ − log2

(
1− (q−p)2

1−ρmin

(
ρmin

1+α2

2
−α2

))
(3.434)

≥ − log2

(
1− (q−p)2

1−ρmin

(
ρmin

1+α2

2
−ρminα

))
(3.435)

= − log2

(
1− (q−p)2

1−ρmin

(
ρmin

(1−α)2

2

))
≥ 0 . (3.436)

Equation (3.433) follows from (3.431). In (3.434), Jensen’s inequality is used, where:
1−α
2
(ρmin + α) + 1+α

2
α(ρmin − 1) = −α2 + ρmin

1−α+α+α2

2
. In (3.435) note that α ≤ ρmin =⇒

α2 ≤ ρminα. Finally 1−2α+α2 = (1−α)2 ≥ 0. This proves that ei− p
q
bi ≤ ai, and therefore

W ′
i (t+ 1) ≤ Wi(t+ 1).
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3.20.2 Proof that U ′
i(t) satisfies constraint (3.30)

Finally need to show that constraint (3.30) is satisfied, that is: U ′
i(Tn+1)− p

q
(Ui(Tn)−C2) ≤

1
q
log2(2q). It has already been shown that the update W ′

i (t) allows the process U ′
i(t) to

meet constraints (3.22)-(3.25) of Thm. (1), and constraints (3.28) and (3.28). Note that the

definition of U ′
i(t), in Thm. 2, guarantees that U ′

i(t) resets to the value of Ui(t) at any time

t
(n+1)
0 , when Ui(t) falls from confirmation, even if U ′

i(t) has not entered confirmation, where

U ′
i(t) ≥ 0. It is straightforward to construct a third process U ′′

i (t) that preserves all the

properties of U ′
i(t), and with U ′′

i (t) ≥ 0 if Ui(t) ≥ 0. The process U ′′
i (t) could be initialized

by U ′′
i (t

(n)
0 ) = Ui(t

(n)
0 ). Then, it could be defined by U ′′

i (t + 1) = U ′′
i (t) +W ′′

i (t + 1), where

the step size W ′′
i (t) is defined by: W ′′

i (t + 1) = max{min{Wi(t + 1),−Ui(t)},W ′
i (t + 1)}.

The inner minimum guarantees that U ′′
i (t) reaches 0 if Ui(t) does, and the outer maximum

guarantees that the step size is at least that of U ′
i(t). Then, both processes Ui(t) and U ′′

i (t)

cross 0, and enter confirmation at the same time, and share the same values when Ui(t) < 0,

that is:

Ui(t+1) ≥0 =⇒ U ′′
i (t+ 1) ≥ 0 (3.437)

Ui(t) ≤ 0 =⇒ U ′′
i (t) = Ui(t) . (3.438)

Using the process U ′′
i (t) and equation (3.438), the expression in constraint (3.30) becomes:

U ′′
i (t+ 1)− p

q
(Ui(t+ 1)− C2)Ui(t)

(
1− p

q

)
+W ′′

i (t+1)− p

q
(Wi(t+1)−C2) . (3.439)
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In the case where W ′′
i (t+ 1) = −Ui(t), then U ′′

i (t+ 1) = 0 and Ui(t+ 1) ∈ [0, C2], and:

U ′′
i (t+ 1)− p

q
(Ui(t+1)−C2) = −

p

q
(Ui(t) +Wi(t+ 1)− C2) (3.440)

=
p

q
C2 −

p

q
(Ui(t) +Wi(t+ 1)) (3.441)

≤ p

q
C2 ≤

1

q
log2(2q) . (3.442)

The first inequality in (3.442) follows since U ′′
i (t) = 0 =⇒ Wi(t + 1) ≥ −Ui(t), and the

second inequality holds because:

log2(2q)− pC2 = 1 + (1− p) log2(1− p) + p log2(p) = C ≥ 0 .

A constrained maximization of expression (3.439) is used for the case where W ′′
i (t) > −Ui(t),

where the constraint is Ui(t) < 0 (or ρi(yt) < 1
2
). For simplicity, the constant 1

q
log2(2q) from

(3.439) is subtracted first. Let i ∈ {1, . . . ,M} be arbitrary, and let ρ ≜ ρi(y
t), and α ≜ |∆|.

Then, write U ′′
i (t + 1)− p

q
(Ui(t+1)−C2) in terms of ρ, p, and α, as a function g(ρ, p, α),

using the definitions of Wi(t) and W ′′
i (t) in (3.405), (3.412) and (3.410)-(3.411). When

{i ∈ S0} ∩ {∆ < 0} or {i ∈ S1} ∩ {∆ ≥ 0}, then g(ρ, p, α) = g1(ρ, p, α), given by:

g1(ρ, p, α) = log2

(
ρ

1−ρ

)(
1− p

q

)
− p

q
log2(2q)−

p

q
log2(2p) (3.443)

+ 1∆<0
1 + α

1− α
log2(1 + (q − p)2α)

+
p

q
log2

(
1+(q−p)ρ+α

1−ρ

)
+

p

q
log2

(
1−(q−p)ρ+α

1−ρ

)
,

and when {i ∈ S0} ∩ {∆ ≥ 0} or {i ∈ S1} ∩ {∆ < 0}, then g(ρ, p, α) = g2(ρ, p, α) given by:

g2(ρ, p, α) = log2

(
ρ

1−ρ

)(
1− p

q

)
− p

q
log2(2q)−

p

q
log2(2p) (3.444)

+
p

q
log2

(
1+(q−p)ρ−α

1−ρ

)
+

p

q
log2

(
1−(q−p)ρ−α

1−ρ

)
.
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3.20.3 Maximizing g1(ρ, p, α), from (3.443)

The maximum of (3.443) happens when ∆ < 0, since the term with the indicator function

is non-negative. Since α ≤ 1
3
, then 1+α

1−α
≤ 2, which is used to write a function f(ρ, α) that

upper bounds g1(ρ, p, α), that is: g1(ρ, p, α) ≤ f(ρ, α), given by:

f(ρ, α) ≜ log2

(
ρ

1−ρ

)(
1− p

q

)
+ 2 log2(1 + (q − p)2α)− p

q
log2(2q)−

p

q
log2(2p)

+
p

q
log2

(
1+(q−p)ρ+α

1−ρ

)
+
p

q
log2

(
1−(q−p)ρ+α

1−ρ

)
. (3.445)

To show that g1(ρ, p, α) ≤ 1
q
log2(2q), it suffices to show that of f(ρ, α) ≤ 1

q
log2(2q), which

is done by solving the following constrained maximization:

maximize f(ρ, α) (3.446)

subject to ρ ≤ 1

2
, α ≤ 1− 2ρ , (3.447)

The procedure to find the maximum is to show that f(ρ, α) is increasing in ρ, by showing

that d
dρ
f ≥ 0, and then evaluate it at the maximum set by the constraints. Note that

d
dρ

ρ
1−ρ

= 1
(1−ρ)2

and d
dρ

ρ+α
1−ρ

= 1
(1−ρ)2

+ α
(1−ρ)2

d

dρ
ln(2)f(ρ, α) =

q−p
q

1

(1−ρ)ρ
+

p

q

1+α

(1−ρ)2

(
(q − p)

1+(q−p)ρ+α
1−ρ

− (q − p)

1−(q−p)ρ+α
1−ρ

)
. (3.448)
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Factor out the positive constant 1
q
q−p
1−ρ

, to obtain:

q(q − p)

1− ρ

d

dρ
ln(2)f(ρ, α) =

1

ρ
+ p

1+α

1−ρ

(
1

1 + (q−p)ρ+α
1−ρ

− 1

1− (q−p)ρ+α
1−ρ

)
(3.449)

=
1

ρ
+ p

1+α

1−ρ

(
1−(q−p)ρ+α

1−ρ

)
−
(
1+(q−p)ρ+α

1−ρ

)
1− (q − p)2

(
ρ+α
1−ρ

)2 (3.450)

=
1

ρ
− 2

p(1 + α)(q − p)(ρ+ α)

(1− ρ)2 − (q − p)2(ρ+ α)2
(3.451)

=
(1−ρ)2−(q−p)2(ρ+α)2−2pρ(1+α)(q−p)(ρ+α)

ρ(1− ρ)2 − ρ(q − p)2(ρ+ α)2
. (3.452)

It suffices to show that the top of equation (3.452) is non-negative. Since it decreases when

α ≤ 1− 2ρ, then:

(1− ρ)2−(q − p)2(ρ+ α)2 − 2pρ(1 + α)(q − p)(ρ+ α)

≥(1− ρ)2 − (q − p)2(ρ+ 1− 2ρ)2 − 2pρ(1 + 1− 2ρ)(q − p)(ρ+ 1− 2ρ)

=(1− ρ)2 − (q − p)2(1− ρ)2 − 2pρ(2− 2ρ)(q − p)(1− ρ)

=(1− ρ)2(1− (q − p)2 − (q − p)4pρ)

=(1− ρ)24p(q − ρ(q − p)) > 4p(1− ρ)2(q − ρ) > 0 . (3.453)

In equation (3.453), applies the following: (q− p)2 = (1− 2p)2 = 1− 4p+4p2 = 1− 4pq, and

ρ(q − p) < ρq < ρ. Since ∂
∂ρ
f > 0, then f is increasing in ρ, and thus ρ is replaced by 1−α

2

for an upper bound. Since ρ+α
1−ρ

=
1−α
2

+α

1− 1−α
2

= 1−α+2α
2−1+α

= 1, then f(α) ≜ f
(
1−α
2
, α
)

is given by:

f(α) = log2

(
1−α
1+α

)(
1− p

q

)
+2 log2(1+(q−p)2α) (3.454)

− p

q
log2(2q)−

p

q
log2(2p) +

p

q
log2(1+(q−p)) + p

q
log2(1− (q − p)) (3.455)

= log2

(
1−α
1+α

)(
1− p

q

)
+2 log2(1+(q−p)2α). (3.456)
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To complete the proof, it suffices to show that the last expression decreases in α:

d

dα
ln(2)f(α) =

(
1− p

q

)
1+α

1−α
−(1+α)−(1−α)

(1 + α)2
+

2(q − p)2

1+(q−p)2α
(3.457)

=− 2
1

q

q − p

1− α2
+ 2

(q − p)2

1 + (q − p)2α
(3.458)

=2(q − p)

(
−1

q

1

1− α2
+

q − p

1 + (q − p)2α

)
(3.459)

≤− 2(q − p)

(
1 +

p

q
− q + p

)
= −2p(q − p)

(
2 +

1

q

)
< 0 . (3.460)

Since f is decreasing, then the maximum of equation (3.443) is 0, at α = 0.

3.20.4 Maximizing g2(ρ, p, α) from (3.444)

First, write g2(ρ, p, α) = f(ρ, α)− p
q
log2(2q)− p

q
log2(2p), where f(ρ, α) is defined by:

f(ρ, α) ≜ log2

(
ρ

1−ρ

)(
1− p

q

)
+
p

q
log2

(
1+(q−p)ρ−α

1−ρ

)
+
p

q
log2

(
1−(q−p)ρ−α

1−ρ

)
. (3.461)

Since only f(ρ, α) depends on ρ, it suffices to solve the following constrained maximization:

maximize f(ρ, α) (3.462)

subject to ρ ≤ 1

2
, α ≤ 1− 2ρ . (3.463)

Combining the last two terms we obtain:

f(ρ, α) = log2

(
ρ

1− ρ

)(
1− p

q

)
+

p

q
log2

(
1− (q − p)2

(
ρ− α

1− ρ

)2
)

. (3.464)

The first term increases with ρ, and the second one decreases as the quotient
(

ρ−α
1−ρ

)
increases

in absolute value. For ρ ≤ 1
3
, it is possible to have ρ = α, leaving only (3.464). However, for

ρ ≥ 1
3
, the quotient is positive because α ≤ 1 − 2ρ ≤ 1

3
. The smallest value of the quotient
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is then 1−α
1−ρ

3ρ−1
1−ρ

= 2ρ
1−ρ
− 1, with squared 1 − 4ρ(1−2ρ)

(1−ρ)2
. Let f(ρ) be as defined in equation

(3.465), then the maximum of g(ρ, α) is bounded by the maximum of f(ρ), where:

f(ρ) ≜ log2

(
ρ

1−ρ

)(
1− p

q

)
+

p

q
log2

(
1−(q−p)3ρ−1

1−ρ

)
+

p

q
log2

(
1+(q−p)3ρ−1

1−ρ

)
. (3.465)

The behavior of f(ρ) is analyzed by taking the first derivative:

d

dρ
f(ρ) =

q − p

q ln(2)

1− ρ

ρ

1

(1− ρ)2
+

p

q ln(2)

(
(q − p) 2

(1−ρ)2

1 + (q − p)3ρ−1
1−ρ

−
(q − p) 2

(1−ρ)2

1− (q − p)3ρ−1
1−ρ

)
. (3.466)

For convenience, scale the derivative by the positive term (1−ρ)2

q−p
q ln(2), to obtain:

d

dρ
f(ρ)

(1− ρ)2

q − p
q ln(2) =

1− ρ

ρ
− p

2

1− (q − p)3ρ−1
1−ρ

+ p
2

1 + (q − p)3ρ−1
1−ρ

(3.467)

=
1− ρ

ρ
+ 2p

1− (q − p)3ρ−1
1−ρ
− 1− (q − p)3ρ−1

1−ρ

1− (q − p)3ρ−1
1−ρ

(3.468)

=
1− ρ

ρ
− 4p(q − p)

3ρ−1
1−ρ

1− (q − p)3ρ−1
1−ρ

(3.469)

=
1− ρ

ρ
− 4p(q − p)

3ρ− 1

1− (q − p)(3ρ− 1)
(3.470)

=
1− ρ− (q − p)(3ρ− 1)(1− ρ+ 4pρ)

ρ− (q − p)ρ(3ρ− 1)
. (3.471)

To show that g′ ≥ 0 in [1
3
, 1
2
], it suffices to show that the top of equation (3.471) is positive:

1− ρ− (q − p)(3ρ− 1)(1− ρ+ 4pρ) ≥1− 1

2
− (q − p)

(
3

2
− 1

)
(1− ρ(1− 4p)) (3.472)

=
1

2
− 1− 2p

2
(1− ρ(1− 4p)) (3.473)

=
1

2
− 1− 2p

2
+

1− 2p

2
ρ(1− 4p) (3.474)

=
1

2
− 1

2
+ p+ ρ

(1− 2p)(1− 4p)

2
(3.475)

=p+ ρ
(1− 2p)(1− 4p)

2
. (3.476)
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When p ≤ 1
4
, then (1−4p) > 0, and the second term is non-negative, therefore, the derivative

is positive. When p > 1
4
, then 1− 4p ≥ −1, 0 ≤ 1− 2p < 1

2
, and:

p+ ρ
(1− 2p)(1− 4p)

2
≥ 1

4
− ρ

1

4
=

1− ρ

4
≥ 1

8
> 0 .

This shows that f is increasing in ρ, with maximum at ρ = 1
2
, and where ρ

1−ρ
= 1. Then,

the maximum of f(ρ) is given by:

f
(
1
2

)
= log2 (1)

(
1− p

q

)
+
p

q
log2 (1+(q−p))+ p

q
ln (1−(q−p))− p

q
log2(2q)−

p

q
log2(2p) = 0 .

This shows that the maximum of f(ρ, α)− p
q
log(2q)− p

q
log2(2p) is zero, thus the maximum

of g1(ρ, p, α) is also zero. Since the maximum of g(ρ, p, α) is zero in both cases, ∆ < 0 and

∆ ≥ 0, then U ′
i(t+ 1)− p

q
(Ui(t+ 1)− C2) ≤ 1

q
log2(2q).

Finally, the last claim needs to be proved, which is that B = 1
q
log2(2q) is the smallest

value for a system that enforces the SED constraint. It suffices to note that the surrogate

process described in [YPA21], Sec. V E is a strict martingale. A process U ′
i(t) with a lower B

value would not comply with constraint (3.8), and therefore would also fail to meet constraint

(3.26).

3.21 Proof: Confirmation Phase State Space 3

Proof. Suppose that for times t = s and t = s+ 1, the partitioning is fixed at S0 = {j} and

S1 = Ω \ {j}. Need to show that ∀i ∈ Ω, if Ys = 0 and Ys+1 = 1, then, ρi(ys) = ρi(y
s+2).

Using the update formula (3.85), at time t = s+ 1 the updated ρj(y
s+1), for i ̸= j, is given
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by:

ρi(y
s+1) =

pρi(y
s)

qρj(ys)+p(1−ρj(ys))
=

pρi(y
s)

ρj(ys)(q−p)+p
(3.477)

ρj(y
s+1) =

qρj(y
s)

qρj(ys) + p(1− ρj(ys))
=

qρj(y
s)

ρj(ys)(q−p)−p
. (3.478)

At time t = s+ 2, since Ys+2 = 1, equation (3.85) for i ̸= j results in:

ρi(y
s+2) =

qρi(y
s+1)

(p−q)ρj(ys+1)+q
=

q pρi(y
s)

ρj(ys)(q−p)+p

(p−q) qρj(ys)

ρj(ys)(q−p)+p+q
(3.479)

=
qpρi(y

s)

(p−q)qρj(ys)+q(ρj(ys)(q−p)+p)
(3.480)

=
qpρi(y

s)

−(q−p)qρj(ys)+(q−p)qρj(ys)+qp
=

qpρi(y
s)

qp
= ρi(y

s) . (3.481)

And for i = j equation (3.85) results in:

ρj(y
s+2) =

pρj(y
s+1)

(p−q)ρj(ys+1)+q
=

p
qρj(y

s)

ρj(ys)(q−p)+p

(p−q) qρj(ys)

ρj(ys)(q−p)+p+q
(3.482)

=
pqρj(y

s)

(p−q)qρj(ys)+q(ρj(ys)(q−p)+p)
(3.483)

=
qpρj(y

s)

−(q−p)qρj(ys)+(q−p)qρj(ys)+qp
=

qpρj(y
s)

qp
= ρj(y

s) . (3.484)

Then, for all iΩ each posterior at time t = s + 1 is given by: ρi(y
s+2) = ρi(y

s). The

same equalities hold when Ys+1 = 1 and Ys+2 = 0, where the only difference is that p

and q are interchanged. Finally, by induction, ρi(y
s+2r) = ρi(y

s) for r = 1, . . . , if for

every t = s, . . . , s + 2r − 1 the partitions are fixed at S0 = {j} and S1 = Ω \ {j}, and∑2r
k=1 Ys+k = 0.
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3.22 Proof of Inequality (3.331), Chapter. 3

Proof. Need to show that the following inequality holds:

E[Ui(Tn) | T (n+1)>0, θ= i] ≥ E[Ui(Tn) | T (n)>0, θ= i] (3.485)

Recall that C(t(n)0 ) is the event that message i enters confirmation after time t
(n)
0 , rather than

another message j ̸= i ending the process by attaining Uj(t) ≥ log2(1 − ϵ) − log2(ϵ). This

event is defined by C(t(n)0 ) ≜ {∃t > t
(n)
0 : Ui(t) ≥ 0}. Using Bayes rule, the expectation

E[Ui(Tn) | T (n) > 0, θ= i] can be expanded as a sum of expectations conditioned on events

that are defined in terms of {T (n+1) > 0}, {T (n) > 0} and C(t(n)0 ), and whose union is

the full event space to leave only the original conditioning {T (n) > 0}. These events are

C(t(n)0 )∩{T (n+1) > 0}, C(t(n)0 )∩{T (n+1) ≤ 0}, ¬C(t(n)0 )∩{T (n+1) > 0} and ¬C(t(n)0 )∩{T (n+1) ≤

0}. Note that ¬C(t(n)0 ) =⇒ {T (n+1) = 0} and therefore, the third event vanishes. The

expansion is given by:

E[Ui(Tn) | T (n)> 0, θ= i] =

E[Ui(Tn) |T (n+1) > 0, T (n) > 0, θ = i] Pr(C(t(n)0 ), T (n+1)> 0 |T (n)> 0, θ= i) (3.486)

+ E[Ui(Tn) |C(t(n)0 ), T (n+1)≤0, T (n)>0, θ= i] Pr(C(t(n)0 ), T (n+1) ≤ 0 |T (n)>0, θ= i) (3.487)

+ E[Ui(Tn)|¬C(t(n)0 ), T (n+1)≤0,T (n)>0,θ= i] Pr(¬C(t(n)0 ), T (n+1)≤0 |T (n)>0, θ= i). (3.488)

Since {T (n+1) > 0} =⇒ C(t(n)0 ) ∩ {T (n) > 0} , we can omit the conditioning on C(t(n)0 ) and

{T (n) > 0} when accompanied by {T (n+1) > 0}. By the independence of the confirmation

phase from the crossing value Ui(Tn) derived from the fix state count of the Markov Chain

we have that:

E[Ui(Tn) | C(t(n)0 ), T (n+1)≤0, T (n)>0, θ= i] = E[Ui(Tn) | T (n+1)> 0, T (n)> 0, θ= i] . (3.489)
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Therefore, the expectation in (3.487) can be replaced by the one in (3.486). Then, the

probabilities in (3.486) and (3.487) are added, to obtain Pr(C(t(n)0 ) | T (n) > 0, θ = i). Note

that ¬C(t(n)0 ) =⇒ {T (n+1) ≤ 0}, thus the conditioning on {T (n+1) ≤ 0} is redundant with

¬C(t(n)0 ). Then, the expectation in the left of (3.486) is also given by:

E[Ui(Tn) | T (n)>0,θ= i] = E[Ui(Tn) | T (n+1) > 0, θ = i] Pr(C(t(n)0 ) | T (n)>0, θ= i) (3.490)

+ E[Ui(Tn) | ¬C(t(n)0 ), T (n)>0, θ= i] Pr(¬C(t(n)0 ) | T (n)>0, θ= i) (3.491)

The event ¬C(t(n)0 ) ∩ {T (n) > 0} ∩ {θ = i} implies that the process decodes in error at

the nth communication phase round, which results in Ui(Tn) < 0. Therefore, we have that

E[Ui(Tn) | ¬C(t(n)0 ), T (n+1) ≤ 0, θ= i] < 0, This makes the left side of (3.490) an average of

the positive quantity in the right of (3.490) and the negative quantity in (3.491). Then:

E[Ui(Tn) | T (n) > 0, θ = i] ≤ E[Ui(Tn) | T (n+1) > 0, θ = i] Pr(C(t(n)0 ) | T (n)>0, θ= i) (3.492)

≤ E[Ui(Tn) | T (n+1) > 0, θ = i] (3.493)

The last inequality (3.493) follows because the expectation is positive, and is multiplied by

a probability, 0 ≤ Pr(C(t(n)0 ) | T (n)>0, θ= i) ≤ 1, in (3.492).
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CHAPTER 4

Causal Encoding

4.1 Introduction

Consider a feedback communication system over the BSC where the information source

generates the information sequence as the transmission progresses, instead of making it

available to the encoder before the start of the transmission. The information sequence is

generated at the source symbol rate of λ [bits/sec], and the transmitter sends coded bits

through the BSC at a rate µ [bits/sec] (see the model of Fig. 4.1). The decoder needs

to produce an estimate of the information sequence promptly and reliably, so it can be

used by a time-sensitive application, for example, a control application like stabilizing an

unstable plant over a noisy link (see [SH16]), the remote teleoperation of an aircraft or robot

(see [AJB10,AJD13]), and in sequential optimization of the beamforming vectors during the

initial access phase of communication over mmWave (see [CRJ19]). In the causal model,

the time t indexes the channel symbols, not unlike the models of chapters 2 and 3. The

decoding time Td, also in channel symbols, is the time the decoder takes to estimate the

information sequence, starting from the time when the first information bit arrives at the

encoder. The “causality constraint” restricts the encoder to encode each symbol Xt, using

only the information sequence symbols and the feedback symbols available at time t. The

“causal constraint” allows to use every previous feedback symbol Y1, Y2, . . . , Yt−1, but for

values of t for which ⌊ tλ
µ
⌋ < K, only the first ⌊ tλ

µ
⌋ bits of the information sequence are

available to the encoder.
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The goal of “causal encoding” is to design a system, an encoder and a matched decoder,

that encodes channel bits “causally” and decodes the information sequence at the earliest

possible time. The encoding “causality” consists of using only the information sequence

symbols “causally available” from the “streaming source” at each channel symbol time t. In

“causal encoding” every opportunity to transmit a symbol over the channel is counted in the

time Td, and the encoder needs to make the most effective use of every channel symbol to

reduce the expected decoding time E[Td]. This research targets blocklengths from a few tens

of bits to a few thousand bits, the same range targeted in the non-causal setting of chapters

2 and 3, where variable-length coding is required for the rate to approach capacity with

low FER. This dissertation proposes variable-length, causal encoding functions that seek to

decode with the smallest expected decoding time E[Td], and satisfy a reliability target similar

to that of Sec. 2 and Sec. 3, and maintaining a relatively low decoding complexity.

4.2 Background

Causal Encoding has been analyzed before with feedback. Sahai [Sah08] studied fixed delay

“anytime” codes, and extended the study to the case where the feedback is received with a

small delay. Gorantla and Coleman [GC11] introduced a new class of causal coding problems

to optimize sequential decision-making in systems with feedback and proved the existence

of of an optimal stretegy for a fixed cost function. Lalitha et al. [LKJ20] proposed a causal

encoding version of Horstein’s scheme over the BSC. Causal encoding without feedback has

also been studied as Streaming Transmission in a related setting where decoding of each

block is subject to a fix delay deadline [KD14, LTK15]. An error, or erasure, is declared

when the deadline is missed.
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Figure 4.1: System model for causal encoding over the BSC with noiseless feedback. In
“causal encoding” the source delivers information bits to the encoder as the transmission
progresses, at a rate of λ [bits/sec], and the encoder sends coded bits over the channel at a
rate of µ [bits/sec]. The entire information sequence is only available after the time taken
by K µ

λ
channel symbols has elapsed.

4.3 Contribution

The main contributions of this chapter are:

• A detail analysis of the regions where a causal encoder is needed to obtain an expected

decoding time significantly lower than that of an of-the-shelf decoder not specifically

designed as a causal encoder.

• An analysis of the performance of simple schemes or simple modification of non-causal

algorithms, like bit repetition or independent segment transmissions, applied to the

causal encoding problem. This analysis sets a benchmarks to compare the performance

of a causal encoding algorithm.

• A causal encoder, the sub-block combining algorithm, that outperforms the expected

decoding time of non-causal algorithms, and exhibits low run-time complexity and low

memory complexity. The improved performance is achieved by combining partially

decoded sub-systems into a single system, and the low runtime complexity is achieved

by consolidating many low probability groups when new sub blocks are added to the

system. Also, the memory usage is optimized by avoiding multiple copies of the same

system, and using memory references instead.
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4.4 Organization

The chapter is organized as follows: Sec. 4.5 formulates the causal encoding problem as a

constraint integer optimization problem; Sec. 4.6 analyzes performance bounds and defines

the regions where causal encoding could enable a lower expected decoding time by making

a more efficient use of the transmitted symbols; Sec. 4.7 analyzes performance bounds for

simple modifications of non-causal algorithms when applied to the causal encoding problem,

and highlights the gap between the performance of these algorithms and the bounds of Sec.

4.6, that could be bridged by the proposed causal encoder; Sec. 4.8 details the properties a

causal encoder needs to satisfy to lower the expected decoding delay beyond that of Sec. 4.7,

and with a complexity feasible for practical implementation; Sec. 4.9 introduces the sub-block

combining algorithm that exhibits the properties described in Sec. 4.8; Sec. 4.10 analyzes the

sizes of the sub-blocks that optimizes the performance of the sub-block combining algorithm;

Sec. 4.11 provides simulation results of the sub-block combining algorithm and Sec. 4.12

concludes the chapter.

4.5 Causal Encoding Problem Statement

The causal encoding problem consists of designing an encoder-decoder pair that satisfy a re-

liability constraint and a “causality” constraint, and produce and estimate of the transmitted

message at the earliest expected decoding time. Let the decoding time, in channel symbols,

be Td and let ϵ be a small upper bound on the frame error rate. Denote by θj1 the first j

symbols of the information sequence: θj1 = θ1, θ2, ,̇θj. Then, the “causal encoding” problem
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can be formulated by:

minimize: E[Td] (4.1)

subject to reliability constraint: Pr(θ̂ ̸=θ) ≤ ϵ , (4.2)

“causality” constraint: Xt+1 = F
(
θ
⌊tλ

µ
⌋

0 , yt1
)
. (4.3)

This dissertation proposes a sub-block combining algorithm that implements a “causal en-

coder” and that extends the systematic approach used for the sequential transmission case

in Sec. 2 and Sec. 3. The sub-block combining algorithm is an efficient causal encoder that

decodes with a lower expected decoding time E[Td], compared to non-causal, of-the-shelf

encoders, with a complexity low enough for to allow for practical implementation and sim-

ulation of blocklenghts up to a few thousand bits.

4.6 Model-Inherent Performance Bounds and Regions of Interest

The streaming information source and the noisy channel in the causal encoding model impose

inherent bounds on the achievable decoding times. The time that the source takes to produce

all K bits of the information sequence θ, given by K 1
λ

seconds, or K µ
λ

channel symbols, sets

a lower bound on the decoding time Td. The number of channel symbols needed to transmit

a K-bit message with a transmission rate equal to the channel’s capacity sets a bound

on the expected decoding time E[Td], given by K
C

. Shannon [Sha48] shows that reliable

communication at a rate higher than the channel capacity C cannot achieved. Thus, the

expected decoding time must be above both bounds:

E[Td] ≥ max
{
K

µ

λ
,
K

C

}
, (4.4)

These two bounds define the lower boundary of the achievability region, shown by the shaded

region in Fig. 4.2.
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A traditional, non-causal encoder, starts the transmission after the entire K-bit informa-

tion sequence becomes available. The expected decoding time, in channel symbol times, of a

traditional system is no lower than the sum of the first two bounds, the time K µ
λ

the source

takes to produce the entire information sequence and the K
C

symbols channel symbols that a

capacity achieving scheme would take to communicate the information sequence across the

channel. This bound is shown in Fig. 4.2 with the light blue dashed line labeled K µ
λ
+ K

C
.

A systematic algorithm, such as the systematic posterior matching described in Sec. 3,

leads to a straightforward causal encoder, where the K systematic bits are transmitted as

they become available and non-systematic bits are only transmitted after the entire informa-

tion sequence becomes available to the encoder. This type of algorithm could be described as

a systematically causal encoder (SCE). Causal encoding permits transmission of K µ
λ

symbols

during the time the traditional system is waiting for the K message bits to become available.

When µ ≥ λ, The expected decoding time TSCE of a SCE is lower bounded by the sum of

the time needed for all K bits of the information sequence to arrive at the encoder and be

transmitted, and the time needed by a capacity achieving scheme to transmit the K
C
− K

non-systematic symbols. Let γ ≜ λ
µ

be the “normalized” symbol rate, then, the lower bound

on the expected decoding time of an SCE is compactly described by:

E[Td] ≥ max {Kγ,K}+
(
K

C
−K

)
. (4.5)

The bound is comprised of two terms: the time until all K systematic bits have been trans-

mitted (left term) and the time required to transmit the subsequent non-systematic bits

(right term). The left term is characterized by two regions: one region where λ ≥ µ, or

γ > 1 and another region in which λ < µ or γ < 1. Note that when λ ≥ µ, or γ ≥ 1,

the first term becomes just K, and the overall bound becomes the bound set by a standard

capacity achieving scheme, given by K
C

. Thus, a systematic algorithm like the one in Sec.

3 could perform as well as any causal encoder, with an expecting decoding time E[Td] that
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Figure 4.2: Shows the region where a “causal encoder” may achieve a decoding latency
lower than that achievable with a standard decoder, see shaded region. The vertical axis
shows decoding time, in transmitter symbols, and the horizontal axis shows the normalized
symbol rate, defined by γ = λ

µ
. The regions described are for a channel with capacity

C = 0.40, and for a message size K = 240. The shaded region is bounded above by the
average decoding time from simulations of the systematic encoder that enforces the SEAD
constraints, implemented in chapter 2, see the solid curve labeled “Sys. SEAD.” And is
bounded below by the the time, in transmitter symbols, that the source takes to deliver the
entire information sequence, see the black dash dot −· curve defined by the expression K µ

λ

in the label, and the expected decoding time performance of a system that both operates
at capacity and starts the transmission as soon as the first information bit arrives, see the
horizontal dotted line defined by K

C
in the label. The dash blue curve is the decoding time

of a standard encoder that operates at capacity, but that starts the transmission after the
entire information sequence arrives at the encoder, see the vertical lines labeled 600 with
origin at the time where the last information bit arrives at the encoder.

approaches bound 4.5 as K becomes large and E[τ ] → K
C

. For λ ≥ µ the encoder of 3 may

be applied directly and a "new" encoder is not needed.

However, if λ < µ, or γ < 1, then K
γ

> K symbols (bits), may be transmitted by the

time the full message becomes available, which is K
γ
−K non-systematic bits in addition to
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the K systematic bits. This dissertation explores causal encoding to attempt to use all (or

most) of the K
γ

available symbols to reduce the expected decoding time E[Td].

This dissertation seeks to attain a decoding time below that achievable by an SCE, and

thus the lower bound (4.5) defines the upper boundary of the region of interest, shown by

the shaded region of Fig. 4.2. The systematic encoder described in Sec. 3 is an SCE encoder

that approaches the BSC capacity rapidly as K becomes large, and thus approaches the

performance of bound (4.5).

Conversely, when the transmission speed µ is much larger than the source speed λ,

the problem becomes non-interesting. In this region, even repetition coding could work

well, because it would allow to drive the bit error rate (BER) low enough to achieve the

target frame error rate (FER). Let the BER be Pb, with repetition coding the FER becomes

Pr( ˆθ) = θ) = (1− Pb)
K , then:

Pb ≤ 1− (1− ϵ)1/K =⇒ (1− Pb)
K ≥ 1− ϵ (4.6)

The same martingale analysis of Sec. 3, without the communication phase fall back, can be

used to find the number of bit repetitions τbit required to attain the BER Pb of (4.6) and the

ratio µ
λ

that achieves it:

µ

λ
≥ τbit ≜

⌈
log2

(
(1−ϵ)1/K

1−(1−ϵ)1/K

)⌉
C2

=⇒ Pb ≤ 1− (1− ϵ)1/K . (4.7)

The focus of this chapter is the interesting region where a thoughtful approach is necessary.

This region is λ < µ < λτbit, where µ is larger than λ, but not large enough to use repetition

coding. Also note that as the ratio µ
γ

increases the BER gets smaller. In the limit, all

but the last bit could be made arbitrarily reliable, and decoding could end when the error

probability of the last bit is lower than ϵ. This case defines a tighter lower bound on the
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Figure 4.3: Shows the times of source symbol arrivals and the time that coded symbols
may be transmitted, for a systematically causal encoder and a causal encoder that transmits
non-systematic symbols while a subsequent block of source symbols become available. The
figure is for a case where the transmitter rate µ is higher than the source rate λ, and thus a
“causal” approach is relevant.

minimum number of symbols required to achieve a FER Pr( ˆθ ̸= θ) ≤ ϵ, and is given by:

E[τ ] ≥ τl ≜
Kµ

λ
+

⌈
log2

(
1−ϵ
ϵ

)⌉
C2

=
Kµ

λ
+ τlast, τlast ≜

⌈
log2

(
1−ϵ
ϵ

)⌉
C2

(4.8)

An alternative to bit repetition that does not require a new encoding scheme is to break the

K message bits into segments, and transmit each segment as a standalone message.

4.7 Independent Sub-blocks

Using a systematically causal encoder like the one in Sec. 3 to transmit the K-bit message into

independent segments is a natural approach to the causal encoding problem. This approach

allows to use some of the available symbols, beyond just the systematic bits. However,

it has significant disadvantages. Suppose that N such segments are used, each of length

Lj, j = 1, 2, . . . , N , and an independent system Bi, i = 1, 2, . . . , N is used to decode each

segment. The rate performance for this approach will be that of the system in Sec. 3 at the
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block sizes Li and for a higher reliability threshold. The smaller blocklegths lead to a rate

loss. Note that, by linearity of expectations, the expected blocklenght will be the sum of

the expectations at each segment, which is higher than the expected blocklength of a single

system size K. The higher reliability threshold on each segment also leads to further rate

loss, and is needed to achieve the error rate target Pr(θ̂ ̸= θ) ≤ ϵ at the combined system.

To see this, let kj ≜
∑j

n=1 Lj, and let θ̂(j) ≜ θ̂kj−1
, θ̂kj−1+1, . . . , θ̂kj . For independent segments

the probability Pr(θ̂ = θ) is given by the product of the probabilities Pr(θ(j) = θ̂(j)). If we

use the same target for each segment then:

Pr(θ(j) = θ̂(j)) ≥ (1− ϵ)1/N =⇒
N∏
j=1

Pr(θ(j) = θ̂(j)) ≥ 1− ϵ . (4.9)

The independent sub-blocks approach does improve the performance compared to repetition

coding, by lowering the number of “confirmation phases” from the message size K to the

number of segments N . An expression for the expected time needed for each confirmation

phase, under a gene aided decoder, may be lower bounded with the methods of chapter 3,

using a step size of C1 instead of C, from the time T0 when the correct message enters the

confirmation phase for the first time. The expression for this lower bound is:

E[τ − T0] ≥
log2

(
(1−ϵ)1/N

1−(1−ϵ)1/N

)
C1

. (4.10)

The total decoding time increases, over the single block case, by a minimum of:

log2

(
(1− ϵ)1/N

1− (1− ϵ)1/N

)
N

C1

−
log2

(
1−ϵ
ϵ

)
C1

>
N − 1

C1

log2

(
(1− ϵ)1/N

1− (1− ϵ)1/N

)
. (4.11)

To avoid the higher decoding times incurred by independent sub-blocks in the confir-

mation phase, this chapter studies “causal encoders” that combine separate segments into a

single system before each segments enters the confirmation phase. An encoder that achieves

this goals may avoid the N − 1 additional “confirmation phases” and the increased length
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Figure 4.4: Performance of Independent Blocks. The new orange line −× added to the
bounds of Fig. 4.2 shows the decoding time achievable via independent systematic posterior
matching blocks. All 8 blocks use were the same size 30-bits, and the message size K is
240-bits. To the left, smaller blocks, and even bit repetition could perform better. To the
right, The single block systematic posterior matching, blue solid line, performs better. A
purpose built “causal encoder” can perform better lies only within the shaded region.

“penalty” associated with the higher “reliability” target (1− ϵ)1/N imposed on each indepen-

dent segment to achieve a combined reliability of 1− ϵ.

4.8 Requirements of a Causal Encoder

The analysis of bit repetition and independent sub-blocks allows to determine the properties

that are desired in a “causal encoder” design. These properties include ability to encode

channel bits, beyond just the systematic bits, without the full knowledge of the information

sequence. The “causal encoder” must also be able to add new information (segments) to the

process, in order to optimize future transmissions and avoid the penalty shown in (4.11).

Lastly, the complexity of the “causal encoder” needs to be sufficiently low to make the
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implementation feasible. Note that for the sequential case, low complexity was achieved

by grouping messages that shared a posterior probability. However, this approach becomes

problematic when two segments are combined into a larger system, which is exactly what

the causal encoder must do. This is because the number of different posteriors becomes

too large as new segments are combined. The challenges that combining segments pose are

explained in detail next.

Suppose that two separate message segments are encoded by two posterior matching

systems independently. It is possible combine the two systems into a single larger system.

Let an item i of the larger system be comprised of segment i(1) in the first system and segment

i(2) in the second. More generally, suppose candidate message i is comprised of N segments

i(1), i(2), . . . , i(N), each of length Lj, j = 1, 2, . . . , N , and let kj ≜
∑j

n=1 Lj as before, with

k0 = 0, K1 = L1, and kN = K. Let Y j,t be the symbols of Y t received for posterior matching

system j, and suppose they were ordered so that Y t = Y 1,t, Y 2,t, . . . , Y N,t. The posterior of

the entire i = i(1), i(2), . . . , i(N) is given by:

Pr(θ = i | Y t) = Pr(θk1k0 , θ
k2
k1
, . . . , θkNkN−1

= i(1), i(2), . . . , i(N) | Y t) (4.12)

=
N∏
j=1

Pr(θ
kj
kj−1

= i(j) | θkj+1

kj
, θ

kj+2

kj+1
, θ

k−1

kN
, Y t) (4.13)

=
N∏
j=1

Pr(θ
kj
kj−1

= i(j) | Y j,t) (4.14)

ρj,i(y
t) ≜ Pr(θ

kj
kj−1

= i(j) | Y j,t) . (4.15)

Where (4.14) follows since {θkjkj−1
= i(j)} is independent of {θklkl−1

= i(j)} and of {Y l,t = yl,t}

if j ̸= l, since each Y j,t depends on the channel and Xj,t, and Xj,t is a function of only θ
kj
kj−1

and the segment feedback that is part of Y j,t. Equation (4.14) describes how to compute

the posterior of a message (or a message segment) that is comprise of independent segments

with known posteriors. Extending this to a group of messages with shared posterior is

straightforward, since it only requires to replace each i(j) with a group of nj items G(j) =
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i
(j)
1 , i

(j)
2 , . . . , i

(j)
nj and i with a product set G(1) × G(2) × · · · × G(N) = {i(1)1 , i

(1)
2 , . . . , i

(1)
n1 } ×

{i(2)1 , i
(2)
2 , . . . , i

(1)
n2 } × · · · × {i

(N)
1 , i

(N)
2 , . . . , i

(1)
nN} instead in the segment. The number of items

that share the posterior
∏N

j=1 ρj,i1(y
t) is given by

∏N
j=1 nj, as each item in segment j can

form a candidate with every item in any other segment l. The systematic posterior matching

algorithm of Sec. 3 starts with exactly K+1 groups right after the systematic transmissions,

and grows by about one each transmission. If the segment systems are systematic posterior

matching systems, the number of groups in a larger system that combines n− 1 segments is

at least
∏n−1

j=1 (Lj +1). Each additional segment n that is combined, increases the number of

groups in the combined system by a factor of ln ≥ Ln+1. To avoid this excessive complexity,

this dissertation proposes a sub-block combining algorithm that is explained next.

4.9 The Sub-Block Combining Algorithm

The “causal encoder” proposed in this dissertation is a “sub-block combining algorithm”

(SBC) that exhibits all the desired properties of a good “causal encoder” described in Sec. 4.8.

The sub-block combining algorithm is a PM algorithm that synthesizes a larger-blocklength

that combines a new PM system with an existing system. The new PM system carries

information of newly arrived message bits, where the new message bits could be as small

as a single bit or as large as the remainder of the K-bit message. The algorithm starts

the transmission with as soon as a small message segment is available to efficiently uses the

opportunities to transmit channel bits. Existing and new message segments are combined

into a single system to avoid the performance loss associated with additional, and longer,

confirmation phases required for independent subsystems. Also, the sub-block combining

algorithm consolidates several groups of messages with different posterior into a single larger

group, where the larger groups represent single ”posterior groups” with structures designed to

easily extract them, individually, or as smaller groups, when their posteriors become larger,

or when required to balance the partitions before each transmission. Consolidating many
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Figure 4.5: Shows a 2-Dimension slice of the tree structure used by the sub-block com-
bining algorithm. The tree represents a set of N

(3)
1 , where each message is comprised of

segments from four sub-blocks with constant size Li = L1 = 3, and sharing the same pos-
terior ρi(y

t) = ρ
(3)
1 , see root node. The super indices denote the tree depth, from bottom

to top, and the sub-indices denote the horizontal order that each node takes within the
larger K-size message. The leaves are groups G(j)n of the basic SPM systems, with posteriors
ρ
(1)
n , counts N

(1)
n and Hamming distance hn respect to the n-th systematic segment, see top

Y
(sys)
n segments. The figure shows how the posteriors ρ

(j+1)
n and counts N

(j+1)
n , at higher

level nodes j = 2, 3, are computed as a product of the values at the two children nodes, (or
leaves) ρ(j+1)

n = ρ
(j)
2n−1 · ρ

(j)
2n , and N

(j+1)
n = N

(j)
2n−1 ·N

(j)
2n .

“posterior groups” into one allows the algorithm to avoid the high complexity associated with

separately tracking every “posterior group” formed by messages that share a single posterior

probability. The complexity of the sub-block combining algorithm is low enough to efficiently

process messages with sizes up to a few thousand bits, as well as multiple configurations of

number of sub-block and sub-block sizes.

The sub-block combining algorithm represents the messages with trees and lists of trees

that combine multiple smaller message segment. For each tree, a child node could be a single

tree, representing only messages segments with equal posterior like the tree shown in Fig.

4.5, or it could be a list of “sibling” nodes representing groups of messages with different

posteriors like the trees in Fig. 4.7 and Fig. 4.8. The tree-list structure allows the sub-block

combining algorithm to combine partially decoded systems into a single system, which may

later be combined with another tree, to form an even larger system. This method allows

the algorithm to maintain, under certain conditions, the computational complexity of the

151



Figure 4.6: Construction of a list of four “trees” that combines two leaf sub-blocks systems
with sub-block size of three, that are basic SPM systems, into a single system. The left side
shows the components of each node and the right side shoes the final list of four “trees.”
First the leaf level lists, in the green and red top rectangles labeled SPM2i−1 and SPM2i,
are split into two sets, shown by the ellipsoids labeled S2i−1

0 and S2i−1
1 in the green rectangle

labeled B2i−1 and the ellipsoids labeled S2i
0 and S2i

1 in the red rectangle labeled this B2i. Note
that the sets in the ellipsoids at each sub-block is used twice. This is because the message
segments they contain form valid larger messages when combine with the components of
each of the two segments on the other sub-block.

original PM system, in the sense of order O(·) as a function of blocklength.

Trees are natural choice to represent a message comprised of two or more segments.

For example Schulman [Sch96] used trees in an interactive communication protocol. The

sub-block combining algorithm uses binary trees because of the need to add a single new

segment to an existing system. The “leaves” could be messages segments (or groups of

messages segments) with shared posterior, not unlike the ones used in chapter 2. This makes

the systematic posterior matching algorithm of chapter 2 a suitable building block for the

“leaves” of the trees used by the sub-block combining algorithm. Each leaf j is a systematic

posterior matching system operating on message segments j, from bit kj−1 to bit kj, see the

four leaves of the tree in Fig. 4.5 representing three bit message segments. The set of top
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Case 1
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Figure 4.7: Shows how a tree of the sub-block combining algorithm is split into two smaller
trees, when one or more node, that is not a leaf, has a “sibling” node. The top tree is the
original tree and the bottom tree is the new tree that is created. The sepia colored “sibling”
node with dashed lines on the left of the top tree is separated from the original tree and
assigned as the left node of the new tree. Note tat the original tree has two “sibling” nodes
on each side and each side. The messages represented by the top tree are defined by all four
trees that can be constructed using a single node from each side. The two new trees together
must represent all four trees, thus, “sibling” nodes of only one side can be extracted when
splitting a tree into two, and the other side must remain the same for both trees. Thus, the
right side of the bottom tree is the exact copy of the right side of the top tree.

level trees, that represent all the current message segments, are organized as a sorted list,

see the list of trees with two “leaves” Fig. 4.6.

The tree architecture of Fig. 4.5 alone would still suffer from the complexity of a multi-

plicative number of trees. To address this problem, the sub-block combining algorithm allows

each tree node to be itself a list of trees, with no restriction in the number of “siblings” or

“links” in front of each node, see the “sibling” to the nodes the top tree in Fig. 4.7. Thus,

each node could either be a single tree, or it could be the “head” node of the entire list of

a posterior matching segment (or collection of segments). A node is constructed from two
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Figure 4.8: Shows how the sub-block combining algorithm splits into two trees a tree where
a single non-leaf child node has a “sibling.” The messages represented by the top tree are
defined by the two trees that can be constructed using the single node at the left side and
each “sibling” node from the right side, thus, the “sibling” node at the right side is extracted
to form the right node of the new tree, while the left node of the new tree is an exact copy
of the left node in the original tree. Note that the top tree is the top tree of Fig. 4.7 after
the left sibling was extracted to construct a new tree.

systems, each with a list of nodes. First the two lists are split into two lists each, then, one

tree is constructed for each of the four combinations of one list from the first system and

one from the second system. This process starts at the leaf level posterior matching system,

Fig. 4.6 shows how a larger system (right list of trees) is constructed from “leaf” systems

2i−1 and 2i. The list of “posterior groups” in systems SPM2i−1 (top left green rectangle) is

split into S2i−1
0 and S2i−1

1 (the two ellipses in the bottom left green rectangle), and the list in

system SPM2i (top center red rectangle) is split into S2i
0 and S2i−1

1 (the two ellipses in the

bottom center red rectangle). The four trees represents the messages combining {S2i−1
0 , S2i

0 },

{S2i−1
0 , S2i

1 }, {S2i−1
1 , S2i

0 } and {S2i−1
1 , S2i

1 }, (see squares between the green and red rectan-

gles), and the resulting list of trees with two leaves each is shown in the right side of Fig.
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4.6.

The sub-block combining algorithm needs to allow the standard operations needed for

posterior matching over the BSC as the algorithm of chapter 2. At each time t the set of

messages needs to be partitioned into two sets, balanced according to some deterministic

rule, before symbol Xt is encoded; the transmitter must identify which partitions contains

the message θ to encode Xt; the posteriors need to be updated after symbol Yt is received;

and the receiver must be able to recover an estimate θ̂ at the end of the transmission. To

build balanced partitions, the items in a node node that represents many messages may need

to be allocated to a different partition, which requires splitting the node. These events will

eventually arise as the accumulated posteriors of some nodes grow large. Maintaining the

list of trees sorted in some order is desired to keep the complexity of partitioning low. The

sub-block combining algorithm maintains the list of trees sorted according to the largest

posterior in each tree. The two partitions also preserve this ordering, so that they may be

combined again into a sorted list with low complexity after the posteriors are updated. The

method to split a node, or tree, into two or more trees is explained next.

A tree representing multiple messages may need to be split into two parts, with a target

posterior for one of the parts. This may be accomplished by splitting the tree into more

than two trees, and making two smaller list of trees, where the total posterior in one of the

two satisfies the target requirement, and the other collects the rest. Part of the posterior

matching method consist of maintaining the posteriors for every message in the set Ω, which

the sub-block-combining algorithm accomplishes via the the list of trees. Thus, the new trees

obtained from splitting an original tree must be disjoint, and collectively represent exactly

the same set of messages as the original top level tree. The same holds for every tree node.

In a top level tree, any child node may be itself the head of a list of “siblings,” in which case

the tree represents items with different posteriors. To split these trees, the first time a node

with siblings is encountered, the “head” node alone is kept in the original tree and the next

node becomes the “head” node of a new tree. Every other branch, except the ones below the
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Case 2

Original
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Figure 4.9: Shows how the sub-block combining algorithm splits into two trees a tree where
only leaf node have “sibling” nodes. The collection of messages groups represented by the
tree are defined by all the combinations that take one ”sibling” leaf node from each leaf. The
splitting process in this case is the same described in Fig. 4.7 and Fig. 4.8. Only the right
leaf of the top tree has “sibling” leaves. To split it, all but the the first “sibling” are removed
from the original tree, and assigned to the new tree, the bottom tree. All other leaves of the
bottom tree are exact copies of those in the top tree. Note that the top tree is the top tree
of Fig. 4.8 after the only remaining non-leaf “sibling” node has been removed and assigned
to a new tree.

node at which the splitting happened, must remain the same for both new trees, so that the

two new trees represent the same set of messages as the original top level tree. Examples of

this type of tree splitting are shown in Fig. 4.7 and Fig. 4.8. Note that in Fig. 4.7 both the

left and right “child” nodes have “siblings”, but only one is split at a time. The example of

Fig. 4.8 shows the case when only one “child” node has a “sibling” and this tree is exactly

the first top tree that remained after splitting the tree of Fig. 4.7. The same process is used

to split “leaf” level “siblings” after all no more parent node “siblings” exist in a tree, as shown

in Fig. 4.10. Note that the new tree that keeps the original head “sibling” node will also

maintain its original largest posterior value. In contrast, the tree that gets the next “sibling”

node will have a new value for its largest posterior, which will be smaller than that of the

original tree and will need to be inserted at the appropriate location in the list of trees, in
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Case 3

Original

RemoveKeep

Copy

Assign

Figure 4.10: Shows how the sub-block combining algorithm splits into two trees a non-s-
ingleton tree where no node, including the leaf nodes, has a “sibling” nodes. All messages
represented this type of tree, like the top tree with turquoise shade and the tree shown if Fig.
4.5, share the same posterior. The messages represented by the original tree, the top tree,
are defined by all the combinations that take one segment from each leaf. In a non-singleton
tree, at least one leaf needs to have a count of two or more messages. In the top tree, only
the right leaf has a count N

(1)
4 greater than one. To split the tree, the algorithm computes

the number n of message segments, where 1 ≤ n < N
(1)
4 , that should remain on the original

tree, and assigns all other segments to the new tree. All other leaves of the new tree, the
bottom tree, are exact copies of those in the top tree. Note that the top tree is the top tree
of Fig. 4.9 after all “sibling” leaf nodes have been removed and assigned to a new tree.

order to maintain the ordering.

The sub-block combining algorithm avoids the complexity and memory intensive opera-

tion of making copies of nodes with more than one “sibling” when splitting a tree with such

nodes. To construct the new tree, only nodes with two or less “siblings” are copied. When

the first node with more than two “sibling” is encountered, instead of copying the node and

its “siblings,” which may be a large list, the algorithm creates a single memory reference that

points to the new head “sibling.” No further operations are needed on the “children” of such

nodes.

A with no remaining “sibling” nodes may still contain a “leaf” node representing a group
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of more than one message segment. Every estimate represented by such tree will have the

same posterior. To split this type of tree, a copy of the entire original tree is constructed,

and one of the ‘leaf” groups is split into two the same way as a group of SPM algorithm

of chapter 2 is split. Since the count of items in the each group is known, the posterior of

a tree is easier to tune to a target value, which is done by computing the number of “leaf”

items to be assigned to each tree. This case is illustrated in the example of Fig. 4.10, where

a single “leaf” contains a group with N
(1)
3 elements, and n items, where n is an integer such

that 1 ≤ n < N
(1)
3 , are kept in the original tree, while the remaining N

(1)
3 − n items are

assigned to the new tree.

The number of top level trees in the list of trees may grow large, as the original trees are

split into smaller trees before each transmission. However, when a new system is combined

with an existing system to represent new message bit arrivals, the two lists are again con-

solidated into just four trees, and the process repeats. As the transmission progresses, trees

whose total posterior grow larger pop to the top of the list, while rest of the trees fall to the

bottom of the list, and are rarely operated on. This process affords the sub-block combining

algorithm low enough complexity to efficiently combine many small segments to represent

large messages.

The last step of the sub-block combining algorithm consists of reconstructed a single K-

bits log message estimate θ̂ of the transmitted message θ. The estimate θ̂ constructed from

a single tree that has single nodes, without “siblings” at every branch, including the “leaves,”

has a single item at each “leaf,” and whose posterior has reached past the threshold 1 − ϵ.

Such tree would be similar to the tree in Fig. 4.5, but with N
(1)
i = 1 i = 1, 2, 3, 4, and

where the product ρ(1)1 ·ρ
(1)
2 ·ρ

(1)
3 ·ρ

(1)
4 · ≥ 1−ϵ. Note that the right most “leaf” node in the tree

of Fig. 4.5 represents a single 3-bit segment, while the others represent two or more 3-bit

estimates. The algorithm recovers each segment of the estimate θ using the original SPM

systems at each “leaf” level, that were described in chapter 2, and the indices of the current

segment estimates from the selected tree. Then, all the estimate segments are combined to
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form the larger K-bit estimate, which becomes the final decoding estimate θ.

4.10 Block Sizes

The sub-block combining algorithm does not require pre-defined sub-block sizes L1, . . . , LN

at each “leaf” level segment. The algorithm may combine sub-blocks of any size and this

property is exploited to select optimized sizes for the λ and µ values at which the system

operates. The method to select appropriate sub-block sizes is described next.

Transmissions that only consider a segment of the message become inefficient when the

segment is in its confirmation phase, according to the analysis of independent sub-blocks of

Sec. 4.7. The confirmation phase of the current system, or just a “leaf” sub-block, starts

when a posterior crosses 1
2
. The expected number of transmissions needed for “leaf” sub-

block j of size Lj to produce a candidate i(j) with posterior ρ(j)i ≈ 1
2

is about Lj

C
, according to

(3.78) and the communication phase analysis of [YPA21]. Let γ be the normalize symbol rate

γ = λ
µ
, the ratio of the source symbol rate and the transmitter symbol rate. The normalize

symbol rate γ is the number of source bit arrivals during the time taken to transmit a

channel symbol. The time needed for the Lj , i = 1, . . . , N systematic bits of each “leaf”

sub-block Bj to arrive is Lj

λ
, or Lj

γ
in channel symbols. The expected number of symbols

needed for sub-block Bj to obtain a candidate l with ρ
(1)
l ≈ 0.5 is about Lj

C
, which takes

Lj

Cµ
seconds, see bottom half of Fig. 4.3 labeled Sub-block System. From the Lj

C
symbols,

Lj will be used for the systematic transmissions of “leaf” sub block Bj. The example of

Fig. 4.3 shows the systematic transmission time Lj

µ
of each sub-block in each the region

where segments of the same color in the sub-block-system overlap. The remaining time

t0 ≜ Lj

Cµ
− Lj

µ
= Lj

1−C
Cµ

is used for non-systematic transmissions. The transmission may

become more efficient if the systematic transmissions of each next sub-block Bj+1 start right

after the first Lj

C
transmissions of block Lj. To attain the lowest possible decoding time Ts,

the last systematic bit of the last sub-block BN should be transmitted as soon as it arrives,
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at time t = K
λ

or after K
γ

channel symbols. This criterion also applies to every sub-block

Bj. The time used for the first Lj

C
−Lj non-systematic transmissions of sub-block Bj allows

for 1−C
C

λ
µ
= γLj

1−C
C

new source arrivals for the next sub-block Bj+1. The Lj+1
1
µ

seconds

used for the Lj+1 systematic transmissions of sub-block Bj+1 allows for γLj+1 source bit

arrivals. Then, at the start of the systematic transmissions of sub-block Bj+1 there should

be Lj+1(1− γ) source bits already accumulated. The size Lj+1 of the next sub-block, given

the size Lj of the previous sub-block, needs to be tuned so that Lj+1(1−γ) source bits arrive

during the first Lj
1−C
C

non systematic transmissions of sub-block Bj. Then, the each size

Lj+1 may be expressed in terms of the previous size Lj, the normalized symbol rate γ and

the channel capacity C, via the following recursive equation:

Lj+1(1−γ) ≤ Lj
1−C
C

γ =⇒ Lj+1 ≤ Lj
1−C
C

γ

1−γ . (4.16)

The recursive formula (4.16) defines an upper bound on each next sub block size Lj+1 given

the previous sub-block size Lj. The block sizes must be integer and must satisfy the con-

straint that their total is the message size K, that is:

N∑
j=1

Lj = K . (4.17)

Equations (4.16) and (4.17) define two constraints that the “leaf” sub-block sizes must

satisfy and set a relation between the initial size L1 (or final LN), and the number N of

“leaf” sub-blocks required:

K =
N∑
i=1

Lj ≥ L1

N∑
i=1

(
1−C
C

γ
1−γ

)i
= L1

1−
(

1−C
C

γ
1−γ

)N+1

1−
(

1−C
C

γ
1−γ

) . (4.18)

When the factor 1−C
C

γ
1−γ
≈ 1, which is when γ ≈ C, constraint (4.16) dictates that the block

sizes remain constant, note that the right most term of Eq. 4.18 is not well defined if γ = C.
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Figure 4.11: Sizes of the “Leaf” sub-block in the sub-block combining algorithm when the
channel has capacity C = 0.40. Left: sizes that decrease, dark blue bars with height com-
puted using Eq. 4.16 with γ = 0.35, and LN = 2 designed for values of γ ≲ 0.35; and sizes
that increase, turquoise bars with height computed using Eq. 4.16 with γ=0.45 and L1=2,
designed for values of γ≳ 0.45. Right: sizes that increase and then decrease symmetrically
to form a pyramid shape, computed using Eq. 4.16 with γ=0.38 and L1=2.

If the sizes of the “leaf” sub-block Lj = L1 ,∀ j = 1, 2, . . . , N is constant, the number of

”leaf” sub-blocks needed is just N = K
Lj

. This case introduces an additional problem, small

sub-block sizes leads to a large number N of sub-blocks and large sub-block sizes leads to a

sub-optimal use of the starting and ending transmissions. An alternative choice when γ ≈ C

is to select a desired number of “leaf” sub-blocks N and fixed small values for the initial and

final sub-block sizes L1 and LN . For the other sub-block sizes L2, L3, . . . , LN−1 the block

sizes may need to increase and then decrease. The sizes L2, L3, . . . , LN−1 may be computed

using Eq. (4.16), for which appropriate values of γ for increasing and decreasing sizes must

be selected to achieve the desired N . A natural choice for this case is to make the sizes

symmetric about size L⌈N/2⌉.

Examples of block sizes are provided in Fig. and 4.11 for a message size K = 240 and
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channel capacity C = 0.4. For the regions when γ < C and γ ≈ C, the initial block size

was set at L1 = 2. For the region when γ > C the final block size was set at LN = 2. The

left of Fig. 4.11 shows the cases when γ = 0.35 < C and γ = 0.45 > C. In both cases the

number of blocks was 17. The right of Fig. 4.11 shows increasing and decreasing block sizes

chosen for the case when γ ≈ C = 0.40, where the initial and final block sizes were set at

L1 = LN = 2. Then a value of γ = 0.38 < C was used to compute the increasing block sizes

and γ = 0.42 > C to compute decreasing block sizes. The block sizes in Fig. 4.11 were used

to obtain simulated performance results, and compared to constant block sizes Lj = 1 for

reference.

4.11 Results

The sub-block combining algorithm was implemented to simulate the performance in ex-

pected decoding time E[Ts] for different normalize symbol rate γ values. The current imple-

mentation uses C++ and the simulations were executed on a MacBook Pro Laptop with an

8-Core Intel Core i9 2.4 GHz CPU. The performance results are illustrated Fig. 4.12, Fig.

4.13 and Fig. 4.14 The simulations show average decoding time E[Ts], in channel symbol

times, vs. normalized symbol rate γ= λ
µ
. When µ=1 the number of channel symbols is also

the time in seconds. Average decoding times for other values of µ may be obtained by simply

multiplying the results in channel symbols by the symbol times (µ)−1. The simulations are

over a channel with capacity C=0.40 and for message size K=240-bits.

The performance of the sub-block combining algorithm with the optimized choice of

“leaf” sub-block sizes described in Sec. 4.10 and shown in Fig. 4.11 are shown in Fig.

4.12. For the region with γ < C, the choice “leaf” sub-block sizes decrease according to

Eq. (4.16), and were computed using γ = 0.35. The performance of the algorithm on the

region γ < C is shown with the blue curve with ◦ markers, and the block sizes used are

shown Fig. 4.11, dark blue bars with decreasing size on the left sub-plot. For the region
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Figure 4.12: Performance of the sub-block combining algorithm with channel of capacity 0.4
and message length K = 240 compared to the region of interest from Fig. 4.4. The blue
line −◦ covering the region with γ < C is for the decreasing block sizes of Fig. 4.11. The
magenta line −◦ covering the region γ > C is for the block the increasing block sizes of
Fig. 4.11. The burgundy line −◦ covering the region where γ ≈ C is for the increasing and
decreasing block sizes of Fig. 4.11 with L1 = LN = 2. .

with γ > C, the choice “leaf” sub-block sizes increase, also according to Eq. (4.16), and were

computed using γ = 0.45. The performance on this region is shown with the magenta curve

with ◦ markers, and the block sizes are the ones Fig. 4.11, turquoise bars with increasing

size on the left sub-plot. The final block size is critical in the region where γ ≤ C and the

initial block size is critical for the region where γ ≥ C. Since constraint (4.16), sets upper

bounds on Lj+1 given Lj, the block sizes computed for γ = 0.35 < C were used for the entire

region γ < 0.35 and the block sizes computed for γ = 0.45 > C were used for the entire

region γ > 0.45. In the critical region γ ≈ C, where 0.35 ≤ γ ≤ 0.45, the performance of

the sub-block combining algorithm is shown by the burgundy curve with ◦ markers. The

block sizes on this region were allowed to increase and then decrease, where the increasing
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Figure 4.13: Performance comparison of the of the sub-block combining algorithm with
optimized “leaf” block sizes and other choices of block sizes and algorithms. All curves are
for a channel with capacity C=0.4 and message length K = 240. In addition to the curves
of Fig. 4.12, four curves are shown for reference. The yellow line with ◦ markers labeled
SBC-SPM Lj=30 shows the performance of the sub-block combining algorithm with 8-leaf
sub-blocks of fixed size 30; the orange curve with □ markers is for the optimal, but complex,
choice of block size with 240 sub-blocks each size one; and the blue line with ⋆ markers
labeled Ind. Blocks Lj+1 < Lj is the performance of decoding each block independently, for
the choice of block sizes that was optimized for the sub-block combining algorithm. Finally,
the black diamond highlights the point where γ=C.

sizes were computed using Eq. (4.16) with γ = 0.38 and L1 = 2, and the decreasing sizes

symmetrically reflect increasing sizes. Note that, over the region γ ≈ C, changing block

sizes do not conform to the constraint of Eq. (4.16), which dictates constant block sizes.

The first two curves for γ < C and γ > C with only decreasing and only increasing sizes

overlap with the curve for γ ≈ C to compare the performances. The sub-block combining

algorithm with decreasing sizes closely approaches the bound set bu the source for values

of γ ≪ C. For γ ≫ C, the algorithm also performs close to the bound set by the channel

capacity, when increasing block sizes are used. Note that the algorithm with increasing and
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Figure 4.14: Detailed performance of the sub-block combining algorithm over the region
where γ≈C, also for a channel with capacity C=0.40 and message size K=240 bits. The
Fig. show a zoom in of the same plot of Fig. 4.13, where the curves are described in detail.
This Fig. highlights the significant improvements by the choice of block sizes that increase
and decrease, shown in the right of Fig. 4.11, respect to fixed but large block size of 30, and
the small gap between that choice and the optimal block sizes of one for all “leaf” sub-blocks.
.

decreasing block sizes outperforms only decreasing and only decreasing sizes in the overlap

region, which may be explained by slower increase and decrease sizes computed with a value

of γ closer to the channel capacity. The improved performance comes with an increase in

number of blocks, and associated complexity increase.

The simulation results of Fig. 4.12 show that the sub-block combining algorithm performs

very close the the bound set by the the source, in the region where γ ≪ C using decreasing

block sizes. With increasing block sizes, the performance is very close to the bound set by

the channel capacity in the region where γ ≫ C. Block sizes that increase and then decrease

size performs better over the region where γ ≈ C, but not as close to the bounds set by the

channel or the source. The block sizes in this region did not satisfy constraint (4.16).
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To better evaluate and understand the performance of the sub-block combining algorithm,

Fig. 4.13 provides three new curves, in addition to the independent sub-blocks curve of Fig.

4.4. The performance of the sub-block combining algorithm with the optimal size for γ = C,

the smallest possible constant block sizes Lj = 1, ∀j = 1, 2, . . . , N , where N = K = 240, is

shown by the orange line −□. This curve allows to evaluate the performance loss incurred

by block sizes that increase and then decrease to reduce the number of “leaf” sub-blocks. Fig.

4.14 shows a close up of the region γ ≈ C to better compare these two curves. The curves

show that the sub-block combining algorithm with increasing and decreasing block sizes

performs very close to the optimal block sizes. The performance of the sub-block combining

algorithm with 8 “leaf” sub-blocks of fixed size Lj = 30, j = 1, 2, . . . , 8 is shown by the

yellow curve with ◦ markers of Fig. 4.13. Note that this curve approaches the performance

of increasing sub-block sizes when γ approaches 1, but increasing block sizes performs much

better for smaller values of γ. To highlight the impact of combining the sub-blocks and

optimizing the block sizes together, the performance of independent sub-blocks with the

same increasing block sizes designed for the region with γ < C is shown with the blue line

−⋆. This curve shows that independent sub-blocks performs well for very small values of γ,

but the performance degrades rapidly as predicted by the analysis of 4.7, with a decoding

delay even above that of sub-block combining algorithm with equal sub-block sizes Lj = 30,

when γ > 0.30. The sub-block combining algorithm with sub-block sizes designed with

γ = 0.35 performs well over most of the region where γ < C.

4.12 Conclusion

This chapter introduces the sub-block combining algorithm that implements causal encoding

over the BSC with a sufficiently low complexity to allow for practical implementation. Causal

encoding treats the communication scenario where transmission begins before all message

bits are available. Message bits arrive at rate λ and codeword bits are transmitted at
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rate µ. When λ ≥ µ, then systematic posterior matching can achieve the best possible

performance. When λ < µ, this chapter proposes a sub-block combining algorithm that

provides an advantage over systematic posterior matching.

Breaking the message into sub-blocks enables efficient causal encoding without sacrificing

the performance of the original systematic posterior matching algorithm. Both algorithms

exhibit the same performance in the region γ ≥ 1 where a “systematically causal” encoder

suffices to efficiently used all the transmitted symbols, but the sub-block combining ap-

proach continues to provide excellent performance in the region where γ < 1, where the

‘systematically causal” encoder suffers a significant loss in rate.

The sub-block combining algorithm elegantly groups messages with equal posteriors, as

well as messages with different posteriors, into binary trees and lists of trees to keep the

complexity manageable. This chapter also analyzes the sub-block sizes that optimize the

decoding-time performance of the sub-block combining algorithm. The algorithm with sub-

block sizes designed specifically for each region or γ exhibits improved expected decoding

time as compared to algorithms with fixed sub-block sizes. The sub-block combining algo-

rithm outperforms independent encoding of sub-blocks even with optimized sizes. Thus it is

crucial to combine sub-blocks when their partitions include singletons. Lastly, the sub-block

combining algorithm may be a suitable design for settings other than “causal encoding,” and

one such setting is the sparse feedback problem discussed in Ch. 5.
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CHAPTER 5

Sparse Feedback Times

Consider the problem of communicating a K-bit message Θ through the BSC, where noiseless

feedback is available on demand, instead of after every transmitted symbol. The sparse

feedback times model is depicted in Fig. 5.1. At times t = 1, 2, . . . , τ . The encoder transmits

coded bits Xt to the decoder through BSC at at symbol times The decoder receives binary

symbols Y1, Y2, . . . that are noisy versions of X1, X2 where Pr(Yt = 1 | Xt = 0) = Pr(Yt = 0 |

Xt = 1) = p. A noiseless feedback channel is available to the receiver to send the the symbols

Y1, Y2, . . . back to the encoder where they may be used to encode future channel symbols

as in chapters 2-4. However, in contrast to chapters 2-4, the receiver wishes to limit the

number of times the feedback channel is used, and not the number of symbols transmitted

each time. Thus, the receiver may allow a few symbols to accumulate, and later send them

in packet

The decoder needs to produce an estimate Θ̂, of the transmitted message Θ, using the

received symbols, and the process ends at a stopping time τ when the receiver is sufficiently

confident of the estimate Θ̂. Let the total number of feedback packets be η, and let the times

feedback packets are transmitted be s1, s2, . . . , sη . Let Dl be the number of bits in the packet

transmitted at time t = sl, where s0 = 0, sη = τ and for each l = 1, . . . , τ Dl = sl − sl−1.

Let ϵ be a small threshold on the error probability, the sparse feedback times problem

consists of producing the estimate Θ̂ at the receiver, with bounded error probability: Pr(Θ̂ ̸=

Θ) < ϵ using the smallest possible average number of transmissions E[τ ] and average number

of feedback packets E[η].
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Source Encoder DMC Decoder

Delay

Θ Xsl+Dl
sl+1 Y sl+Dl

sl+1 Θ̂

Y
sl−1+Dl−1

sl−1+1

Figure 5.1: Sparse feedback times system model. The model is similar to the feedback com-
munication models of chapters 2 and 3, but the feedback symbols may be held at the receiver
for a few transmissions and then sent to the encoder in a packet Feedback transmissions hap-
pen at sparse times t = s1, s2, . . . , sη = τ , and each feedback transmission, at a time sl is a
packet size Dl, containing the symbols Ysl+1, Ysl+2, . . . , Ysl+Dl

, where sl+1 = sl +Dl.

5.1 Background

This chapter studies feedback communication with sparse feedback times for the same short

blocklength regime of chapters 2-4 where variable length transmission with feedback is rele-

vant. Practical communications systems that use feedback typically employ a hybrid ARQ

architecture [Ric94], [LMS07]. An initial packet is sent, with subsequent packets of incremen-

tal redundancy sent only when needed, based on the feedback. In contrast, many theoretical

studies consider systems with feedback after every symbol. Sparse feedback times have been

studied within the context of stop feedback, where only an ACK or NACK symbol is used

by the receiver to inform the transmitter when transmission should be terminated. In the

sparse feedback scheme studied in this dissertation, the feedback is more rich than a simple

ACK or NACK symbol, and communicates to the transmitter not only about when to stop

but also about what encoding will be most informative.

Sparse stop feedback schemes have been studied in many works. Polyanskiy et al. [PPV10]

introduced bounds for variable length stop feedback (VLSF) codes. Vakilinia introduced

sequential differential optimization (SDO) for sparse stop feedback in [VRD16]. See also

[YYK22] and [WWB18]. Yavas and Kostina [YKE24] developed achievability bounds for

VLSF codes as a function of the error probability, average decoding times and number of
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decoding attempts, for point-to-point, multiple access and random access channels. A bound

for a similar scheme over the Gaussian channel was also introduced by Yavas et al. [YKE21].

The sparse, rich feedback setting was recently studied by Chen et al. [CYK23], as a

bursty feedback scheme. As with SDO for stop feedback, in the setting studied by Chen

et al. the feedback times are selected from a fixed and finite set, where the next feedback

packet is only sent if it is needed to achieve reliable decoding. Chen et al. analyzed achievable

expected rate as a function of the error probability and the maximum number of feedback

times, and showed that their achievability rate bounds are higher than the bounds for stop

feedback by Polyanskiy et al. [PPV10] when a maximum of 3-5 feedback packets are allowed.

That is, a few sparse feedback times of rich feedback can facilitate higher rates that stop

feedback after every symbol. For example, in the very low error probability regime, of about

10−10, Chen et al. showed that sparse feedback with 5 rich feedback packets are sufficient

to outperform unlimited stop feedback over blocklengths of up to 400 bits. In contrast,

this chapter studies a potentially unlimited number of sparse feedback times for “posterior

matching” communication. Stochastic (rather than fixed) feedback times are selected to

guarantee an expected rate.

5.2 Contributions

This chapter proposes a version of “posterior matching” with stochastic feedback times, that

lifts the restriction of classic posterior matching, where every channel symbol sent from

the transmitter to the receiver is followed by a feedback symbol from the receiver to the

transmitter. The proposed “posterior matching” scheme allows the receiver to wait for a

few transmissions before sending the accumulated feedback symbols in a single packet The

encoder must encodes the symbols transmitted between two feedback packets using only the

feedback symbols received in previous feedback packets and these symbols may be transmit-

ted in a single forward packet To make the proposed “posterior matching” scheme feasible,
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this chapter introduces the “weighted median absolute difference” partitioning rule, a new

set of encoding constraints that are less restrictive and better suited for block transmissions.

The “weighted median absolute difference” rule guarantees a rate performance above one of

the lower bounds analyzed non-sparse “posterior macthing” from Ch. 3, given by Eq. (3.27).

This chapter provides the “look-ahead” implement sparse feedback times communication.

To enable the transmission of a packet of symbols, the “look-ahead” algorithm encodes a

few symbols in advance, which are guaranteed to satisfy the “weighted median absolute dif-

ference” encoding constraints. This chapter provides simulation results that show the the

sparsity performance of the “look-ahead” algorithm with a rate performance indistinguishable

from that of the systematic posterior matching algorithm of Ch. 2, which is above all the rate

bounds of Ch. 3. This chapter provides a version of the “sub-block combining” algorithm

adapted for sparse feedback communication. The complexity of the sparse “sub-block com-

bining” algorithm is much lower than that of the “look-ahead” algorithm, and performs well

at blocklengths of a few hundred bits, where the complexity of the “look-ahead” algorithm

makes it prohibitively expensive.

5.3 Organization

The remainder of this chapter is organized as follows: Sec. 5.4 describes the communication

approach by Naghshvar et al. in which the ”look-ahead” algorithm is based. Sec. 5.5

formally introduces the sparse feedback times problem addressed in this dissertation. Sec.

5.6 introduces the “weighted median absolute difference” rule and the “weighted median”

theorem. Sec. 5.7 introduces the “look-ahead” algorithm that implements sparse feedback

times communication using the “weighted median absolute difference” rule. Sec. 5.8 proves

the “weighted median” theorem that shows that the “weighted median absolute difference”

rule guarantees the same performance as Thm. 1. Sec. 5.9 describes the sparse feedback

times version of the “sub-block combining” algorithm of Ch. 4. Sec. 5.10 provides simulation
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results for the “look-ahead” and sparse “sub-block combining” algorithms and Sec. 5.11

concludes the chapter.

5.4 Communication Scheme by Naghshvar et al.

The sparse feedback encoding algorithm proposed in this dissertation implement the “poste-

rior matching” scheme proposed by Naghshvar et al. [NJW15] for general discrete memoryless

channels. A brief description of the scheme follows. Both encoder and decoder use the chan-

nel symbol sequence up to the current time t: Yt = Y1, Y2, . . . , Yt to compute the posterior

probability ρi(y
t) = P (θ = i | Y t = yt), introduced in Eq. (2.3), and log likelihood ratio

Ui(t) = log2

(
ρi(Y

t)
1−ρi(Y t)

)
, introduced in Eq. (2.19), for each possible input message i ∈ Ω. To

encode the symbol Xt+1 the encoder partitions the message space Ω into “bins”, one for each

possible input symbol, using a deterministic method known to the decoder. The encoder

then transmits the symbol of the bin containing the transmitted message θ. The process

terminates once a posterior crosses the threshold 1− ϵ and the message with this posterior

is selected as the estimate. The choice of deterministic partitioning determines the scheme’s

performance and thus is at the core of the scheme. For the BSC, Naghshvar et al. [NJW15]

proposed a partitioning algorithm that is described in chapter 2. For other channels Naghsh-

var et al. proposed the extrinsic Jensen-Shannon divergence as a metric to evaluate any set

of bin constructions. The “look-ahead” algorithm proposed in this dissertation borrows from

Naghshvar et al. the approach of using “bins” to encode a packet of symbols. The “look-

ahead” algorithm consists of deterministic method to construct the “bins” that guarantees a

rate performance, and this method is one of the main contributions of this chapter, along

with the sparse version of the “sub-block combining” algorithm.
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5.5 Sparse Feedback Times Problem

In the sparse feedback times model, the receiver may wait for a few symbols to accumulated

before sending feedback back to the encoder. Then, the received symbols that accumulated

between feedback transmissions are sent in a single packet The sparse feedbac times model

is depicted in Fig. 5.1. The time between feedback transmissions could be variable, just like

the block size. Let the feedback transmissions be at times t = s1, s2, . . . , sη, with s0 = 0

and sη = τ . Then, at every time t = sl+1 the receiver sends the feedback transmissions

corresponding to times sl +1, sl +2, . . . , sl+1, in a block of size Dl ≜ sl+1− sl, shown by the

block Y sl+Dl
sl+1

in Fig. 5.1.

The sparse feedback times communication problem consists of designing a variable length

coding scheme to transmit a K-bit message using the smallest expected number of channel

bits τ and the smallest expected number of feedback transmissions η that guarantees a frame

error rate FER bounded by a small threshold ϵ. Note that the expectations E [τ ] and E[η]

cannot be minimized at the same time. For instance, any forward error correction scheme

that guarantees the FER bound ϵ achieves E[η] = 0. However, as shown by Burnashev [Bur76]

feedback and variable rate coding lower the error exponent, which achieves a target FER

with a smaller E[τ ]. To formulate the communication problem the trade-off between E[τ ]

and E[η] needs to be established.

There are many ways to formulate the problem and establish the trade-off between E[τ ]

and E[η]. A natural approach is using Lagrange multipliers, in which an expression of the

form E[τ ]+λE[η] is minimized for some λ. The value of λ could represent the channel access

cost, in transmission bits. However, even minimizing E[τ ] is an integer programming problem

whose solution is not yet known. The approach to the sparse feedback times problem in this

dissertation consists of designing a scheme that aims to minimize E[η] while attaining the

expected block-length E[τ ] that satisfies the bound from (3.27). Suppose the bound on E[τ ]
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is τB, then the sparse feedback times problem can formulated follows:

minimize E[η] (5.1)

subject to: E[τ ] ≤ τB, Pr(θ̂ ̸=θ) ≤ ϵ (5.2)

Sparsity Constraint: X
sl+1

sl+1 = F(θ,y
sl
1 ) . (5.3)

The sparsity constraint restricts the encoder to encode symbols Xsl+2, Xsl+3, . . . , Xsl+1
with-

out using the feedback symbols Ysl+1, Ysl+2, . . . , Ysl+1−1 not yet re-transmitted by the decoder.

The challenge is to find an encoding function that guarantees that constraints (5.2) and (5.3)

are satisfied and seeks to maximize sparsity in the feedback transmission times.

5.6 The “Weighted Median Absolute Difference” Rule

The next theorem relaxes the tolerance in the difference of sums (3.32), sufficient to guarantee

constraints the rate the bound on E[τ ] in Eq. (3.27).

Theorem 6: The “Weighted Median” partitioning. At each time t let S0 and S1 be a

binary partition of Ω. Let P0 ≜ Pr(θ ∈ S0 | Y t = yt) =
∑

i∈S0
ρi(y

t), P1 ≜ Pr(θ ∈ S1 | Y t =

yt) =
∑

i∈S1
ρi(y

t) and let ∆ ≜
∑

i∈S0
ρi(y

t) −
∑

i∈S1
ρi(y

t), defined exactly as in chapter 2.

Since P0 + P1 = 1, then P0 = 1+∆
2

and P1 = 1−∆
2

. Let {o1, . . . , oM} be an ordering of the

vector of posteriors such that ρo1(t) ≥ ρo2(t) ≥ · · · ≥ ρoM (t), and let m be the index of the

“weighted median” posterior defined by:

m−1∑
i=1

ρoi(y
t) <

1

2
≤

m∑
i=1

ρoi(y
t) . (5.4)

Suppose that at every time t the “weighted median” absolute difference partitioning rule is
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satisfied, along with the singleton rule (3.33) given by ρi(y
t) ≥ 1

2
=⇒ S0 = {i} or S1 = {i}:

“Weighted median” absolute difference rule: ∆2 ≤ 2

5
ρom(y

t) (5.5)

Then, the constraints (3.22) (3.23) (3.24), (3.25) and (3.26) of Thm. 1 are satisfied, and

expected decoding time E[τ ] is upper bounded by bound (3.27). The proof is in Sec. 5.8

Rule (5.5) offers two significant advantages over SEAD and SED: the first is a larger

tolerance on ∆, for most times sl, since
√

2
5
ρom(y

t) is often much larger than ρom(y
t). The

second advantage is that the bound on ∆ does not depend on which items are in S0, which

allows to allocate items to S0 and S1 to tune ∆ without affecting the tolerance, unlike SED

and SEAD in (2.9), (3.32) where changes in the partitioning cause changes in the tolerance.

5.7 The “Look-Ahead” Algorithm

The “look-ahead” algorithm is a method to design the partitions S0 and S1 for the next few

transmissions sl+1, sl+2, . . . , sl+Dl for some Dl, based only on the feedback symbols Y sl
1

received up to time t = sl. The “look-ahead” algorithm needs to guarantee that constraint

(5.5) is satisfied at each t=sl+1, sl+2, . . . , sl+Dl, for the already received sequence ysl and for

each future possible extension sub-sequence Y sl+j
sl+1 , j = 1, 2, . . . , Dl − 1. The key challenges

that the “look-ahead” algorithm faces and the methods to overcome these challenges are

described next.

First note that at any time t = sl, only a few Dl values might be feasible, thus, a feasible

value must be found before designing the partitions. Binary partitioning with Dl = 1 is

always feasible as shown in chapter 3, and methods to construct binary partitions are shown

in chapter 2, like the SED apgorithm by Naghshvar et al. [NJW15] or the thresholding of

ordered posteriors. Second, the algorithm must always converge to a solution in a finite

number of steps, preferably a small number. For this reason, a single attempt for a given
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Dl will be executed, and upon failure, the value of Dl will be reduced by one before trying

again. This procedure could fall back to the non-sparse two way partitioning where Dl = 1.

Third, if S0 and S1 are fixed for the next times t = sl + 1, sl + 2, . . . sl +Dl − 1, then each

future ρom(y
t) and ∆ is a random function of Ysl+1, Ysl+2, . . . , Ysl+Dl−1, the future received

symbols. The “look-ahead” algorithm needs to guarantee that the pair ρom(yt) and ∆ satisfies

constraint (5.5) at the current time sl any any future time up to sl +Dl − 1.

To overcome these challenges, the “look-ahead” algorithm proceeds as follows: let the 2Dl

“bins” at time t = sl, be Ek, k = 0, 1, . . . , 2Dl−1 and define “bin” posteriors PEk , δk, and δmax

by:

PEk ≜
∑
i∈Ek

ρi(y
sl), δk≜PEk−2−Dl, δmax≜max

k
{|δk|}, (5.6)

where 2−Dl is the target posterior for each bin. To overcome the uncertainty on ρom(y
t) and

guarantee that constraint (5.5) on ∆ is satisfied at future time t = sl+1, sl+2, . . . , sl+Dl−1

the algorithm finds a lower bound ρmin
om (yt) on ρom(y

t) that is used to compute an upper bound

∆max on ∆ for each future time up to Dl − 1. The method to find ∆max and a feasible D

from an initial D is described next, and is also described in Algorithm 8. The “look-ahead”

algorithm then uses ∆max to determine δmax the largest difference δk between the posterior PEk

and the target 2−Dl . Note that at each time sl+j, j = 0, 1, . . . , Dl−1 each set Sx, x ∈ {0, 1}

collects the half of “bins” whose label has x at entry j, Then, ∆ at time sl + j is given by:

|∆| = |
∑
Ek∈S0

δk −
∑
Ek∈S1

δk| ≤ 2Dlδmax (5.7)

Since ρom(y
t+1) depend on ∆ at time t, an initial ∆′

max is used to compute ρmin
om (yt), and then

bounds ∆max on ∆ and δmax on each δk, t = sl, sl + 1, . . . , sl +Dl − 1 are obtained via:

∆max≜min{∆′
max,

√
2

5
ρmin
om (yt)}, δmax≜∆max2

−Dl (5.8)
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Figure 5.2: Left: Construction of the 16 “bins” used by the “look-ahead” algorithm to deter-
mine the partitions S0 and S1 in advance for the next four transmissions. The partitions for
the lth next transmission are shown by (S

(l)
0 , S

(l)
1 ), l = 1, 2, 3, 4. The equal diameters of the

green circles represents the case where posteriors PEk of each “bin” are equal. Right: The
same partitions in the left, with the diameters modified to represent the posteriors after the
receiver sees the next three transmissions that arrive at the receiver. For this example, the
receiver sees three zeros. Note that the sets (S

(4)
0 , S

(4)
1 ) must satisfy the “weighted median”

rule, even after the posterior updates shown at the right side. This is easily satisfied in
the illustration because the original bins have exactly the same probability, but in actual
operation the bins will typically not be equal and the “weighted median” rule guides how
different the bin probabilities can be.

The method to compute ρmin
om (yt) follows. Let xDl

1 (k) be the label of bin Ek, and let

Zk ≜
∑j

l=1 Y
sl+j
sl+1 ⊕ xDl

1 (k). At each time t = sl+j the posterior ρi(y
t) for i ∈ Ek will be:

ρi(y
sl+j)=

Pr(Y sl+j
sl+1=ysl+jsl+1

|Y sl =ysl ,θ= i)ρi(y
sl)∑2Dl−1

k=0 Pr(Y sl+j
sl+1=ysl+jsl+1

|Y sl =ysl ,θ∈Ek)PEk

≥ 2jqj−zkpzkρi(y
sl)

1+∆min

≥ 2jqj−zkpzkρi(y
sl)

1+∆′
min

, (5.9)

where (5.9) follows since {Y sl = ysl} determines the partitions Ek, k = 0, 1, . . . , 2Dl − 1 and

{θ ∈ Ek} sets Xsl+j
sl+1 = xj

1(k). The proof of inequality (5.9) is in 5.8. A bound ρmin
om (yt) could
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just be the smallest item on any collection C ⊂ Ω such that
∑

i∈C ρi(y
t) ≥ 1/2. However, the

largest possible lower bound ρmin
om (yt) is desired, for which the collection C is found using the

items with largest posterior from only the “bins” Uk with larger qj−zkpzk . While the “bins”

with larger qj−zkpzk values are unknown, the number of bins sharing each value of zk at time

t = sl + j is known, and is given by 2Dl−j
(
j
zk

)
“bins”. Thus a value of h, and a maximum zk

are chosen first, and then a value γ is found, such that:

γ2−Dl

h∑
zk

2Dl−j

(
j

zk

)
2jqzkpj−zk ≥ 1

2
(1 + ∆′

max) . (5.10)

Now suppose that the posteriors in each bin Ek are ordered such that ρoki (y
sl) is the i-th

largest posterior in Ek, and let ρokγ (y
sl) be the value of the posterior ρokn(y

sl) such that:

n−1∑
i=1

ρoki (y
sl) < γ2−Dl ≤

n∑
i=1

ρoki (y
sl) . (5.11)

Then, a candidate bound ρmin
om (yt) on ρom(y

t) at time t = sl+ j is given by the smallest value

of ρokγ (y
sl), with the worst coefficient qj−hph, given by:

ρmin
om (ysl+j) ≜ 2j−hph min

k=0,1,...,2Dl−1
{ρokγ (y

sl)} (5.12)

Two steps can help keep the right side of (5.12) as large as possible. The first is by making

the smallest ρokγ (y
sl) the largest possible, and the second is choosing the best possible value

of h. The method to make the smallest ρokγ (y
sl) as large as possible for a fix γ follows. Let

ρoγ (y
sl) be defined in the same manner as ρom(y

sl) from (5.4), but using γ instead of 1
2

as

follows:

ρoγ (y
sl) ≜ ρok(y

sl) s.t.
k−1∑
i=1

ρoi(y
sl)<γ≤

m∑
i=1

ρoi(y
sl) . (5.13)

If the items i with ρoi(y
sl) ≥ ρoγ (y

sl) are distributed evenly across all the “bins,” then all bins
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will contain at exactly γ2−Dl and at least one bin will contain an item i with ρi(y
sl) = ρoγ (y

sl).

Since the “bins” contain an integer number of items, this might not be possible. However, a

bin may be allowed to cross γ2−Dl only when the next largest item we allocate does not fit

in any other “bin,” until each bin crosses γ2−Dl . Only then the smaller items are allocated

in any order. At this point it still remains to guarantee that each δk ≤ δmax, otherwise the

partitioning fails.

The method to choose appropriate values of h and γ is described next. Instead of choosing

h and computing γ, the value of γ is chosen first, and is used to find the smallest h that

satisfies (5.10). The smallest the value of γ, the larger the value of h. Note that γ must be

greater than 1
2
, which can by cancelling the powers of 2 in Eq. (5.10). Also note that zk ≤ j

since the received sequence can differ from a partial label by no more than the number j of

entries in the partial label. And since

j∑
zk

(
j

zk

)
qzkpj−zk = 1 , (5.14)

then γ ≥ 1
2
(1 + ∆max) for any ∆max. Using this, the “weighted median” posterior ρom(ysl) is

found first and is used to compute a tentative ∆′
max via (5.5). Since each bin Ek must have

a posterior PEk such that PEk ≥ 2−Dlγ, then each δk mus also satisfy δk ≤ 2−Dl(1− γ), and

thus ∆′
max ≤ (1− γ). Once the value of γ and a tentative ∆′

max are obtained, they are used

to find the smallest h that satisfies (5.10), and then h is used to compute the lower bound

ρmin
oγ (ysl+j) on ρoγ (y

sl+j) via equation (5.12). This process is then repeated We using the

next posterior smaller than ρoγ (y
sl). If the resulting lower bound ρmin

oγ (ysl+j), is larger than

the previous value, then then new value is preserved and the process is repeated. The search

for the largest ρmin
oγ (ysl+j) terminates when the most recently computed value is smaller than

the previous value. Note that many posteriors share the same value, and since they are kept

together in a group, as was done in systematic posterior matching algorithm of chapter 2,

then each different posterior value ρoi(y
sl) ≥ ρom(y

sl), shared by an entire group, is only
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tested once. This makes the search for an appropriate ρmin
oγ (ysl+j) very fast. In practice,

the complexity of this search is negligible compare to actually designing the partitions after

finding ρmin
oγ (ysl+j). Algorithm 9 describes the method to construct 2Dl bins given a sorted

list of groups, a tentative D and a bound δmax on the absolute difference between the bin

posteriors PEk and the target 2−D for each bean Ek.

An example that highlights the advantage of the “weighted median” absolute difference

used by the “look-ahead” algorithm is provided in Fig. 5.2. To the left, the Fig. shows the

construction of 16 bins that define the partitions S0 and S1 for the next four transmissions.

For the first transmission S
(1)
0 is comprised by the “bins” in the first and third rows and S

(1)
1

by the bins in the second and fourth rows. For the second transmission S
(2)
0 is comprised by

the first and third columns and S
(2)
1 by the second and fourth columns. The last transmission,

S
(4)
0 is comprised by the first and second column and S

(4)
1 by the third and fourth columns.

However, just before the fourth transmission the posterior of each bins will be different, see

right side of Fig. 5.2. Note that S
(4)
0 and S

(4)
1 each will contain one of the smallest updated

bins, see green bins with weight 23p3

1+δmax
. The partitioning rules of chapter 2 must use the

smallest item in S
(4)
0 , which may have been attenuated by a weight approximately 23p3

1+δmax
.

The “weighted median” absolute difference rule allows to tune the posteriors of S(4)
0 and S

(4)
1

using the “weighted median” posterior that may lower bounded using the posteriors in bins

updated with larger weights of about 23q2p
1+δmax

.

5.8 Proof of Thm. 6: The Weighted Median Partitioning

To prove Thm. 6 it suffices to show that the “weighted median” absolute difference rule (5.5)

guarantees that constraint (3.26) is satisfied. The proofs of chapter 3 show that |∆| ≤ 1/3

suffices to guarantee constraint (3.22), which may be trivially extended to the any value

allowed by rule (5.5). The other constraints (3.24) and (3.25) are satisfied by the singleton

rule (3.33), which is also proved in chapter 3. The proof consists of finding a lower bound on
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E[Uθ(t+1)−Uθ(t)|Y t= yt] that is a function of only ∆ and ρom(y
t), and then showing that

the lower bound satisfies (5.15) whenever (5.5) is satisfied. Intermediate expressions, where

each lower bounds the previous one, are used in the proof and the last expression will be a

function of only ∆ and ρom(y
t).

Proof Thm. 6 The “Weighted Median” partitioning constraint. Need to show that:

∆2≤ 2

5
ρom(y

t) =⇒ E[Uθ(t+1)−Uθ(t)|Y t=yt] ≥ C (5.15)

To start, E[Uθ(t+1)−Uθ(t)|Y t=yt] is expanding using the definition as follows:

E[Uθ(t+ 1)− Uθ(t)|Y t = yt] =
∑
i∈Ω

ρi(y
t)E[Ui(t+1)−Ui(t)|Y t=yt, θ= i] (5.16)

=
∑
i∈S0

ρi(y
t)E[Ui(t+1)−Ui(t)|Y t=yt, θ= i]

+
∑
i∈S1

ρi(y
t)E[Ui(t+1)−Ui(t)|Y t=yt, θ= i] (5.17)

The next few steps consist of expressing the random variable Ui(t+1) as Ui(t)+C+f(Y t+1),

where Ui(t) cancels with−Ui(t). First the expectation is written in terms of ρi(t) and ρi(t+1),

using the definition of Ui(t). From Eq. (2.6) ρi(t+ 1) is given by:

ρi(y
t+1) =

Pr(Yt+1 = yt | θ = i, Y t = yt)ρi(y
t)∑

j∈Ω Pr(Yt+1=yt+1 | θ = j)ρj(yt)
(5.18)

=
Pr(Yt+1 = yt | θ = i, Y t = yt)ρi(y

t)∑
Pr(

j∈Syt+1

Yt+1=yt+1 | θ=j)ρj(yt)+
∑

Pr(Yt+1
j∈Ω\Syt+1

=yt+1 | θ=j)ρj(yt)
. (5.19)

Since Xt+1 = 1θ∈S1 , the indicator of the set containing θ, then:

j ∈Syt+1 =⇒ Pr(Yt+1=yt+1 | Y t=Y t, θ=j) = q

j ∈Ω \ Syt+1 =⇒ Pr(Yt+1=yt+1 | Y t=Y t, θ=j) = p
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Then:

ρi(y
t+1) =

Pr(Yt+1 = yt | θ = i, Y t = yt)ρi(y
t)

q
∑

j∈Syt+1
ρj(yt) + p

∑
j∈Ω\Syt+1

ρj(yt)
(5.20)

When i ∈ S0 and Yt+1 = 0 then:

ρi(y
t+1) =

qρi(y
t)

P0q+P1p
=

qρi(y
t)

1
2
+∆(q−p)

2

=
2qρi(y

t)

1+∆(q−p)
. (5.21)

When i ∈ S0 and Yt+1 = 1 q is replaced with p in the top of (5.21) and the sign of ∆ in

the bottom becomes negative. When i ∈ S1 and Yt+1 = 1 only the sign of ∆ in the bottom

changes and for i ∈ S1 and Yt+1 = 0 the only change is that q is replaced with p in the top.

For i ∈ S0, the expectation E[Ui(t+1) | Y t= yt, θ= i ∈ S0] is expanded using the definition

(2.19) of Ui(t) to obtain:

E[Ui(t+1) | Y t=yt, θ= i ∈ S0]=q log2

2qρi(y
t)

1+∆(q−p)

1− 2qρi(yt)
1+∆(q−p)

+p log2

2pρi(y
t)

1−∆(q−p)

1− 2pρi(yt)
1−∆(q−p)

.

If i ∈ S1 then, only the sign of ∆ changes. Let ιi be 1 if i ∈ S0 and −1 if i ∈ S1, that

is: ιi = 1i∈S0 − 1i∈S1 . Note that the numerators q log2(2qρi(y
t)) and p log2(2pρi(y

t) may be

decomposed into 1+ q log2(q)+p log2(p)+ log2(ρi(y
t), and note that the first three terms are

exactly the channel capacity C. Next subtract Ui(t) = log2(ρi(y
t))− log2(1− ρi(y

t)), which
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is a constant given Y t, and note that the two terms log2(ρi(y
t) vanish, to obtain:

E[Ui(t+1)−Ui(t) | Y t=yt,θ= i] =q log2

2qρi(y
t)

1+∆(q−p)

1− 2qρi(yt)
1+∆(q−p)

+p log2

2pρi(y
t)

1−∆(q−p)

1− 2pρi(yt)
1−∆(q−p)

(5.22)

=C+ log2(ρi(y
t))−Ui(t)− log2(1−ρi(yt)) + log2(1−ρi(yt)) (5.23)

− q log2
(
1−ρi(yt)+(q−p)(ιi∆−ρi(yt)

)
− p log2

(
1−ρi(yt)−(q−p)(ιi∆−ρi(yt)

)
(5.24)

= C − qlog2

(
1+(q−p)ιi∆−ρi(y

t)

1− ρi(yt)

)
− p log2

(
1−(q−p)ιi∆−ρi(y

t)

1−ρi(yt)

)
(5.25)

≥ C − log2

(
1 + (q−p)2 ιi∆− ρi(y

t)

1− ρi(yt)

)
. (5.26)

In (5.25) the argument of the logs are divided by 1− ρi(y
t) to account for the term log2(1−

ρi(y
t)) and combine all the logs and in (5.26) Jensen’s inequality is used over over p and q

to lower bound (5.25).

From (5.26) the following inequality is obtained:

M∑
i=1

ρi(y
t)E[Ui(t+1)−Ui(t) | Y t, θ= i] ≥ C−

M∑
i=1

ρi(y
t) log2

(
1+(q−p)2 ιi∆−ρi(y

t)
1−ρi(yt)

)
. (5.27)

The rest of the proof consist showing that the sum in the right of (5.27) is non-negative when

∆ satisfies rule (5.5). Let δ be twice the amount that the c.d.f., evaluated at the median

ρom(y
t), exceeds half, and let R ∈ [0, 1] be the fraction of posteriors greater than ρom(y

t)

that are assigned to S0:

1

2
≤

m∑
i=1

ρoi(y
t) =

1 + δ

2
≤ 1 + ρm(y

t)

2
(5.28)

R
1 + δ

2
=
∑
i∈S0

ρi(y
t)1[ρi(yt)≥ρom (yt)] . (5.29)

Then, the sum of posteriors at or above ρom(y
t) is at least 1+δ

2
. The next step consist of

lower bounding the sum in the right of (5.27) by an expression independent of i, that is, a
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function of ∆, ρom(y
t), δ, R. There are two expressions to consider, first ∆−ρi(y

t)
1−ρi(yt)

for the case

that ι = 1 and second −∆−ρi(y
t)

1−ρi(yt)
for the case that ι = −1. Depending on whether i ∈ S0 or

i ∈ S1 and whether ρi(y
t) is at least ρom(y

t) or smaller than ρom(y
t), one of the following

four bounds will apply:

ρi(y
t) ≥ ρom(y

t) =⇒ ∆− ρom(y
t)

1− ρom(y
t)
≥ ∆− ρi(y

t)

1− ρi(yt)
(5.30)

ρi(y
t) ≥ ρom(y

t) =⇒ −∆−ρom(y
t)

1− ρom(y
t)
≥ −∆− ρi(y

t)

1− ρi(yt)
(5.31)

ρi(y
t) < ρom(y

t) =⇒ ∆ ≥ ∆− ρi(y
t)

1− ρi(yt)
(5.32)

ρi(y
t) < ρom(y

t) =⇒ −∆ ≥ −∆− ρi(y
t)

1− ρi(yt)
(5.33)

In the next steps, the following posteriors will be replaced by their equivalent expressions,

in terms of ∆, δ and R.

Pr{i∈S0 : ρi(y
t) ≥ ρom(y

t)} = R
1 + δ

2
(5.34)

Pr{i∈S0 : ρi(y
t) < ρom(y

t)} = 1 +∆

2
−R

1 + δ

2
(5.35)

Pr{i∈S1 : ρi(y
t) ≥ ρom(y

t)} = (1−R)
1 + δ

2
(5.36)

Pr{i∈S1 : ρi(y
t) < ρom(y

t)} = 1−∆
2
−(1−R)

1+δ

2
(5.37)

The bound (5.30) will be used for the set {i ∈ S0 : ρi(y
t) ≥ ρom(y

t)} in (5.34), the bound

(5.31) will be used for the set {i∈S0 : ρi(y
t) < ρom(y

t)} in (5.35), the bound (5.32) will be

used for the set {i∈S1 : ρi(y
t) ≥ ρom(y

t)} in (5.36), and the bound (5.33) will be used for
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the set {i∈S1 : ρi(y
t) < ρom(y

t)} in (5.37). The sum in (5.27) is lower bounded by:

−
M∑
i=1

ρi(y
t) log2

(
1+(q−p)2 ιi∆−ρi(y

t)
1−ρi(yt)

)
≥−R 1+δ

2
log2

(
1+(q−p)2∆−ρom (yt)

1−ρom (yt)

)
−
(
1+∆
2
−R 1+δ

2

)
log2

(
1+(q−p)2∆

)
− (1−R)1+δ

2
log2

(
1+(q−p)2−∆−ρom (yt)

1−ρom (yt)

)
−
(
1−∆
2
−(1−R)1+δ

2

)
log2

(
1−(q−p)2∆

)
(5.38)

≥− log2
(
1− 1

2
(q−p)2f(∆, R, δ, ρom(y

t))
)
, (5.39)

where inequality (5.39) follows by applying Jensen’s inequality over the “weights” in (5.34),

(5.35), (5.36), (5.37). The terms with ∆ and with ±∆−ρom (yt)
1−ρom (yt)

are collected next to obtain:

∆(−(1+∆)+R(1+δ)+(1−∆)−(1−R)(1+δ)) (5.40)

= ∆((1− 1−∆−∆)− (1−R−R)(1 + δ)) (5.41)

= ∆(−2∆ + (1− 2R)(1 + δ)) (5.42)

1+δ

1− ρom
(R(ρom(y

t)−∆)+(1−R)(∆+ρom(y
t))) (5.43)

=
∆(1 + δ)(1− 2R)

1− ρom(y
t)

+
ρom(y

t)(1 + δ)(1−R +R)

1− ρom(y
t)

(5.44)

=
(1 + δ)(∆(1− 2R) + ρom(y

t))

1− ρom(y
t)

(5.45)

f(∆,R, δ, ρom(y
t)) =

∆(1−2R)(1+δ) + ρom(y
t)(1+δ)

1−ρom(yt)

−∆(2∆− (1− 2R)(1 + δ)) . (5.46)

The proof now reduces to show that f(∆, R, δ, ρom(y
t)) is non negative when ∆ satisfies

(5.5). This only requires that the following inequality holds:

ρom(y
t)(1+δ) ≥ 2∆2(1−ρom(yt))−∆ρom(y

t)(1−2R)(1+δ) (5.47)
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To remove the dependency on R in (5.47), the worst case scenario value of ∆(1 − 2R) is

considered. For ∆ > 0 this happens at R = 1 and for ∆ ≤ 0 at R = 0, so that the expression

with ∆ is always negative. Let α = |∆| and set ∆(1− 2R) = α, then need:

ρom(y
t)(1 + δ)(1− α) ≥ 2α2(1− ρom(y

t)) (5.48)

Since 0 ≤ δ ≤ 1, and 0 < (1− α) < 1, let δ = 0 for a bound:

ρom(y
t)(1− α) ≥ 2α2(1− ρom(y

t)) (5.49)

Let α2 be bounded by a linear function of ρom(y
t) of the form α2 ≤ a

2b
ρom(y

t) for some

0 ≤ a
2b

< 1. Then it is also required that:

ρom(y
t)(1− α) ≥ a

b
ρom(y

t)(1− ρom(y
t)) (5.50)

α ≤ b− a

b
+

a

b
ρom(y

t) (5.51)

To complete the proof it suffices to show that inequalities 5.50,(5.51) hold for any α2 ≤
a
2b
ρom(y

t) with a = 4 and b = 5, where a
2b

= 2
5
. For a = 4 and b = 5 then:

α ≤ 1

5
+

4

5
ρom(y

t) (5.52)

Let ρom(y
t) ≤ 1

10
then α2 ≤ 2

5
ρom(y

t) =⇒ α ≤ 1
5
. Now let 1

10
≤ ρom(y

t) ≤ 49
250

so that

α2 ≤ 49
625

=⇒ α ≤ 7
25

. On the right side pick the smallest ρom(y
t) = 1

10
to obtain:

α ≤
1 + 4 1

10

5
=

7

25
(5.53)

To show that (5.50),(5.51) hold for any ρom(y
t) ∈ [0, 1] the previous steps may be repeated

with ρom(y
t) ∈ [rj, rj+1] for rj = 49

250
, 5
18
, 2
5
, 5
8
, 3
4
, 1. This completes the proof that α2 ≤

2
5
ρom(y

t) suffices to satisfy inequality (3.26).
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Proof of inequality (5.9). To proof inequality (5.9) the expression for ρi(y
sl+j) is first trans-

formed into a function of ρi(ysl), the Hamming distance zsl,j(i) between the label of the bin

containing i and the feedback symbol ysl+jsl+1
and the bin posteriors at time t = sl and the bin

probabilities ρEk(ysl). Then the resulting expression is lower bounded by an upper bound on

the bin probabilities in the denominator as follows:

ρi(y
sl+j) = Pr(θ= i |Y sl+j

1 =ysl+j1 ) =
Pr(θ= i, Y sl+j

1 =ysl+j1 )

Pr(Y sl+j
1 =ysl+j1 )

=
Pr(Y sl+j

sl+1=ysl+jsl+1
|Y sl =ysl ,θ= i)ρi(y

sl)∑
r∈Ω

Pr(Y sl+j
sl+1

=ysl+jsl+1
|Y sl =ysl,θ=r)ρr(ysl)

=
qj−zsl,j(i)pzsl,j(i)ρi(y

sl)

2Dl−1∑
k=0

qj−zsl,j(Ek)pzsl,j(Ek)ρEk(y
sl)

(5.54)

=
qj−zsl,j(i)pzsl,j(i)ρi(y

sl)

2Dl−1∑
k=0

qj−zsl,j(Ek)pzsl,j(Ek)(2−Dl + δk)

(5.55)

≥ qj−zsl,j(i)pzsl,j(i)ρi(y
sl)

2Dl−1∑
k=0

qj−zsl,j(Ek)pzsl,j(Ek)2−Dl(1+∆max)

(5.56)

=
qj−zsl,j(i)pzsl,j(i)ρi(y

sl)
Dl∑
k=0

(
j
k

)
qj−kpk2−j(1+∆max)

(5.57)

=
2jqj−zsl,j(i)pzsl,j(i)ρi(y

sl)

1+∆max

. (5.58)

In (5.55) the definition of δk = ρEk(y
sl) − 2−Dl is used, and inequality (5.56) follows from

(5.8): via 2−Dl∆max = maxj{δj} ≤ δk. The proof is complete.
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Algorithm 8: D,∆max = computeDelta(D,G)

Input: List of Groups G = {G0, . . . ,GK+ns} ▷ ns: Number of new groups
Input: block size D ▷ number of bins: 2D

Output: Sets S0, S1, S2, . . . , S2D−1 that partition G
target← 2−D ▷ Desired probability volume per bin
S0, S1, . . . , S2D−1 ← ∅ ▷ Initialize bins to empty
m← 0, cdf ← 0 ▷ m: Index of first group in G
while cdf +Nmρm < 1

2
do

cdf ← cdf +Nmρm(t) ▷ Nm, ρm ∈ Gm
m← m+ 1 ▷ Increase group index m

end
∆temp = −1, ∆ = −2, thd← 1
while ∆max < ∆temp do

∆max ← ∆temp, ∆temp ← 2×cdf−1
2×cdf+1

s← 1 ▷ Need: 1−∆′

1+∆′ s× cdf ≥ 1
2

for a = 0, . . . , D − 1 do
W ′ ← (2q)a(2p)D−a−1

∆′ ← min{2s×cdf−1
2s×cdf+1

,
√

2
5
ρm(t)W ′}

W a
m ←

(2q)D−a(2p)a−1

1+∆′

∆′ ← min{∆′,
√

2
5
ρm(t)W a

m}
if ∆′ < ∆temp then

thd← 2−Dcdf
break

end
∆temp ← ∆′

s← s−
(
D−1
a

)
qapD−1−a

end
cdf ← cdf +Nmρm(t)
m← m+ 1

end
if ∆max < 0 then

D ← D − 1
Repeat process

end
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Algorithm 9: (S0, S1, S2, . . . , S2D−1) = PartitionGroups(G)

Input: List of Groups G = {G0, . . . ,GK+ns} ▷ ns: Number of new groups
Input: block size D, threshold δmin ▷ The number of bins is 2D

Output: Sets S0, S1, S2, . . . , S2D−1 that partition G
target← 2−D ▷ Desired probability volume per bin
S0, S1, . . . , S2D−1 ← ∅ ▷ Initialize bins to empty
δ0, δ1, . . . , δ2D−1 ← target ▷ Initialize bins to empty
cdf ← 0 ▷
m← 0 ▷ Index of first group in G
ρs ← ρm ▷ Initial median
temp← G0
for s = 1, . . . , D − 1 do

f0, f1, . . . , f2D−1 ← False ▷ Flag items passed threshold
while crossBins > 0 do

Distribute items evenly across bins
for j = 0, . . . , 2D − 1 do

if f0 and Pj > thds then
fj ← True ▷ Avoid double counting bins
ρs ← min{ρs,W+

s · temp→ ρ(yt)} ▷ min possible next median
crossBins← crossBins− 1

end
end
temp← temp→ Next ▷ Move to next item

end
end
f0, f1, . . . , f2D−1 ← False ▷ Flag items passed threshold
while True do

Distribute items evenly across empty bin space
temp← temp→ Next ▷ Move to next item
for i = 0, . . . , 2D − 1 do

if P (Si) ≥ 2−D then
fi = 1 ▷ Set bin j to done

end
end

end
for i = 0, . . . , 2D − 1 do

Assert | P (Sj)− 2−D |≤ 2−Dδmin

end
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5.9 The Sparse “Sub-block Combining” Algorithm

This section explores a variant of the sub-block combining algorithm as a sparse feedback

encoder. The “look-ahead” algorithm allows to enforce constraints that guarantee the rate

performance of sequential SPM algorithm with significant feedback sparsity. However, the

complexity of partitioning with the “look-ahead” algorithm increases exponentially with the

delay factor D. This is because the number of partitions, or bins, built before each block

transmission is given by 2D. This exponential complexity limits further sparsity. One method

that would allow to reduce the complexity, or keep increasing the sparsity as the message

length grows, is to segment the message and operate on two segments at the same time. This

approach is not unlike the “sub-block combining” algorithm of 4. This dissertation proposes

to modify the “sub-block combining” algorithm to operate in all sub-blocks simultaneously,

for as long as permitted by system constraints. This modification results in a sparse “sub-

block combining” algorithm.

The sparse “sub-block combining” algorithm segments the message into an initial number

Dl = D0 of pieces, (usually the same size, but not necessary), and constructs a posterior

matching system for each message segment. The transmitter sends one symbol per message

segment, and the feedback symbols are stored at the receiver until the symbol for the last

segment is received. Then, all Dl feedback symbols are sent back to the transmitter, and the

process repeats. For each sub-block system j, encoder and decoder partition the candidate

segments into two sets, S(j)
0 and S

(j)
1 , j = 1, 2, . . . , Dl, according to some partitioning rule.

This is done before transmitting the first symbol Xsl of the Dl symbols Xsl , Xsl+1, . . . , Xsl+Dl
.

If the partitioning rule cannot be satisfied, pairs of sub-blocks are combined into a single

larger sub-block, not unlike the “causal” version of the algorithm. However, it is not neces-

sary to maintain the segments in order. The algorithm can choose the pairs to maximize

the probability that the partitioning rule is satisfied with the minimum number of pair com-

binations. The number Dl+1 of blocks that remain when the partitioning rule is satisfied,
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depends on the state of the system, and the partitioning rule itself.

The partitioning rule that the sparse “sub-block combining” algorithm enforces could

be selected to satisfy the “Weighted Median partitioning” constraint that guarantees the

same rate performance that the non-sparse SPM algorithm guarantees. For this rule, a

bound on the “weighted median” needs to be computed. An outline of the procedure to

determine the balance of the partitions follows: First find a worst-case-scenario update

on each previous block and compute the corresponding “weighted median” value within each

partition S
(j)
0 , S

(j)
1 . Compute the overall “weighted median” as the product of all the “weighted

medians” of each sub-block, and use it to compute an initial ∆′. Then, use the initial ∆′

to estimate a lower bound on the update coefficient of each “weighted median, and use it to

compute a new estimate ∆. Finally, select the minimum between ∆′ and ∆ to determine

the maximum difference between the partitions at each sub-block.

The sparse “sub-block combining” algorithm has advantages and disadvantages. The main

advantage is the lower complexity. Only two partitions, or “bins” are needed for each sub-

system. To transmit Dl bits, the sparse “sub-block combining” needs to construct 2 partitions

per sub-block, for a total of 2 ·Dl partitions: (S
(1)
0 , S

(1)
1 ), (S

(2)
0 , S

(2)
1 ), . . . , (S

(Dl)
0 , S

(Dl)
1 ). The

“look-ahead” algorithm needs 2Dl partitions to achieve the same sparsity, placing a severe re-

striction on feasible values of Dl. The lower complexity is traded for two main disadvantages:

first, the value of Dl decreases monotonically. That is, once two sub-blocks are combined,

they are never split again, and a single symbol is transmitted for that sub-block. The other

disadvantage is that the randomness of the overall process is not distributed uniformly across

all the sub-blocks. Some posteriors in a sub-block could grow past the point that allows to

satisfy the partitioning rule, and will be combined with others, while the posteriors of other

sub-blocks could be far from the point when they need to be combined. A single symbols will

be transmitted for each sub-block that remains after combining the necessary pairs. Instead,

the “look-ahead” algorithm computes Dl based on the entire process. That is, the posteriors

on some sub-blocks could be large, while and still the posteriors of the larger message be
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Figure 5.3: Rate performance vs. channel p of the look-ahead algorithm for K = 32. The
solid solid dark blue curve shows the channel capacity. The “look-ahead algorithm” curve is
the brown solid line −◦. The green solid line −◦ is for the non-sparse algorithm in Ch. 2.
The orange line dash is the rate lower bound K/E[τ ] for systematic transmission using (3.27)
and the yellow dash line is the lower bound from (3.34) for uniform input distribution.

all small enough to allow a larger value of Dl with the “look-ahead” algorithm, that the

“sub-block combining” algorithm will not be able to achieve.

5.10 Simulation Results

Simulation results for the “look-ahead” algorithm and the sparse “sub-block combining” algo-

rithm demonstrate how “sparse” the feedback times can be while still achieving the desired

reliability and maintaining a rate above the bounds for the non-sparse case. Fig. 5.3 pro-

vides the rate performance of the look-ahead algorithm (The red curve with •markers labeled

“Look-Ahead algorithm”) vs. the crossover probability p for K = 32 message bits. Fig. 5.3

validates Thm. 4, showing that the “look-ahead” algorithm using the “weighted median” ab-

solute difference rule achieves rates that exceeds even the SEAD lower bounds on rate from

(3.34) and (3.398) on the expected blocklength E[τ ], which are above the bound of Thm. 4,

which is derived from (3.34) that is provided in Thm. 6. The performance of the systematic

posterior matching algorithm of Ch. 2, the green dotted curve with ◦ markers labeled “Sys-

tematic SEAD” is provided in Fig. 5.3 for reference. Note that the rate of the “look-ahead”
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Figure 5.4: Rate performance of the ”look-ahead” algorithm (top sub-plot) and the “sub-block
combining” algorithm (bottom sub-plot) vs. average blocklength E[τ ]. The curves are over
channels with capacities C = 0.25, C = 0.50 and C = 0.75 shown with the horizontal
solid blue lines. The rate performance of the “look-ahead” and the “sub-block combining”
algorithms are shown with the red solid lines with dots. The green solid line with dots are
for the non-sparse SPM algorithm of Ch. 2. The orange dashed curves are the rate lower
bound K/E[τ ] for for systematic transmission from (3.27) and the yellow dash dot lines are
for the lower bound from (3.34) for uniform input distribution.

algorithm is indistinguishable from that of the “Systematic SEAD” algorithm, which satisfies

the highest achievability bounds in this dissertation.

The rate performance vs. average blocklength E[τ ] of the “look-ahead” algorithm is pro-

vided in the top plot of Fig. 5.4 (red solid curve with ◦ markers labeled “Look-Ahead Algo-

rithm”), and the rate performance of the sparse “sub-block combining” algorithm is provided
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Figure 5.5: Sparsity performance of the “look-ahead” algorithm in expected feedback packet
count E[η] vs. average blocklength E[τ ] (the solid lines with ∆ markers) for a channels with
capacities C = 0.25, C = 0.50 and C = 0.75. The dotted lines with ♢ markers only count
feedback packets for the communication phase, the target of the “look-ahead” algorithm. The
yellow curves in the top plot are for the “look-ahead” algorithm over a channel with capacity
C = 0.50, and orange curves in the bottom plot are for the “look-ahead” algorithm over a
channel with capacity C = 0.75. The solid black lines labeled “Classic PM E[η] = E[τ ]”
represent classical PM with feedback after every symbol. The solid green lines labeled
“Systematic PM E[η] = E[τ ] − (K − 1) represent the expected feedback packet count E[η]
for systematic PM, which avoids the first K − 1 feedback transmissions. The dotted green
lines labeled “Systematic Communication Phase” only counts feedback packets for the target
communication phase of systematic PM.
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Figure 5.6: Sparsity performance in terms of expected feedback packet count E[η] vs. average
blocklength E[τ ] of the sparse “sub-block combining” algorithm (blue the solid lines with ∆
markers) is provided, in addition to the curves of Fig. 5.5. The Fig. compares the sparsity
performance of the “look-ahead algorithm” and the sparse “sub-block combining” algorithm.
The top plot is for a channel with capacity C = 0.25, the middle plot is for a channel with
capacity C = 0.50 and the bottom plot is for a channel with capacity C = 0.75 The blue
dotted lines with ♢ markers only count feedback packets for the communication phase, also
the target of the sparse “sub-block combining” algorithm.
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Figure 5.7: Feedback times sparsity performance of the sparse ‘sub-block combining” al-
gorithm as expected feedback packet count E[η] vs. average blocklength E[τ ] over channels
with capacity C = 0.25, C = 0.50 and C = 0.75. The curves are the same provided in Fig.
5.6 with the blue lines, but the horizontal axis extends to E[τ ] = 1000 to highlight larger
message sizes that can be transmitted by the “sub-block combining” algorithm because of a
much lower complexity than the “look-ahead” algorithm.

in the bottom plot of Fig. 5.4 (red solid curve with ◦ markers labeled “Sparse SBC”). Fig.

5.4 also includes the rate of the SPM algorithm from Ch. 2 and the bounds described in Fig.

5.3. The rate curves validate the claims of Thm. 4 regarding the rate of an encoder, like the

“look-ahead” algorithm that satisfies the “weighted median” absolute difference rule.

The “sparsity” performance of the “look-ahead” algorithm in terms of expected feedback

packet count E[η] vs. expected blocklength E[τ ] is provided in Fig. 5.5 for channels with

capacity C = 0.25, C = 0.50 and 0.75. Fig. 5.5 also includes the expected packet count

restricted to the non-systematic transmissions of the communication phase (see dotted lines

with ♢ markers labeled “Sparse (Look-Ahead) Comm Phase”) to compare the sparsity in

the communication phase targeted by the algorithm. For reference, Fig. 5.5 includes the

expected packet counts of classical posterior matching, with feedback after every symbol,

and of the systematic posterior matching schemes in Ch. 2 that may use a single feedback

packet for all the systematic transmissions.
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Figure 5.8: Average runtime per transmitted symbol, in milliseconds, vs. average blocklength
E[τ ] of the “look-ahead” algorithm and the sparse “sub-block combining” algorithm over
channels with capacity C = 0.25, C = 0.50 and C = 0.75. The top three curves with ♢
markers are for the “look-ahead” algorithm and the bottom three curves with ◦ markers are
for the “sub-block combining” algorithm. The plots are for simulations of 10000 trials at
each point.

The performance of the sparse “sub-block combining” algorithm in terms of expected

feedback packet count E[η] vs. expected blocklength E[τ ] is compared to that of the “look-

ahead” algorithm in Fig. 5.6. The simulations show an average number of feedback packets

that grows slowly with the blocklength, but still require a higher number of feedback packets

than the “look-ahead” algorithm. When compared to feedback after every symbol, the sparse

“sub-block combining” algorithm exhibits good performance, with an average number of

feedback packets that grows slowly as the blocklength increase. The performance of the

“sub-block combining” algorithm at larger blocklengths is better illustrated in Fig. 5.6

The average number of feedback packets E[η] vs. the average blocklength E[τ ] for the

sparse “sub-block combining” algorithm, over a wider blocklength range up to 1000 bits is

shown in Fig. 5.7. The plots of Fig. 5.7 are for the same simulations of the “sub-block

combining” algorithm in Fig. 5.6, over channels with capacity C = 0.25, C = 0.50 and

C = 0.75. The lower complexity of the “sub-block” combining algorithm allows sparse

feedback communication over much larger blocklengths than the “look-ahead” algorithm,

which becomes too complex, even for simulations, at blocklengths between 100 − 160 bits.
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Note that for a channel with capacity C = 0.50 and average blocklength of E[τ ] = 1000 (see

red curves with ∆ and ♢ markers in Fig. 5.7), the “sub-block” combining algorithm uses

about 45 feedback packet in the communication phase, while a systematic algorithm like the

SPM requires about 500 feedback packets during the communication phase. Thus the sub-

block combining algorithm achieves an average of 10 bits between feedback transmissions

when when the expected blocklength E[τ ] is about 1000.

The average runtime per transmitted symbol of the “look-ahead” and the “sub-block

combining” algorithms (in milliseconds) vs. the average blocklength E[τ ] is shown in Fig.

5.8. The curves show that the runtime of the “look-ahead” algorithm increases very rapidly

with increasing blocklength, which makes it impractical for blocklengths little above 100 bits.

While the curves for the “look-ahead” algorithm seem to taper down as blocklength increases,

this is probably artifact introduced by a cap on the largest Dl, which we set at Dl ≤ 10

because of hardware and memory restrictions. This cap on Dl prevents the “look-ahead”

algorithm from improving further as the blocklength increases. In contrast, the runtime

curves for the sparse “sub-block combining” algorithm show a much slower increase with

blocklength and demonstrate its lower complexity, compared to the “look-ahead” algorithm.

This lower complexity allows to efficiently transmit much larger messages and blocklenghts

up to 1000 bits, as shown in Fig. 5.7.

5.11 Conclusion

This chapter explores how well posterior matching with noiseless feedback of received symbols

can perform with sparse feedback times instead of having feedback after every symbol. The

chapter begins by showing how a “look-ahead” algorithm can limit the frequency of feedback

transmissions while still obtaining the achievable rates of posterior matching with feedback

after every symbol. No feedback is required until after the initial systematic transmission

of the message bits. After that, a new weighted median absolute difference rule facilitates
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partitioning that allows multiple symbols to be transmitted before feedback is required for

a new partitioning step.

The complexity of the “look-ahead” algorithm grows rapidly with message size. As an

alternative, this chapter proposes a sparse “sub-block combining” algorithm, which exhibits

much lower complexity while still achieving good sparsity performance for larger message

sizes. While the “sub-block combining” algorithm cannot achieve the sparsity of the “look-

ahead” algorithm for short message sizes, the lower complexity of the sparse “sub-block

combining” algorithm allows sparse operation on larger message sizes and lower capacity

channels for which the “look-ahead” algorithm requires too much complexity.

Future research could combine features of both algorithms to manage the complexity of

the ‘look-ahead’ algorithm. Each sub-block of the “sub-block” combining algorithm could

be a “look-ahead” system that has a manageable number of bins. The number of sub-blocks

could be chosen to keep the number of “bins” at each sub-block low enough to maintain

low complexity, but not restricted to just two, as with the current “sub-block” combining

algorithm. For example, five symbols per sub-block would require 32 bins per sub-block.

Then, the total number of bins will be the number of sub-blocks, times 32. If there are N

sub-blocks, the number of symbols transmitted before feedback is needed will be up to 5N ,

while the required number of partitions will be at most 32×N . In contrast, using the “look-

ahead” algorithm alone would require 25N bins to achieve the same sparsity. The current

“sub-block combining” algorithm alone could only transmit N symbols before feedback is

needed.
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CHAPTER 6

Conclusion

This dissertation investigates communication over the binary symmetric channel, aided by a

noiseless feedback channel. For the systems described in Chapters 2 and 3, the transmitter

has full knowledge of both the source message and the decoder state. The only constraint

is a small upper bound on the error rate, or the probability of incorrectly decoding the

transmitted message. In Chapter 4, the encoder has an additional constraint imposed by the

information source. The information sequence is not available to the encoder at the start of

transmission; the information source makes the information sequence causally available as the

transmission progresses. Finally, Chapter 5 investigates the delay of the feedback symbols.

The transmitter seeks to maintain a rate lower bounded by bounds derived in chapter 3 for

the sequential case, while minimizing the number of instances where the feedback is relayed

from the receiver.

Chapter 2 Provides efficient algorithms and a simulation framework that implements

communication over the binary symmetric channel with noiseless feedback. This chapter

proposes a very simple encoding rule which only requires finding the weighted median of

the posteriors, and avoids most of the operations needed for other encoding rules like the

SED. Simulations of the algorithms validate the previously proposed analytical bounds, as

well as the ones introduced in this dissertation. The algorithms exhibit very low runtime

complexity, that is quadratic in order but dominated by the linear term, for the first few

thousand bits. This is the region where variable-length feedback codes provide a meaningful

advantage over forward error correcting codes.
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Chapter 3 provides a new analysis to prove the achievability bounds proposed by Yang et

al, [YPA21]. The new analysis admits a tighter bound and requires looser constraints than

those in [YPA21]. Particularly, the new looser constraints are satisfied by the SEAD encoder

with thresholding of order posteriors partitioning. The chapter generalizes the surrogate

process analysis of Yang et al., to provide applications to a broader class of processes that

meet certain constraints. The constraints are proven for the SEAD encoder, thus proving

that the SEAD encoder satisfies the same achievability bound than the SED encoder. A new

converse bound is also proposed in Chapter 3, that applies to any encoder that enforces the

stopping rule (2.1).

Chapter 4 explores causal encoding where the decoding time is of the essence and the

source information sequence is made available to the encoder causally as the transmission

progresses. The lower and upper bounds on decoding times are identified, as well as the

regions where causal encoders could provide lower expected decoding time by avoiding the

limitations of non-causal schemes. The chapter proposes a sub-block combining algorithm, a

causal encoding scheme that outperforms non-causal schemes across the entire region where

they are limited by the source constraints. Finally the chapter presents an analysis that

optimizes block sizes matched to each region of operation. The optimized block sizes further

reduce the expected decoding time of the sub-block combining algorithm.

Chapter 5 explores sparsity in the feedback transmission times. Instead of sending the

feedback symbols to the encoder as soon as they are received, the decoder may choose to

wait for a few symbols to accumulate, and later transmit them in a single packet. The

chapter proposes a weighted median absolute difference rule, a partitioning rule that relaxes

the SEAD constraints in Chapter 3 while also satisfying the constraints of Thm. 1, thus

guaranteeing the rate performance derived in the Thm. The new rule allows a portion of

the transmission to encode more than one symbol in advance, without receiving additional

feedback. The look-ahead algorithm is provided to enforce the constraints and maximize

feedback sparsity. The look-ahead algorithm works well for lower values of message size K.
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Finally the sub-block combining algorithm of Chapter 4 is modified as a sparse feedback

encoder, by operating on several sub-blocks simultaneously. This version of the sub-block

combining algorithm exhibits much lower complexity than the look-ahead algorithm. For

low message sizes the look-ahead algorithm provides superior sparsity performance, but the

complexity quickly limits the sparsity that can be achieved. The low complexity of the sparse

sub-block combining algorithm makes it suitable for much larger block sizes, where it is able

to achieve more sparsity than the look-ahead algorithm.

6.1 Future Research Directions

Future research directions on the topics covered in this dissertation are outlined below. In

the converse bound 4 of chapter 3, a more rigorous proof is needed for the expression to

bound τ0 + S in Eq. (3.129) and Eq. (3.127), that accounts for the case where the log of the

posterior of the sampled message θ never crosses the zero threshold. The current proof is

more a sketch than a rigorous mathematical proof. Another interesting research direction

could be to find the class of system to which the converse bound generalizes to; for instance,

whether the converse bound applies to any system that attains an error rate bounded by the

same ϵ.

For causal encoding, the sub-block combining algorithm may be modified to use dynamic

block sizes that depend on the duration of the communication phase for each previous sub

system. In the sparse feedback times problem, a surrogate process like the one used to prove

Thm. 3 for the “thresholding of ordered posteriors” rule remains an open problem for the

“weighted median absolute difference” rule. If such process is found, all bounds introduced

in chapter 3 would also apply to an encoder that enforces the “weighted median” absolute

difference rule. The simulation results of chapter 5 indicate that this surrogate process may

exist. Sparse feedback times in the confirmation phase is another topic that is left for future

research. The sparse feedback times problem could also be studied under different problem
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formulations, like relaxing the rate constraint to obtain further sparsity of the feedback times.

Finally, the problem of communication with noisy feedback remains an open area of research

and may be suitable for practical applications.
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Notations and Definitions

The following definitions are used throughout this dissertation, and may also be found before

they are used in each section. They are also included here for convenience.

Posterior probability: ρi(y
t) ≜ P (θ = i | Y t = yt), ∀i ∈ {0, 1}K (7.1)

Log likelihood ratio: Ui(t) ≜ log2

(
ρi(Y

t)

1− ρi(Y t)

)
∀i ∈ {0, 1}K (7.2)

Binary entropy H(p) ≜ −p log2(p)− (q) log2(q) , q ≜ 1− p (7.3)

Channel capacity: C ≜ 1−H(p) (7.4)

Phase II step size C2 ≜ log2

(
q

p

)
(7.5)

Phase II average step size C1 ≜ q log2

(
q

p

)
+ p log2

(
p

q

)
= (q − p)C2 (7.6)

Original stopping time τ ≜ min
t∈N
{∃i ∈ Ω : ρi(y

t) ≥ 1− ϵ} (7.7)

Alternative stopping time τ ≜ min
t∈N

{
∃i ∈ Ω : Ui(t) ≥

⌈
log2

(
1−ϵ
ϵ

)
C2

⌉
C2

}
(7.8)

SED rule 0 ≤
∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t) < min

i∈S0

ρi(y
t) (7.9)

SEAD rule
∣∣∣∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t)
∣∣∣ ≤ min

i∈S0

ρi(y
t) (7.10)

Posterior of S0 P0 ≜
∑
i∈S0

ρi(y
t) (7.11)

Posterior of S1 P1 ≜
∑
i∈S1

ρi(y
t) (7.12)

Partition difference ∆ ≜
∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t) . (7.13)
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