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Abstract of the Dissertation

Efficient Reliable Communication in the Short Blocklength Regime

Through List Decoding and Through Feedback

by

Hengjie Yang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Richard Wesel, Chair

This dissertation consists of three parts investigating the efficient reliable communication in

the short blocklength regime for classical channels in three different settings: (i) no feedback,

(ii) full, noiseless feedback, and (iii) finite, stop feedback.

The first part focuses on the non-feedback binary-input additive white Gaussian noise

(AWGN) channel. A long-standing research problem is to design good linear block codes

for this channel. As its primary contribution, we propose the cyclic-redundancy-check-aided

(CRC-aided) convolutional code under serial list Viterbi decoding (SLVD). To design a good

CRC-aided convolutional code, we propose the distance-spectrum optimal (DSO) CRC poly-

nomial and provide an efficient search algorithm for a given convolutional code. We then

analyze the performance and complexity of the SLVD for the CRC-aided convolutional code.

For transmitting 64 information bits, simulation shows that some CRC-aided convolutional

codes beat the random-coding union (RCU) bound at short blocklength.

The second part of the dissertation focuses on the binary asymmetric channel (BAC)

with full, noiseless feedback, including the binary symmetric channel (BSC) as a special
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case. Building on the small-enough-difference (SED) coding scheme of Naghshvar et al.

originally proposed for symmetric binary-input channels with feedback, we generalize the

coding scheme to the class of BACs with feedback, and establish a non-asymptotic achiev-

ability bound for the deterministic variable-length feedback (VLF) code constructed from

the generalized SED coding scheme. In the specific case of the BSC, we present a refined

non-asymptotic VLF achievability bound. Despite the extreme use of feedback, Naghshvar

et al.’s results on the BSC with full feedback appear to be inferior to Polyanskiy’s bound

for codes with a limited use of feedback, known as the variable-length stop-feedback (VLSF)

codes. In contrast, numerical evaluations show that our VLF achievability bounds outper-

form Polyanskiy’s VLSF achievability bound for both BAC and BSC cases.

The third part of the dissertation focuses on the performance of VLSF codes with finite

optimal decoding times for the BI-AWGN channel. We first develop tight approximations on

the tail probability of length-n cumulative information density which will play an important

role in numerical evaluations. Building on a recent result of Yavas et al. on VLSF codes

with finite decoding times, the problem reduces to an integer program of minimizing the

upper bound of average blocklength subject to the average error probability, minimum gap,

and integer constraints. By allowing real-valued decoding times and using a two-step min-

imization, we derive the gap-constrained sequential differential optimization procedure to

numerically evaluate the achievability bound. Numerical evaluations show that Polyanskiy’s

bound for VLSF codes, which assumes infinite decoding times, can be closely approached

with a finite (and relatively small) number of decoding times.
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CHAPTER 1

Introduction

In recent decades, the ultra-reliable low-latency communication (URLLC) in 5G calls for

powerful short blocklength codes with low probability of error. Depending on the availability

and types of feedback, there are three major cases worthy of investigation: channels without

feedback, channels with full noiseless feedback, and channels with finite, stop feedback.

In the first case, we focus on the non-feedback binary-input additive white Gaussian noise

(BI-AWGN) channel. A long-standing research problem is to construct good block codes at

short information length (e.g., a thousand or fewer information bits) for this channel. Thanks

to the advances in finite-blocklength information theory developed by Polyanskiy, Poor, and

Verdú, the probability of error of the best (n,M) fixed-length code of blocklength n and

message size M is tightly upper bounded by the random-coding union (RCU) bound, and

is tightly lower bounded by the meta-converse (MC) bound [PPV10]. These two bounds

serve as the benchmark to assess the performance of a given short blocklength code for a

broad class of channels, including the discrete memoryless channel (DMC) and the BI-AWGN

channel. For the BI-AWGN channel, this dissertation proposes the cyclic-redundancy-check

(CRC)-aided convolutional code as a good short blocklength code capable of achieving the

RCU bound at low decoding complexity through serial list Viterbi decoding (SLVD).

In the second case where full noiseless feedback is present, we turn our attention to the

binary asymmetric channel (BAC) with feedback, including the binary symmetric channel

(BSC) as a special case. Naghshvar et al. [NWJ12] proposed an intriguing coding scheme

which we term as the small-enough-difference (SED) coding scheme. The deterministic
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variable-length feedback (VLF) code constructed with the SED coding scheme asymptot-

ically attains both capacity and Burnashev’s optimal error exponent for the symmetric

binary-input channels with feedback. As the name suggests, although the capacity-achieving

distribution is Bern(1/2), the SED coding scheme only seeks to partition the message set

into two subsets such that the probability difference of the two subsets is small enough

rather than strictly zero. The SED coding scheme allows Naghshvar et al. to develop a

non-asymptotic VLF acheivability bound for the symmetric binary-input channels.

However, for the BSC, despite the extreme use of feedback, Naghshvar et al.’s non-

asymptotic VLF achievability bound lies beneath Polyanskiy’s achievability bound for codes

with a limited use of feedback, known as the variable-length stop-feedback (VLSF) codes

[PPV11]. This suggests that there is still significant room to improve previous results. In

this dissertation, we extend the SED coding scheme to the BAC with feedback, and develop

a non-asymptotic VLF achievability bound that asymptotically attains the capacity of the

BAC and Burnashev’s optimal error exponent. In the specific case of the BSC, we develop

a refined non-asymptotic VLF achievability bound using a two-phase analysis. Numerical

evaluations show that our VLF bounds outperform Polyanskiy’s VLSF achievability bound

in both the BAC and BSC cases, as desired.

In practice, however, the feedback is often an ACK/NACK signal that informs the en-

coder of whether to terminate transmission. This type of feedback is known as the stop

feedback which only aims at terminating the transmission and does not affect the transmit-

ted symbol. Very often, the decoding opportunities are also limited. In [PPV11], Polyanskiy

et al. formally defined the VLSF code and showed that the VLSF code is sufficient to dra-

matically improve the maximal achievable rate, compared to the fixed-length code at the

same blocklength and error probability. However, their bound assumes infinite decoding

times. In contrast, this dissertation investigates the performance of VLSF codes with finite

decoding times for the BI-AWGN channel. A key question is whether infinite decoding times

are necessary for VLSF codes to approach Polyanskiy’s achievability bound.
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Yavas et al. [YKE21b] recently developed a non-asymptotic achievability bound for VLSF

codes with finite decoding times for Gaussian channels. We first develop tight approximations

to the tail probability of cumulative information density which will play an important role in

numerical evaluations. Next, building upon Yavas et al.’s result, the problem of evaluating

the achievable rate of a VLSF code reduces to an integer program of minimizing the upper

bound on the average blocklength, subject to the average error probability, minimum gap,

and integer constraints. By allowing real-valued decoding times and utilizing a two-step

minimization, we develop the gap-constrained sequential differential optimization (SDO)

procedure to numerically estimate the achievability bound. Numerical evaluations show that

Polyanskiy’s VLSF bound, which assumes infinite decoding times, can be closely approached

with a finite and relatively small number of decoding times.

1.1 Summary of Contributions

We summarize the contributions of each chapter below. We remark that Chapters 2, 3 and

4 are independent of each other. Chapter 5 discusses the possible connections between these

topics and some interesting open problems that are worth further investigation.

Chapter 2 Contributions

In Chapter 2, we consider the concatenation of a convolutional code (CC) with an optimized

CRC code as a promising paradigm for good short blocklength codes for the BI-AWGN

channel. The resulting CRC-aided convolutional code naturally permits the use of SLVD to

achieve maximum-likelihood decoding. The convolutional encoder of interest is of rate-1/ω

and the convolutional code is either zero-terminated (ZT) or tail-biting (TB). The resulting

CRC-aided convolutional code is called a CRC-ZTCC or a CRC-TBCC.

To design a good CRC-aided convolutional code, we propose the distance-spectrum opti-

mal (DSO) CRC polynomial. For a low target error probability, the DSO CRC polynomial
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corresponds to the one that maximizes the minimum distance of the resulting concatenated

code. In this case, we provide an efficient DSO CRC search algorithm for the TBCC. The

algorithm can be easily adapted to the ZTCC case.

To assess the performance of the CRC-aided convolutional code under SLVD, our analysis

reveals that the complexity of SLVD is governed by the expected list rank which converges

to 1 at high SNR. This allows a good performance to be achieved with a small increase in

complexity. In this chapter, we focus on transmitting 64 information bits with a rate-1/2

convolutional encoder. For a target error probability 10−4, simulations show that the best

CRC-ZTCC approaches the RCU bound within 0.4 dB. Several CRC-TBCCs outperform

the RCU bound at moderate SNR values.

Chapter 3 Contributions

In Chapter 3, we consider the problem of variable-length coding over the class of memoryless

BAC with noiseless feedback, including the BSC as a special case. In 2012, Naghshvar et al.

introduced a deterministic, one-phase coding scheme, which we refer to as the SED coding

scheme. The deterministic VLF code constructed with the SED coding scheme asymptoti-

cally achieves both capacity and Burnashev’s optimal error exponent for symmetric binary-

input channels. Building on the work of Naghshvar et al., this chapter extends the SED

encoding scheme to the class of BACs and develops a non-asymptotic upper bound on the

average blocklength that is shown to achieve both capacity and the optimal error exponent.

For the specific case of the BSC, we develop an additional non-asymptotic bound using a

two-phase analysis that leverages both a submartingale synthesis and a Markov chain time of

first passage analysis. Unlike Naghshvar et al.’s achievability bound which still lies beneath

Polyanskiy’s bound for VLSF codes, numerical evaluations show that both new achievability

bounds exceed Polyanskiy’s bound for VLSF codes.
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Chapter 4 Contributions

In Chapter 4, we are interested in the performance of a VLSF code with m optimal decoding

times for the binary-input additive white Gaussian noise channel. We first develop tight

approximations to the tail probability of length-n cumulative information density by means

of Edgeworth expansion and Petrov expansion. This will play an important role in the

numerical evaluation of the upper bound on the average blocklength of a VLSF code.

Next, building on the work of Yavas et al., for a given information density threshold,

we formulate the integer program of minimizing the upper bound on average blocklength

over all decoding times subject to the average error probability, minimum gap and integer

constraints. Eventually, minimization of locally optimal upper bounds over all thresholds

yields the globally minimum upper bound and this is called the two-step minimization.

For the integer program, by allowing positive real-valued decoding times, we develop the

gap-constrained SDO procedure that sequentially produces the optimal, real-valued decoding

times. We identify the error regime in which Polyanskiy’s scheme of stopping at zero does

not improve the achievability bound. In this error regime, the achievability bounds estimated

by the two-step minimization and gap-constrained SDO show that Polyanskiy’s achievability

bound for VLSF codes can be approached with a small number of decoding times.
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CHAPTER 2

CRC-Aided Convolutional Codes Under Serial List

Viterbi Decoding

2.1 Introduction

Recently, the coding theory community has witnessed a growing interest in designing power-

ful short blocklength codes (e.g., codes with a thousand or fewer information bits). This re-

newed interest is mainly driven by the stringent requirement of new ultra-reliable low-latency

communication in 5G [JPY18, SMA19], and advances in the finite-blocklength information

theory developed by Polyanskiy, Poor, and Verdú [PPV10]. The basic question of finite-

blocklength information theory asks: what is the maximal channel coding rate achievable

at a given blocklength n and error probability ε? To answer this question, Polyanskiy et

al. developed the random-coding union (RCU) bound rcu(n,M) [PPV10, Theorem 16] and

the meta-converse (MC) bound mc(n,M)) [PPV10, Theorem 27] that provide, respectively,

tight upper and lower bounds on the error probability P ∗e (n,M) of the best (n,M) code of

length n and M codewords. Namely,

mc(n,M) ≤ P ∗e (n,M) ≤ rcu(n,M). (2.1)

They also provide the normal approximation [PPV10, Eq. (223)] that tightly approximates

the performance of the best (n,M) code. Thereafter, these bounds serve as benchmarks

to assess the performance of a given finite-blocklength code over a broad class of channels,

including the discrete memoryless channel (DMC) and the additive white Gaussian noise

(AWGN) channel. Due to the prohibitive complexity of an exact computation of the RCU
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and MC bounds, saddlepoint approximations of these two bounds were developed that are

shown to be numerically accurate [FVM18].

For coding theorists, a central task is to construct structured short-blocklength codes

for the binary-input AWGN channel such that the probability of error falls into the region

delimited by the RCU bound and the MC bound at a reasonable decoding complexity.

There are numerous approaches to achieve this goal. As a comprehensive overview, Coşkun

et al. surveyed in detail the contemporary short-blocklength code designs developed in recent

decades [CDJ19]. Important examples include extended BCH codes under ordered statistics

decoding (OSD) [FS95,YSV21], tail-biting convolutional codes under wrap-around Viterbi

algorithm (WAVA) [GNJ17], non-binary low-density parity-check codes [DDS14, RDW19],

non-binary turbo codes [LPM13,JM16], and polar codes [Ar09,TV15]. Recent advances also

include the polarization-adjusted convolutional codes proposed by Arıkan [Ari19,YFV20]. It

is worth noting that if no restrictions are imposed on what kind of codes should be used for

the AWGN channel, Shannon [Sha59] has ingeniously shown that the optimal (n,M) code

should be placed on a sphere in the n-dimensional Euclidean space such that the total solid

angle is evenly split between the M Voronoi regions and every Voronoi region is a perfect

circular cone in order to achieve the minimum probability of error.

While there are many possible structures for short-blocklength coding, this chapter fo-

cuses on the concatenation of a convolutional code with a cyclic redundancy check (CRC)

code. The resulting concatenated code is called the CRC-aided convolutional code. Con-

volutional codes were first introduced by Elias [Eli55]. Viterbi decoding of convolutional

codes was developed by Viterbi [Vit67] and its maximum-likelihood (ML) nature was rec-

ognized by Forney [For73, For74]. Advantages of convolutional codes include low decoding

latency [HH09,MCF12] and good error correction performance at short blocklength. The

term “CRC” stems from the use of cyclic codes for error detection [PB61], where the cyclic

codeword can be put into systematic form with the parity bits easily generated by a linear

sequential circuit. As explained in [BK19], CRC codes are possibly shortened cyclic codes
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generated by a polynomial whose leading and zero coefficients are nonzero. The order of

the generator polynomial defines the blocklength of the associated cyclic code. However, in

practice, the CRC code is a subcode of this cyclic code whose blocklength is less than the

polynomial order.

The structure of concatenating a convolutional code with a CRC code was first proposed

in the context of hybrid automatic repeat request (ARQ) [Ric94] and is used in numerous

practical systems where the convolutional code serves as an inner error-correcting code to

combat channel errors and the CRC code serves as an error-detecting code to verify if a

codeword has been correctly received. Examples include the 3GPP cellular communication

standards of both 3G [3GP06] and 4G LTE [3GP18].

The classical decoding approach for a CRC-aided convolutional code in a hybrid ARQ

setting is Viterbi decoding with CRC verification. The input sequence identified by Viterbi

decoding is checked to determine whether it is divisible by the CRC polynomial. This

indicates whether a valid message has been decoded. If the decoded sequence is divisible by

the CRC polynomial, the message segment of the decoded sequence is declared as the most

likely message. Otherwise, a negative acknowledgement (NACK) is declared and perhaps a

retransmission request is sent to the transmitter.

Unfortunately, the classical approach of Viterbi decoding with CRC verification conceals

the true potential of the CRC-aided convolutional code. Performing a single Viterbi decod-

ing step causes the decoder to give up too early, often before encountering a convolutional

codeword whose input sequence passes the CRC verification. To unleash the power of the

CRC-aided convolutional code, we consider the serial list Viterbi decoding (SLVD) pioneered

by Seshadri and Sundberg [SS94]. SLVD sequentially produces a rank ordered list of code-

words according to their likelihoods. Hence, CRC verification can naturally be used as a

termination criterion for this list decoding.

Practical implementation of the SLVD typically assumes a constrained maximum list

size Ψ to limit the peak decoding complexity. The SLVD terminates either when an input
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sequence passes the CRC verification or when the list rank reaches Ψ. The list rank at which

the decoder stops is called the terminating list rank L. However, it is not always possible to

have L = Ψ. This is because Ψ can be set arbitrarily large, yet only finitely many codewords

exist. This implies that L has an intrinsic maximum achievable value independent of Ψ

which is referred to as the supremum list rank λ. Consequently, L is a bounded random

variable between 1 and min{λ,Ψ}. Since the decoding complexity is a function of L, the

average decoding complexity is a function of the average list rank E[L].

Assume that Ψ < λ. In this case, there are three possible outcomes associated with the

SLVD: 1) a correct decoding if SLVD identifies the transmitted message within Ψ trials; 2)

an undetected error (UE) if an erroneous input sequence found by SLVD passes the CRC

verification within Ψ trials; and 3) a NACK and the forced termination of the decoder if

the SLVD fails to find an input sequence that passes CRC verification within Ψ trials. In

contrast, any value of Ψ with Ψ ≥ λ gives the same decoder behavior where no NACK is

produced. In this case, the SLVD is an implementation of ML decoding of the CRC-aided

convolutional code. In the extreme case where Ψ = 1, the SLVD reduces to the classical

Viterbi decoding with CRC verification.

A classical list decoder [Eli57] assumes a fixed list size and declares decoding success as

long as the transmitted codeword is in the list. In contrast, the SLVD has a more stringent

requirement for success that can lead to a higher error probability than for the classical

list decoder. Several upper bounds on error probability were developed for the classical

list decoder, e.g., [BJK08,HSS10]. However, these results are not directly applicable to the

SLVD.

This chapter focuses on the concatenation of a rate-1/ω convolutional code with an

optimized CRC code. We explore both zero-terminated convolutional code (ZTCC) and

tail-biting convolutional code (TBCC) [MW86]. The resulting concatenated code is called

a CRC-ZTCC in the first case and a CRC-TBCC in the second case. For CRC-ZTCCs,

Lou et al. [LDW15] realized that previous designs of CRC polynomials typically ignore the
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structure of the inner error-correcting code, which leads to suboptimal performance. Lou et

al. designed optimal CRC polynomials for a given ZTCC such that the probability of UE is

minimized for a single Viterbi decoding attempt followed by CRC verification. A key point

in their analysis is that when the target probability of UE is low enough, the design principle

is equivalent to maximizing the minimum distance of the CRC-ZTCC. However, Lou et al.

did not address the optimal CRC design for a TBCC and did not consider SLVD.

Compared to the ZTCC, the TBCC has the advantage of avoiding the rate loss incurred

by the overhead associated with the zero tail that follows the information sequence, but this

overhead reduction comes with an increase in decoding complexity. A TB codeword requires

that the initial and terminating states be the same, which can be achieved, for example, by

setting the initial encoder memory to be the final bits of the information sequence. However,

this requirement increases the difficulty of efficiently identifying the ML path on the trellis

because the common value of the initial and terminating states is unknown at the decoder.

One approach to ML decoding of a TBCC is to perform Viterbi decoding from every

possible initial state [MW86]. Various approximate algorithms are proposed for decoding

the TBCC based on either ML or maximum a posteriori probability criterion, e.g., [WB89,

CS94,AH98,SSF03]. Among these algorithms, the WAVA [SSF03] proves to be both efficient

and near-ML. Shankar et al. [SKS] introduced an efficient, iterative, two-phase algorithm for

exact ML decoding of TBCC, where an A* algorithm is applied in the second phase, using

information from the first phase to compute the heuristic function. To make the exact

SLVD of TBCC possible and efficient, this chapter extends Shankar et al.’s algorithm to

accommodate the CRC polynomial. Specifically, if a traceback identifies a TB path, the

CRC of the corresponding input sequence is checked. If the input sequence passes the

CRC verification, the algorithm terminates. Otherwise, the algorithm locates the next rank

ordered path.
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2.1.1 Contributions

This chapter provides a design paradigm for both CRC-ZTCCs and CRC-TBCCs, a suite of

tools for performance analysis of these codes, and a complexity analysis showing that SLVD

allows low-complexity decoding at low probability of UE for Ψ ≥ λ, i.e., an average decoding

complexity similar to standard Viterbi decoding of the convolutional code alone. These

contributions combine to yield, for example, CRC-aided convolutional codes that closely

approach the RCU bound while requiring decoding complexity similar to Viterbi decoding

on a convolutional code trellis with 28 states.

The main contributions of this chapter are summarized below.

1) CRC-Aided Convolutional Code Design: This chapter introduces the concept of the

distance-spectrum optimal (DSO) CRC polynomial, which minimizes the theoretical

union bound of the probability of UE for Ψ ≥ λ. Theorem 1 shows that for high

SNR, the DSO CRC polynomial reduces to the one that obtains the best minimum

distance dlmin. Theorem 2 provides a sharp upper bound on the achievable dlmin based

on the distance spectrum of the convolutional code. For low target probability of

UE, we present an efficient algorithm for finding DSO CRC polynomials for TBCCs

of arbitrary rate, and provide these polynomials for ZTCCs and TBCCs for optimum

rate-1/2 convolutional encoders in [LC04] at 64 information bits.

2) CRC-Aided Convolutional Code Performance Analysis: The performance of a CRC-

aided convolutional code with the constrained maximum list size Ψ is measured by

three probabilities: probability of correct decoding Pc,Ψ, probability of UE Pe,Ψ, and

probability of NACK PNACK,Ψ, where Pc,Ψ +Pe,Ψ +PNACK,Ψ = 1. This chapter provides

bounds, approximations, and simulation results characterizing how these probabilities

vary with Ψ and with SNR. Theorems 4 – 6 describe how performance evolves as Ψ

increases, the existence and behavior of the supremum list rank λ, and performance

(in terms of Pc,Ψ, Pe,Ψ, and PNACK,Ψ) as a function of SNR for extreme values of Ψ = 1
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and Ψ = λ.

3) CRC-Aided Convolutional Code Decoding Complexity: This chapter provides expres-

sions for the complexity of SLVD for CRC-ZTCCs and CRC-TBCCs. These expressions

reveal that complexity is a function of the expected list rank E[L]. This chapter char-

acterizes E[L] including a new approach to computing E[L] in the limit of low SNR,

a new analysis of conditional expected list rank given the noise magnitude, and two

new approaches for approximating the conditional expected list rank. Our parametric

approximation on the conditional expected list rank naturally leads to an accurate ap-

proximation of E[L] as a function of Pe,λ which shows that as Pe,λ converges to 0, E[L]

converges to 1 (see Approximation 3 to follow). We see that for practically interesting

operating points of Pe,λ such as 10−6, E[L] ≈ 1 for typical CRC lengths. This implies

that for an interesting range of CRC lengths, the CRC length can be increased with

negligible impact on complexity. Moreover, for these CRC lengths, the complexity of

SLVD for the CRC-aided convolutional code is very similar to that of standard Viterbi

decoding of the convolutional code alone.

4) Achieving the RCU Bound with Practical Complexity: This chapter focuses on design-

ing good CRC-aided convolutional codes for transmitting 64 information bits. Simula-

tion results show that at target error probability 10−4, the CRC-ZTCC with 8 memory

elements can approach the RCU bound within 0.42 dB with decoding complexity sim-

ilar to standard Viterbi decoding of the ZTCC. The best CRC-TBCC with 8 memory

elements almost achieves the RCU bound, but requires increased decoding complexity.

2.1.2 Organization

This chapter is organized as follows: Section 4.2 introduces notation, the system architec-

ture, TB trellises, Polyanskiy et al.’s finite-blocklength bounds, and the related saddlepoint

approximations. Section 2.3 introduces the concept of the DSO CRC polynomial, shows that
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at high SNR the DSO CRC can be obtained by maximizing dlmin, provides an upper bound

on dlmin, and gives a DSO CRC design algorithm for TBCCs of arbitrary rate at high SNR.

Section 2.4 presents the performance and complexity analyses of SLVD of a given CRC-aided

convolutional code. Section 2.5 presents simulation results of our designed CRC-aided con-

volutional codes and a comparison of (128, 64) linear block codes. Section 2.6 concludes the

chapter.

2.2 Preliminaries

2.2.1 Notation

Let F2 = {0, 1} denote the binary field. Fn2 denotes the set of n-dimensional binary sequences.

F2[x] denotes the set of binary polynomials. The indicator function 1E takes the value 1 if

the event E occurs, and 0 otherwise. The polynomial u(x) =
∑n−1

i=0 uix
i ∈ F2[x] and its row

vector form u = [u0, u1, . . . , un−1] ∈ Fn2 are used interchangeably. The CRC polynomial is

represented in hexadecimal when its binary coefficients are written from the highest to lowest

order. For instance, 0xD represents x3 + x2 + 1. The convolutional generator polynomial is

represented in octal when the binary coefficients of each generator polynomial are written

from the lowest to highest order. For instance, (13, 17) represents (1+x2 +x3, 1+x+x2 +x3).

Let wH(·), dH(·, ·), and ‖·‖ denote the Hamming weight, Hamming distance, and Euclidean

norm respectively. Finally, cl(S) and ∂(S) denote the closure and the boundary of a subset

S ⊆ Rn, respectively.

2.2.2 Architecture

This chapter considers CRC-aided list decoding of convolutional codes, as depicted in Fig.

3.1. Let u(x) =
∑k−1

i=0 uix
i ∈ F2[x] denote the k-bit binary information sequence, where uk−1

is the first bit entering the CRC encoder. The information sequence u(x) is first encoded
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Figure 2.1: Block diagram of the CRC-aided list decoding of convolutional codes.

with a degree-m CRC generator polynomial p(x) = 1 +p1x+ · · ·+pm−1x
m−1 +xm ∈ F2[x] to

obtainm parity check bits r(x) = xmu(x) mod p(x). Thus, we obtain v∗(x) = xmu(x)+r(x)

which is divisible by the CRC polynomial p(x). The final CRC-coded sequence v(x) is

produced by reversing v∗(x), i.e., v(x) = xk+m−1v∗(x−1). This guarantees that the first

bit entering the encoder, namely, uk−1 in u(x), is always the lowest degree term of v(x),

consistent with common representation. The concatenated codeword c ∈ Fn2 of blocklength

n is obtained by convolutionally encoding v with a minimal, feedforward, (ω, 1, ν) encoder

g(x) = (g1(x), g2(x), . . . , gω(x)), gi(x) =
∑ν

j=0 gi,jx
j, with ν memory elements. To terminate

a convolutional code into a linear block code, we consider either the ZT or TB method.

This chapter focuses on CRC-aided convolutional codes, but our analysis also involves

the higher-rate convolutional code for which the CRC codeword v is the input message. To

describe the two codes of interest as concisely as possible, define the higher-rate code Ch and

the lower-rate code Cl, where the latter is the CRC-aided convolutional code, as follows,

Ch ,
{
c ∈ Fn2 : c = vG,∀v ∈ Fk+m

2

}
, (2.2)

Cl ,
{
c ∈ Fn2 : c = vG,∀v ∈ Fk+m

2 s.t. p(x)|v∗(x)
}
, (2.3)

where G ∈ F(k+m)×n
2 is the matrix representation of the convolutional encoder. Intuitively,

the effect of p(x) is to obtain a subcode Cl from the given higher-rate code Ch. The exact

definition of Ch and Cl require the specification of the ZTCC or TBCC. For a ZTCC, n =
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ω(k +m+ ν) and

G =


G0 G1 · · · Gν

G0 G1 · · · Gν

. . . . . . . . . . . .

G0 G1 · · · Gν

 ,

where

Gj =
[
g1,j g2,j · · · gω,j

]
, j = 0, 1, . . . , ν.

Similarly, for a TBCC, n = ω(k +m) and

G =



G0 G1 · · · · · · Gν

G0 G1 · · · · · · Gν

. . . . . . . . . . . .

G0 G1 · · · · · · Gν

Gν G0 G1 · · · Gν−1

Gν−1 Gν
. . . . . . ...

... . . . . . . G1

G1 G2 · · · Gν G0



.

Clearly, Cl ⊆ Ch, |Ch| = 2k+m, and |Cl| = 2k. The rate of the CRC-aided convolutional code

(i.e., the lower-rate code) R = k/n. A fundamental quantity associated with a linear block

code is its minimum distance. To aid our discussion, we define

dhmin , min{wH(c) : c ∈ Ch \ {0}}, (2.4)

dlmin , min{wH(c) : c ∈ Cl \ {0}}. (2.5)

As a corollary, 0 < dhmin ≤ dlmin. Note that for a ZTCC, dhmin is in fact the order-(k +m− 1)

row distance and is thus no less than the free distance of the convolutional code [JZ99].

The binary phase shift keying (BPSK) modulated sequence x = [x0, x1, . . . , xn−1] for

codeword c is obtained via xi = (1 − 2ci)A, where A is the BPSK amplitude, and is then
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transmitted over the AWGN channel with channel SNR γs. Therefore, the channel model is

yi = xi + zi, i = 0, 1, . . . , n− 1, (2.6)

where zi’s are independent and identically distributed (i.i.d.) according to the standard

normal distribution. Thus, γs = A2 or A =
√
γs.

Upon receiving the channel observations y, the (soft) SLVD with a constrained maximum

list size Ψ using CRC polynomial p(x) is employed to determine the most likely information

sequences û(x) from the trellis of the higher-rate code Ch based on y in a sequential manner

using a maximum of Ψ trials. We assume that the SLVD sequentially produces rank ordered

codewords that are also higher-rate codewords in Ch. This is true when Ch is a ZTCC and

may not be true when it is a TBCC in practice. If an input sequence v̂∗(x) associated

with a higher-rate codeword passes the CRC verification, decoding terminates and the list

stops growing. The corresponding list rank is marked as the terminating list rank L and the

most likely information sequence û(x) is recovered from the last k bits of v̂∗(x). If an input

sequence divisible by p(x) is not found after Ψ attempts, the decoder terminates at list rank

Ψ with a NACK as the output. As mentioned earlier, there exists a supremum list rank λ

(whose formal definition will be given in (2.44)) which is independent of Ψ. If Ψ ≥ λ, no

NACK will occur. Consequently, L is always bounded between 1 and min{λ,Ψ}.

A UE occurs if the SLVD erroneously identifies an input sequence v̂∗(x) that is divisible

by p(x) and v̂∗(x) 6= v∗(x). This is equivalent to the case where the UE polynomial v̂∗(x)−
v∗(x) ∈ F2[x] is nonzero and is divisible by p(x). Hence, an error event is given by the input-

output pair (v̂(x)− v(x), ĉ(x)− c(x)), where v̂(x) 6= v(x) and ĉ(x) is a higher-rate codeword

associated with v̂(x). By linearity, each error event corresponds to a pair of a nonzero input

sequence v(x) and its corresponding codeword c(x). When restricted to convolutional codes,

we can also use a trellis path to represent an error event.

The performance of the CRC-aided convolutional code is measured by three probabili-

ties: probability of correct decoding Pc,Ψ, probability of UE Pe,Ψ, and probability of NACK
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PNACK,Ψ, where Pc,Ψ +Pe,Ψ +PNACK,Ψ = 1. In the special case where Ψ ≥ λ, Pc,Ψ +Pe,Ψ = 1.

For ease of reference, we use Pe,λ to represent Pe,Ψ with Ψ ≥ λ.

2.2.3 Tail-Biting Trellises

We follow [KV03] in describing a TB trellis. Let V be a set of vertices (or states). The set A
is the output alphabet, and E is the set of edges described as ordered triples (v, a, v′) with

v, v′ ∈ V , and a ∈ A. In words, (v, a, v′) ∈ E denotes an edge that starts at v, ends at v′,

and has output a.

Definition 1 (Tail-biting trellises). A tail-biting trellis T = (V,E,A) of depth N is an

edge-labeled directed graph with the following property: the vertex set V can be partitioned as

V = V0 ∪ V1 ∪ · · · ∪ VN−1 (2.7)

such that every edge in T either begins at a vertex of Vi and ends at a vertex of Vi+1 for some

i = 0, 1, . . . , N − 2, or begins at a vertex of VN−1 and ends at a vertex of V0.

Geometrically, a TB trellis can be viewed as a cylinder of N sections defined on some

circular time axis. Alternatively, we can also define a TB trellis on a sequential time axis

I = {0, 1, . . . , N} with the restriction that V0 = VN so that we obtain a conventional trellis.

For a trellis T of depth N , a trellis section connecting time i and i + 1 is a subset

Ti ⊆ Vi ×A× Vi+1 ⊆ E that specifies the allowed combination (si, ai, si+1) of state si ∈ Vi,
output symbol ai ∈ A, and state si+1 ∈ Vi+1, i = 0, 1, . . . , N − 1. Such allowed combinations

are called trellis branches. A trellis path (s,a) ∈ T is a state/output sequence pair, where

s ∈ V0 × V1 × · · · × VN , a ∈ AN . Since s equivalently specifies the input sequence, an error

event can also be described by its corresponding trellis path (s,a).

For a TB trellis T of depth N , a TB path (s,a) of length N on T is a closed path through

N vertices. If T is defined on a sequential time axis I = {0, 1, . . . , N}, then any TB path

(s,a) of length N satisfies s0 = sN .
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2.2.4 Finite-Blocklength Bounds and Approximations

In [PPV10], Polyanskiy et al. derived the RCU bound and the MC bound that upper and

lower bound the probability of error of the best (n,M) code, respectively. These two bounds

serve as benchmarks to assess the performance of a given finite-blocklength code.

We follow the notation in [FVM18] to introduce the RCU bound and the MC bound. Let

W n(·|·) denote a length-n channel. Let αβ(P,Q) denote the smallest type-I error probability

among all tests discriminating between distributions P andQ, with a type-II error probability

at most β [CT06a, Chapter 11.7]. For a random-coding ensemble defined over distribution

P n, the RCU bound is given by

rcu(n,M) , E[min{1, (M − 1) pep(Xn, Y n)], (2.8)

where (Xn, Y n) ∼ P n ×W n and the pairwise error probability pep(xn, yn) is defined as

pep(xn, yn) , P
(
W n(yn|X̄n) ≥ W n(yn|xn)

)
,

with X̄n ∼ P n. The MC bound is a minimax of a particular smallest type-I error probability

mc(n,M) , min
Pn

max
Qn

{
α 1
M

(P n ×W n, P n ×Qn)
}
, (2.9)

where the minimization is over all input distributions P n, and the maximization is over a

set of auxiliary, independent of the input, output distributions Qn.

An exact evaluation of the RCU bound and the MC bound involves integrating tail proba-

bilities of n-dimensional random variables, which is computationally difficult even for simple

channels and moderate values of n. In [FVM18], the authors provided saddlepoint approxi-

mations of these two bounds for memoryless symmetric channels, including the binary-input

AWGN channel. These approximations are shown to be tight for a wide range of rates and

blocklengths. Section 2.5 uses saddlepoint approximations to evaluate the RCU bound and

the MC bound for the binary-input AWGN channel.
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Approximation 1 (MC bound, [FVM18]). For memoryless symmetric channels for which

Y ∼ W (·|x) is independent of x,

mc(n,M) ≈ max
ρ≥0

{
e−n(E0(ρ)−ρE′0(ρ))

(
ψ
(√

nU(ρ)
)

+ ψ
(
ρ
√
nU(ρ)

)
− e−n(R−E′0(ρ))

)}
, (2.10)

where

E0(ρ, P ) = − log

∫
Y

(∑
x∈X

P (x)W (y|x)
1

1+ρ

)1+ρ

dy, (2.11)

E0(ρ) = max
P

E0(ρ, P ), (2.12)

ψ(x) =
1

2
erfc

( |x|√
2

)
e
x2

2 sign(x), (2.13)

U(ρ) = −(1 + ρ)E ′′0 (ρ), (2.14)

where X and Y denote the discrete input and continuous output alphabets of the channel,

respectively. The maximization in (2.12) is over all possible probability distributions on X .

Approximation 2 (RCU bound, [FVM18]). For memoryless symmetric channels for which

Y ∼ W (·|x) is independent of x,

rcu(n,M) ≈ ξ̃n(ρ̂) + ϕn(ρ̂)e−n(E0(ρ̂,P )−ρ̂R), (2.15)

where ρ̂ is the value for which E ′0(ρ, P ) = R, and

Qρ(y) =
1

e−E0(ρ,P )

(∑
x∈X

P (x)W (y|x)
1

1+ρ

)1+ρ

, (2.16)

ω̄′′(ρ̂) =

∫
Y
Qρ̂(y)

[
∂2

∂τ 2

(
log
∑
x∈X

P (x)W (y|x)τ
)∣∣∣

τ=τ̂

]
dy, (2.17)

θn(ρ̂) =
1√

1 + ρ̂

(
1 + ρ̂√

2πnω̄′′(ρ̂)

)ρ̂

, (2.18)

ξ̃n(ρ̂) =


1, ρ̂ < 0

0, 0 ≤ ρ̂ ≤ 1

e−n(E0(1,P )−R)θn(1), ρ̂ > 1,

(2.19)
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V (ρ̂) = −E ′′0 (ρ̂, P ), (2.20)

ϕn(ρ̂) = θn(ρ̂)
(
ψ
(
ρ̂
√
nV (ρ̂)

)
+ ψ

(
(1− ρ̂)

√
nV (ρ̂)

))
. (2.21)

2.3 The Search for the DSO CRC Polynomial

In this section, we seek to design good CRC-aided convolutional codes that provide the

lowest possible probability of UE Pe,λ. To this end, for a given convolutional code, we design

CRC polynomials that minimize the union bound on the probability of undetected error Pe,λ.

The resulting CRC polynomial is known as the DSO CRC polynomial.

2.3.1 General Theory

For a given convolutional code and a desired CRC degreem, we wish to identify the degree-m

CRC polynomial

p(x) = 1 + p1x+ · · ·+ pm−1x
m−1 + xm ∈ F2[x] (2.22)

that minimizes the probability of UE Pe,λ. Since the exact probability Pe,λ has no closed-form

expression that can facilitate a design procedure, we use the union bound as the objective

function that only involves the distance spectrum, Cdlmin
, . . . , Cn, of the lower-rate code Cl,

where Cd denotes the number of codewords in Cl of Hamming weight d, dlmin ≤ d ≤ n. The

distance spectrum of the lower-rate code Cl is a function of both the CRC polynomial p(x)

and the higher-rate code Ch. For any candidate CRC polynomial p(x), the union bound on

Pe,λ is given by

Pe,λ ≤
∑

c∈Cl\{c̄}

P
(
Z >

1

2
‖x(c)− x(c̄)‖

∣∣X = x(c̄)
)

=
n∑

d=dlmin

CdQ
(
A
√
d
)
, (2.23)
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where c̄ ∈ Cl is the transmitted codeword, x(c) ∈ {−A,A}n is the BPSK-modulated point

for codeword c, Z ∼ N (0, 1), and

Q(x) ,
∫ ∞
x

1√
2π
e−u

2/2 du (2.24)

is the complementary Gaussian cumulative distribution function. Q
(
A
√
d
)
computes the

pairwise error probability of two codewords at distance d. For a given higher-rate code Ch,
a given SNR γs (i.e., A =

√
γs), and a CRC degree m, we define the degree-m DSO CRC

polynomial as the one that minimizes the union bound on Pe,λ. Namely, the degree-m DSO

CRC polynomial is the solution to the following optimization problem,

min
p(x)

n∑
d=dlmin

CdQ
(
A
√
d
)
. (2.25)

Theoretically, the distance spectrum Cdlmin
, . . . , Cn of Cl can be found through a Viterbi

search of the trellis of the higher-rate code Ch, retaining only codewords whose input se-

quences are divisible by the candidate CRC polynomial p(x). However, this approach re-

quires the calculation of distance spectra for 2m−1 candidate CRC polynomials and quickly

becomes computationally expensive as the information length k gets large. The degree-m

DSO CRC polynomial depends on the specific higher-rate code and the SNR at which (2.23)

is minimized. Note that the DSO CRC polynomial can be different for different values of

k. In [LDW15], Lou et al. investigated how DSO CRC polynomials vary with information

length k. Their essential finding is that a DSO CRC polynomial for a large k is usually

“good” for shorter k. If the SNR is not sufficiently high, the CRC polynomial that minimizes

the union bound in (2.23) may not minimize the actual Pe,λ.

Nevertheless, when SNR is sufficiently high or equivalently when the target probability

of UE Pe,λ is sufficiently low (typically less than 10−6), the union bound (2.23) will be

dominated by its first term Cdlmin
Q
(
A
√
dlmin

)
which becomes asymptotically tight to Pe,λ.

Furthermore, in most cases at high SNR where the operating A is large enough, the first

term in (2.23) is only dominated by dlmin. The following theorem justifies this statement.
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Theorem 1. For a given higher-rate code Ch, let Cdlmin,1
, . . . , Cn and C ′

dlmin,2
, . . . , C ′n be two

distance spectra associated with lower-rate codes generated by CRC polynomials p1(x) and

p2(x), respectively. If dlmin,1 < dlmin,2, there exists a positive threshold A∗ such that if A > A∗,

n∑
d=dlmin,1

CdQ
(
A
√
d
)
>

n∑
d=dlmin,2

C ′dQ
(
A
√
d
)
. (2.26)

In the special case where dlmin,1 = dlmin,2 and Cdlmin,1
> C ′

dlmin,2
, the above conclusion still holds.

Proof. Assume that dlmin,1 < dlmin,2. Since coefficients Cdlmin,1
, C ′

dlmin,2
are positive and bounded,

lim
A→∞

∑n
d=dlmin,1

CdQ(A
√
d)∑n

d=dlmin,2
C ′dQ(A

√
d)

(2.27)

= lim
A→∞

Cdlmin,1
exp

(
− A2dlmin,1

2

)
C ′
dlmin,2

exp
(
− A2dlmin,2

2

)
[
1 +

∑n
d=dlmin,1+1

Cd
C
dl
min,1

exp
(
− A2(d−dlmin,1)

2

)]
[
1 +

∑n
d=dlmin,2+1

C′d
C′
dl
min,2

exp
(
− A2(d−dlmin,2)

2

)] (2.28)

= lim
A→∞

Cdlmin,1

C ′
dlmin,2

exp

(
A2

2
(dlmin,2 − dlmin,1)

)
(2.29)

=∞.

Hence, there exists a threshold A∗ such that when A > A∗, (2.26) holds. In the special case

where dlmin,1 = dlmin,2 and Cdlmin,1
> C ′

dlmin,2
, the limit in (2.29) is still greater than 1. Thus,

the same conclusion follows.

For sufficiently low target Pe,λ, the operating amplitude A is typically large enough such

that A > A∗ is easily met in practice. In these common situations, the DSO CRC design

principle reduces to maximizing the minimum distance dlmin of the lower-rate code.

As an illustrative example, Fig. 2.2 shows the union bounds (2.23) for three degree-5 CRC

polynomials among the 16 candidates for k = 10 and ZTCC (13, 17). The CRC polynomial

0x37 minimizes the union bound at low SNR, whereas the CRC polynomial 0x2D minimizes

the union bound at high SNR. On the contrary, the CRC polynomial 0x33 yields the worst
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possible union bound among all candidates. A detailed computation reveals that dlmin = 11,

Cdlmin
= 17 for 0x37, dlmin = 12, Cdlmin

= 76 for 0x2D. Thus, the DSO CRC polynomial

may not necessarily have the best minimum distance. The worst CRC polynomial 0x33 has

dlmin = 8, Cdlmin
= 10. In this example, the threshold at which the DSO CRC polynomial

switches from 0x37 to 0x2D is −0.2398 dB. However, the gap between the performance of

the two CRC polynomials is minimal, especially at low SNR. Nevertheless, both 0x37 and

0x2D achieve a gain of 0.5 dB compared to 0x33 at 10−2, showing that the optimal CRC

polynomial is crucial to achieving good performance.

For a given convolutional code and a specified CRC degree m, one may ask: how large

can dlmin be? The next theorem gives a tight upper bound on dlmin in terms of the distance

spectrum of the higher-rate code Ch.

Theorem 2. Given a specified CRC degree m and a higher-rate code Ch with distance spec-

trum Bdhmin
, . . . , Bn, define w∗ as the minimum w for which

∑w
d=dhmin

Bd ≥ 2m. For any

degree-m CRC polynomial, we have dlmin ≤ 2w∗.

Proof. Define the set V (c) to be the set of codewords from the higher-rate code Ch that

unambiguously decode to codeword c of the lower-rate code Cl. Specifically, for each c ∈ Cl,
define

V (c) ,
{
r ∈ Ch : dH(r, c) < dH(r, c′), ∀c′ ∈ Cl \ {c}

}
. (2.30)

Hence, by linearity of the higher-rate code Ch, the cardinality of V (c) for every c ∈ Cl is
exactly the same. Hence,

|V (c)| ≤ |Ch||Cl|
= 2m, (2.31)

where (2.31) is an inequality because some codewords r ∈ Ch may be equidistant from two

or more lower-rate codewords.
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Figure 2.2: Comparison of the DSO CRC polynomials for k = 10, m = 5, and ZTCC (13, 17).

The blocklength of the CRC-ZTCC n = 36. The threshold value is −0.2398 dB.

Next, we show that for a given c ∈ Cl, dH(r, c) < 1
2
dlmin implies that r ∈ V (c).

By definition of the minimum distance, for two arbitrary distinct codewords c, c′ ∈ Cl,
dH(c, c′) ≥ dlmin. Hence, for any r ∈ Ch, by triangle inequality,

dH(r, c) + dH(r, c′) ≥ dH(c, c′) ≥ dlmin. (2.32)

Thus, if dH(r, c) < 1
2
dlmin, this implies that dH(r, c′) > 1

2
dlmin for any other c′ ∈ Cl, i.e.,

dH(r, c) < dH(r, c′) for all c′ ∈ Cl \ {c}. By definition of V (c), we conclude that r ∈ V (c).

By law of contraposition, if r /∈ V (c), then dH(r, c) ≥ 1
2
dlmin. Indeed, when

∑w
d=dhmin

Bd ≥
2m (i.e.,

∑w
d=0Bd ≥ 2m + 1), by pigeonhole principle, there exists a codeword r ∈ Ch that

is outside of V (c) and whose distance from c satisfies dH(r, c) ≤ w. Therefore, for this

codeword r, w ≥ dH(r, c) ≥ 1
2
dlmin or equivalently, dlmin ≤ 2dH(r, c) ≤ 2w. Since this holds

for any w satisfying
∑w

d=dhmin
Bd ≥ 2m, the minimum such value w∗ yields the tightest upper

bound.
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Table 2.1: Comparison Between dlmin Associated With the DSO CRC Polynomial and 2w∗

Computed From Theorem 2 for k = 64

m
ZTCC (13, 17) TBCC (13, 17)

p(x) dlmin 2w∗ p(x) dlmin 2w∗

0 0x1 6 12 0x1 6 12
3 0x9 10 12 0xF 8 12
4 0x1B 10 12 0x1F 9 12
5 0x2D 12 12 0x2D 10 12
6 0x43 12 12 0x63 12 12
7 0xB5 13 14 0xED 12 14
8 0x107 14 14 0x107 12 14
9 0x313 14 16 0x349 14 16
10 0x50B 15 18 0x49D 14 18

Table 2.1 shows the comparison between dlmin and the upper bound 2w∗ in Theorem 2

for both ZTCC and TBCC generated with the rate-1/2 convolutional encoder (13, 17) at

k = 64. We see that the upper bound is sharp as there exist DSO CRC polynomials that

achieve this bound.

2.3.2 A Two-Phase DSO CRC Design Algorithm for TBCCs

We focus on finding the DSO CRC polynomial for low target Pe,λ. As discussed earlier,

the design principle under this circumstance conveniently reduces to maximizing dlmin of the

lower-rate code. Thus, the optimal CRC polynomial depends on the convolutional code but

not the SNR.

In principle, the DSO CRC design algorithm for low target Pe,λ comprises a collection

phase that gathers error events of the higher-rate code Ch up to a certain distance d̃, and

a search phase that identifies the degree-m DSO CRC polynomial using the error events

gathered in the collection phase. In this section, we propose a two-phase DSO CRC design

algorithm particularized to TBCCs of arbitrary rate (including rate 1/ω). Later, we point
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out that our algorithm is also applicable to ZTCCs of arbitrary rate with a few distinctions.

The difficulty of designing DSO CRC polynomials for a TB trellis lies in the fact that

a TB trellis is a union of 2ν subtrellises that share trellis branches in the middle. Thus,

to collect error events that meet the TB condition, a straightforward collection method is

to perform Viterbi search separately at each possible start state to identify the irreducible

error event (IEE) that leaves the start state once and rejoins it once, and then use them to

reconstruct length-N TB paths with distance less than d̃. These IEEs constitute the error

events of interest. However, this scheme will be inefficient in that for each nonzero start

state, there exists a catastrophic IEE that spends a majority of time in the self-loop of the

zero state. Such an IEE has the catastrophic property that its length grows unbounded with

a finite weight. As a consequence, they are rarely used during reconstruction yet occupy a

significant portion of total IEEs.

The algorithm we are about to propose follows the straightforward algorithm with the

distinction in collecting IEEs. To circumvent the aforementioned catastrophic IEEs, we wish

to identify IEEs whose weight is proportional to its length. To this end, we first partition

the TB trellis into several sets that are closed under cyclic shifts. Next, all elements in each

set are reconstructed via the concatenation of the corresponding IEEs and circular shifts of

the resulting path.

For a given length-N TB trellis associated with a minimal convolutional encoder g(x),

let V0 = {0, 1, . . . , 2ν − 1} be the set of possible encoder states. We seek a partition of the

TB trellis, i.e., mutually exclusive sets that, together, contain all length-N TB paths. To do

this, we define TBP(0) as the set that contains all TB paths that traverse state 0; TBP(1)

contains the TB paths that traverse state 1 but not state 0; and so on. In general, the set

TBP(σ) for σ ∈ V0 is defined as follows,

TBP(σ) ,
{

(s,a) ∈ V N+1
0 ×AN :s0 = sN ;

∃i ∈ I s.t. si = σ; ∀i ∈ I, si /∈ {0, 1, . . . , σ − 1}
}
. (2.33)
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An important property of the above decomposition is that each set TBP(σ) is closed

under cyclic shifts, as circularly shifting a TB path preserves the sequence of states that it

traverses. Furthermore, such a partition of the TB trellis motivates the following IEE.

Definition 2 (Irreducible error events). For a TB trellis T on sequential time axis I =

{0, 1, . . . , N}, the set of irreducible error events (s,a) at state σ ∈ V0 is defined as

IEE(σ) ,
⋃

l=1,2,...,N

IEE(σ, l), (2.34)

where

IEE(σ, l) ,
{

(s,a) ∈ V l+1
0 ×Al : s0 = sl = σ;∀j, 0 < j < l, sj /∈ {0, 1, . . . , σ}

}
. (2.35)

For ZTCCs, Lou et al. [LDW15] considered finding IEEs that start and end at the zero

state and counting the allowed combinations. Hence, the IEE defined above generalizes

Lou et al.’s IEEs. Since for a nonzero start state, no IEE can traverse the zero state, this

guarantees that the weight of the IEE grows proportionally with its length, thus avoiding

the catastrophic IEEs incurred in the straightforward algorithm.

With the set TBP(σ) defined as above, the following theorem describes how to efficiently

find all elements in each TBP(σ) via the corresponding IEEs.

Theorem 3. Every TB path (s,a) ∈ TBP(σ) can be constructed from the IEEs in IEE(σ)

via concatenation and subsequent cyclic shifts.

Proof. Let us consider T as a TB trellis defined on a sequential time axis I = {0, 1, . . . , N}.
For any TB path (s,a) ∈ TBP(σ) of length N on T , we can first circularly shift it to the

TB path (s(0),a(0)) ∈ TBP(σ) on T satisfying s(0)
0 = s

(0)
N = σ.

Now, we examine (s(0),a(0)). If (s(0),a(0)) is already an element of IEE(σ), then there

is nothing to prove. Otherwise, there exists a time index j, 0 < j < N , such that sj = σ.

In this case, we break the TB path (s(0),a(0)) at time j into two subpaths (s(1),a(1)) and
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(s(2),a(2)), where

s(1) =(s0, s1, . . . , sj), a
(1) = (a0, a1, . . . , aj−1),

s(2) =(sj, sj+1, . . . , sN), a(2) = (aj, aj+1, . . . , aN−1).

Note that after segmentation of (s(0),a(0)), the resultant two subpaths, (s(1),a(1)) and

(s(2),a(2)), still meet the TB condition. Repeat the above procedure on (s(1),a(1)) and

(s(2),a(2)). Since the length of a new subpath is strictly decreasing after each segmentation,

the boundary case is the atomic subpath (s,a) of some length j∗ satisfying s0 = sj∗ = σ,

sj′ 6= σ, ∀j′ ∈ (0, j∗). Clearly, this atomic path is an element of IEE(σ). Thus, we success-

fully decompose a length-N TB path into elements of IEE(σ). Hence, reversing the above

procedures will assemble elements of IEE(σ) into a length-N TB path.

Algorithm 1 The Collection Procedure
Input: The TB trellis T , threshold d̃

Output: The list of IEEs LIEE(d̃) = {(s,a,v)}
1: Initialize empty lists Lσ for all σ ∈ V0;

2: for σ ← 0, 1, . . . , |V0| − 1 do

3: Perform Viterbi search at σ on T to collect list Lσ(d̃) of all IEEs of distance less than

d̃;

4: end for

5: return LIEE(d̃)← ⋃
σ∈V0
Lσ(d̃);
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Algorithm 2 The Search Procedure
Input: The trellis length N , degree m, list of IEEs LIEE(d̃)

Output: The degree-m DSO CRC polynomial p(x)

1: Initialize the list LCRC of 2m−1 CRC candidates and empty lists LTBP(d) of TBPs, d =

1, . . . , d̃− 1;

2: for d← 1, 2 . . . , d̃− 1 do

3: Construct all TBPs (s,a,v) from LIEE(d̃) s.t. wH(a) = d, |v| = N , via concatenation

and cyclic shifts; for each TBP, LTBP(d)← LTBP(d) ∪ {(s,a,v)};
4: end for

5: Candi(1)← LCRC;

6: for d← 1, . . . , d̃− 1 do

7: for pi(x) ∈ Candi(d) do

8: Pass all v(x) ∈ LTBP(d) to pi(x);

9: C(i) ← the number of divisible v(x) of dist. d;

10: end for

11: C∗ ← mini∈Candi(d) C
(i);

12: Candi(d+ 1)← {pi(x) ∈ Candi(d) : C(i) = C∗};
13: if |Candi(d+ 1)| = 1 then

14: return Candi(d+ 1);

15: end if

16: end for

We now present our two-phase DSO CRC polynomial design algorithm for TBCCs of

arbitrary rate (including rate 1/ω) at low target Pe,λ that consists of the collection procedure

described in Algorithm 1 and the search procedure described in Algorithm 2. In the collection

procedure, (s,a,v) denotes the triple of states s, outputs a, and inputs v, where the inputs

v are uniquely determined by state transitions si → si+1, i = 0, 1, . . . , N − 1. The TB trellis

considered in the collection procedure should set a sufficiently large trellis length so that all
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IEEs with distance less than d̃ are identified. Once the collection procedure is completed,

one can reuse the collected IEEs in the search procedure for various trellis lengths. For a

given higher-rate code Ch and a specified CRC degreem, by Theorem 2, it suffices to consider

distance threshold d̃ ≤ 2w∗ + 1 to identify the degree-m DSO CRC polynomial, where w∗ is

the minimum weight determined in Theorem 2.

In the search procedure, let |v| denote the length of v. Steps from lines 2 to 4 use the

IEEs to build all length-N trellis paths with distance less than d̃. In practice, this can be

accomplished with dynamic programming. Specifically, for a given state σ ∈ V0, let Lσ(w, l)

denote the list of TB paths of weight w, of length l, and with initial state σ, 0 ≤ w < d̃,

1 ≤ l ≤ N . Then, the update rule of Lσ(w, l) is as follows: given an IEE (s,a,v) ∈ IEE(σ)

with wH(a) ≤ w and |v| < l,

Lσ(w, l)←Lσ(w, l) ∪ {Lσ(w − wH(a), l − |v|)⊕ (s,a,v)},

where Lσ(w, l)⊕ (s,a,v) denotes appending (s,a,v) to the rear of each element in Lσ(w, l).

The update rule inherently requires that w, l be enumerated in ascending order and wH(a), |v|
in descending order. Finally, the set of length-N TB paths of distance less than d̃ via direct

concatenation are given by
⋃
σ∈V0
Lσ(d̃ − 1, N). The rest of the TB paths are obtained by

circularly shifting elements in
⋃
σ∈V0
Lσ(d̃− 1, N).
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Table 2.2: Optimum Rate-1/2 ZTCCs and Their DSO CRC Polynomials for k = 64 at

Sufficiently Low Probability of UE Pe,λ

ν ZTCC g(x)
DSO CRC Polynomials

m = 3 4 5 6 7 8 9 10
3 (13, 17) 9 1B 2D 43 B5 107 313 50B
4 (27, 31) F 15 33 4F D3 13F 2AD 709
5 (53, 75) 9 11 25 49 EF 131 23F 73D
6 (133, 171) F 1B 23 41 8F 113 2EF 629
7 (247, 371) 9 13 3F 5B E9 17F 2A5 61D
8 (561, 753) F 11 33 49 8B 19D 27B 4CF
9 (1131, 1537) D 15 21 51 B7 1D5 20F 50D
10 (2473, 3217) F 13 3D 5B BB 105 20D 6BB

Table 2.3: Optimum Rate-1/2 TBCCs and Their DSO CRC Polynomials for k = 64 at

Sufficiently Low Probability of UE Pe,λ

ν TBCC g(x)
DSO CRC Polynomials

m = 3 4 5 6 7 8 9 10
3 (13, 17) F 1F 2D 63 ED 107 349 49D
4 (27, 31) F 11 33 4F B5 1AB 265 4D1
5 (53, 75) 9 11 3F 63 BD 16D 349 41B
6 (133, 171) F 1B 3D 7F FF 145 2BD 571
7 (247, 371) F 11 33 63 EF 145 3A1 5D7
8 (561, 753) F 11 33 7F FF 1AB 301 4F5
9 (1131, 1537) D 15 33 51 C5 1FF 349 583
10 (2473, 3217) F 1B 33 79 BB 199 217 4DD

We remark that our algorithm can be generalized to ZTCCs of arbitrary rate by carrying

out the following distinctions: the collection procedure only collects IEEs that start and

terminate at the zero state; the search procedure only performs dynamic programming to re-

construct all ZT paths with the target trellis length N and distances less than d̃; termination

tails of each ZT path should be removed before CRC verification. For interested readers, the

DSO CRC design MATLAB routines are available for ZTCCs [Yanb] and for TBCCs [Yana].
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Table 2.2 presents the DSO CRC polynomials of degree m from 3 to 10 that maximize

dlmin of CRC-ZTCCs based on a family of optimum rate-1/2 convolutional encoders in [LC04,

Table 12.1(c)] with constraint length v from 3 to 10 for k = 64. These DSO CRC polynomials

are designed for a sufficiently low Pe,λ. Table 2.3 presents the TBCC counterpart in the same

setting. The code generated by the DSO CRC polynomial and convolutional encoder in the

above tables is our designed CRC-aided convolutional code. In Section 2.5, we will present

the performance and complexity trade-off of these codes.

2.4 Performance and Complexity of SLVD

This section explores the performance and complexity of SLVD. For a specified CRC-aided

convolutional code, performance under SLVD is characterized by three probabilities: Pc,Ψ,

Pe,Ψ, and PNACK,Ψ. The average decoding complexity of SLVD is a function of expected

list rank E[L]. In order to understand the performance-complexity trade-off, we investigate

how these quantities vary with system parameters including the SNR γs and the constrained

maximum list size Ψ.

Geometrically speaking, the process of SLVD is to draw a list decoding sphere around

the received sequence y with an increasing radius until the sphere touches the closest lower-

rate codeword. To formalize this procedure, let us consider the set of received sequences

y ∈ Rn \ N where N is the probability-zero set defined by N , {y ∈ Rn : ∃ c1, c2 ∈
Ch s.t. ‖y − x(c1)‖ = ‖y − x(c2)‖}. For every y ∈ Rn \ N , let

c1(y), c2(y), . . . , c|Ch|(y) (2.36)

be an enumeration of Ch such that

‖y−x(c1(y))‖ < ‖y−x(c2(y))‖< · · ·< ‖y−x(c|Ch|(y))‖.

Using the above enumeration, we formally define the terminating list rank L(y) and the
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terminating Euclidean distance dt(y) for y as follows:

L(y) , min{s ∈ {1, 2, . . . , |Ch|} : cs(y) ∈ Cl}, (2.37)

dt(y) , min
c∈Cl
‖y − x(c)‖. (2.38)

Thus, the list decoding sphere of y can be expressed as

BSLVD(y) = {c ∈ Ch : ‖y − x(c)‖ ≤ dt(y)}. (2.39)

Clearly, L(y) = |BSLVD(y)|.

The concepts above are defined for each individual received point y ∈ Rn \ N . Alter-

natively, we can also consider the decoding region Y(c) (i.e., the Voronoi region) of each

lower-rate codeword c ∈ Cl:

Y(c) ,
{
y ∈ Rn \ N : ‖y − x(c)‖ < ‖y − x(c′)‖,∀c′ ∈ Cl \ {c}

}
. (2.40)

For SLVD, the decoding region Y(c) can be further decomposed into finer subsets according

to the list rank. Namely, for each c ∈ Cl and a particular list rank s ∈ {1, 2, . . . , |Ch|−|Cl|+1},

Zs(c) ,
{
y ∈ Rn \ N : ∃c1, . . . , cs−1 ∈ Ch \ Cl s.t. ‖y − x(c)‖ > max

j=1,2,...,s−1
‖y − x(cj)‖

and ‖y − x(c)‖ < min
c′ /∈Ch\{c,c1,...,cs−1}

‖y − x(c′)‖
}
. (2.41)

Here, each Zs(c) is referred to as the order-s decoding region of c. Obviously, for each c ∈ Cl,
we have

Zs1(c) ∩ Zs2(c) = ∅, if s1 6= s2 (2.42)

Y(c) =
⋃

s=1,2,...,|Ch|−|Cl|+1

Zs(c). (2.43)

By linearity of the code, the order-s decoding regions of all lower-rate codewords are iso-

morphic. With BPSK modulation, the bisection hyperplane of any two codewords passes

through the origin of Rn, making each order-s decoding region a polyhedron. Note that

there exists a supremum list rank λ

λ , max{s ∈ Z+ : Zs(c) 6= ∅,∀c ∈ Cl}. (2.44)
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Here, the supremum list rank λ only depends on Cl and Ch and is independent of Ψ. Hence,

if Ψ ≥ λ, the possible outcomes of SLVD only include correct decoding and UE. Namely,

NACKs are not possible.

2.4.1 Performance Analysis

We first give our results on how Pc,Ψ, Pe,Ψ, and PNACK,Ψ vary with Ψ for a fixed SNR. Each

of these probabilities may be understood as the probability of an event defined as a set of

received sequences y. For example, with c̄ ∈ Cl as the transmitted codeword, by linearity,

we have

Pc,Ψ = P

( ⋃
s=1,2...,λ∧Ψ

Zs(c̄)
∣∣∣∣X = x(c̄)

)
=

λ∧Ψ∑
s=1

P
(
Zs(c̄)|X = x(c̄)

)
, (2.45)

Pe,Ψ =
∑

c∈Cl\{c̄}

P

( ⋃
s=1,2,...λ∧Ψ

Zs(c)
∣∣∣∣X = x(c̄)

)
=

λ∧Ψ∑
s=1

∑
c∈Cl\{c̄}

P
(
Zs(c)|X = x(c̄)

)
, (2.46)

where λ ∧Ψ , min{λ,Ψ}.

Theorem 4. For a given CRC-aided convolutional code decoded with SLVD at a fixed SNR,

Pc,Ψ and Pe,Ψ are both strictly increasing in Ψ and will converge to Pc,λ and Pe,λ respectively,

where Pc,λ + Pe,λ = 1.

Proof. According to (4.41) and (4.42), Pc,Ψ and Pe,Ψ are summations of the order-s decoding

regions P(Zs(c)|X = x(c̄)), thus are non-decreasing in Ψ. For each c ∈ Cl and s =

1, 2, . . . , λ, P(Zs(c)|X = x(c̄)) is solely determined by the SNR value and is independent

of Ψ. Since every order-s decoding region Zs(c) is the intersection of halfplanes, it follows

that each Zs(c) is an open set. Hence, to show the strict increasing property, it suffices to

show that each Zs(c) is nonempty. To this end, we use induction to show that all Zs(c),
s = 1, 2, . . . , λ, are open and nonempty.

By definition, Zλ(c) is nonempty. Assume Zs(c) is nonempty for some 2 ≤ s ≤ λ, we

need to show that Zs−1(c) is also nonempty. By assumption, there exists y ∈ Zs(c) with
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c1, c2, . . . , cs−1, c ∈ BSLVD(y), where c1, . . . , cs−1 ∈ Ch \ Cl and c ∈ Cl. Next, we show that

with probability 1, a point y′ can be constructed from y such that there exists a single

j ∈ {1, 2, . . . , s − 1} such that x(cj) and x(c) are respectively the furthest and second

furthest points from y′. This implies that y′ ∈ Zs−1(c).

We construct the new point y′ as y′ = y + t(x(c)− y), where t ∈ [0, 1]. Hence,

‖x(c)− y′‖ = (1− t)‖y − x(c)‖. (2.47)

Therefore, it is equivalent to showing that there exists t ∈ (0, 1) such that for some j ∈
{1, 2, . . . , s− 1},

‖y′ − x(cj)‖ > (1− t)‖y − x(c)‖, (2.48)

max
i∈{1,...,s−1}\{j}

‖y′ − x(ci)‖ < (1− t)‖y − x(c)‖. (2.49)

To this end, we show that the set of y for which no such t exists has a probability of zero.

First, consider function

F (t) , max
i=1,2,...,s−1

‖y′ − x(ci)‖ − (1− t)‖y − x(c)‖.

Since each ‖y′ − x(ci)‖, i = 1, 2, . . . , s − 1, is a continuous function in t, F (t) is also a

continuous function in t ∈ [0, 1]. Note that

F (0) = max
i=1,2,...,s−1

‖y − x(ci)‖ − ‖y − x(c)‖ < 0, (2.50)

F (1) = max
i=1,2,...,s−1

‖x(c)− x(ci)‖ > 0. (2.51)

By the intermediate value theorem, there exists a t∗ ∈ (0, 1) such that

max
i=1,2,...,s−1

‖y′ − x(ci)‖ = (1− t∗)‖y − x(c)‖. (2.52)

Hence, the converse case can only occur if there exist two codewords cj1 and cj2 , j1 6= j2,

such that

‖y′ − x(cj1)‖ = ‖y′ − x(cj2)‖ = (1− t∗)‖y − x(c)‖. (2.53)
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Namely, the converse case only occurs if there exist two distinct points in BSLVD(y) that are

equally furthest from y′. If (3.78) holds, this implies that y′ lies on the intersection of two

hyperplanes: one that bisects x(cj1)x(c) and the other that bisects x(cj2)x(c). Namely,

y′ lies on an (n − 2)-dimensional hyperplane that crosses the origin. Hence, such y′ only

occurs if line segment yx(c) intersects with any of these (n − 2)-dimensional hyperplanes.

Therefore, the set of y for which the converse case occurs is the union of finitely many

(n − 1)-dimensional hyperplanes, and thus has zero probability. Hence, we can construct

a y′ from y ∈ Zs(c) such that y′ ∈ Zs−1(c) with probability 1. Namely, Zs−1(c) is also

nonempty.

By induction, every order-s decoding region Zs(c), s = 1, 2, . . . , λ, is open and nonempty.

Thus, Pc,Ψ and Pe,Ψ are both strictly increasing in Ψ and will converge to Pc,λ and Pe,λ,

respectively, provided that Ψ ≥ λ.

As an example, Fig. 2.3 shows the probability of UE Pe,Ψ and probability of NACK

PNACK,Ψ vs. the constrained maximum list size Ψ for k = 64, degree-6 DSO CRC polynomial

0x43 and ZTCC (13, 17). It can be seen that Pe,Ψ quickly increases and converges to Pe,λ

when Ψ is relatively small.

The monotone property of Pe,Ψ with Ψ in Theorem 4 indicates that for a fixed SNR value,

Pe,1 ≤ Pe,Ψ ≤ Pe,λ, ∀Ψ ∈ Z+. (2.54)

The proof of Theorem 4 also implies that the closure of the order-λ decoding region must

intersect with the boundary of Y(c), c ∈ Cl. We formalize this notion in Theorem 5.

Theorem 5. For any lower-rate codeword c ∈ Cl, cl(Zλ(c)) ∩ ∂Y(c) 6= ∅.

Proof. Fix a lower-rate codeword c ∈ Cl. Let y ∈ Zλ(c). Consider y′ = y + t(y − x(c)),

t ≥ 0. By the proof in Theorem 4, if y′ ∈ Y(c), L(y′) ≥ L(y) = λ. Since λ is the supremum

list rank, L(y′) = λ for all 0 ≤ t < t∗, where t∗ is the threshold at which y′ ∈ ∂Y(c). This

implies that cl(Zλ(c)) ∩ ∂Y(c) 6= ∅.
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Figure 2.3: 1 − Pc,Ψ, PNACK,Ψ, Pe,Ψ vs. the constraint maximum list size Ψ at SNR γs = 3

dB for ZTCC (13, 17), degree-6 DSO CRC polynomial 0x43, and k = 64 in Table 2.2. The

black, dashed line represents Pe,λ.

Theorem 5 indicates that one can find λ by following along the boundary of Y(c) and

making a slight deviation towards the decoding region Y(c). This approach is computation-

ally challenging in Rn for interesting values of n. While |Ch| − |Cl| + 1 is a straightforward

upper bound on λ, it remains an open problem to identify a tighter bound on λ and to

develop an efficient algorithm to compute λ.

We next direct our attention to quantifying Pe,1, Pe,λ in terms of the SNR (or equivalently

in terms of amplitude A) and the distance spectra of both the lower-rate code Cl and the

higher-rate code Ch.

Theorem 6. Under SLVD of a CRC-aided convolutional code with higher-rate distance spec-
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trum Bdhmin
, . . . , Bn and lower-rate distance spectrum Cdlmin

, . . . , Cn,

Pe,1 ≤ min

{
2−m,

n∑
d=dlmin

CdQ
(
A
√
d
)}

(2.55)

≈ min

{
2−m, Cdlmin

Q
(
A
√
dlmin

)}
, (2.56)

Pe,λ ≤ min

{
1,

n∑
d=dlmin

CdQ
(
A
√
d
)}

(2.57)

≈ min

{
1,

d̃∑
d=dlmin

CdQ
(
A
√
d
)}
, (2.58)

PNACK,1 ≈ min

{
1− 2−m,

d̃∑
d=dhmin

BdQ
(
A
√
d
)
− Cdlmin

Q
(
A
√
dlmin

)}
, (2.59)

where the second approximation in braces in (2.56) is called the nearest neighbor approxima-

tion, and the second approximation in (2.58) is called the truncated union bound (TUB) at

distance d̃ ∈ Z+.

Proof. First, note that Pe,Ψ is a monotonically decreasing function of A for any Ψ. This can

be seen from (4.42) where as A increases, the center of the Gaussian density is moving away

from every x(c) for c ∈ Cl \ {c̄}. Hence, the corresponding probability P(Zs(c)|X = x(c̄))

decreases with A, causing Pe,Ψ to decrease with A.

Now we focus on the Ψ = 1 case. The previous paragraph reveals that Pe,1 has its

maximum value at A = 0. As A → 0, the transmitted point converges to the origin O in

Rn. At the limit where x(c̄) = O, the symmetry of the Gaussian density and linearity of

the code ensures that each order-1 decoding region has a probability of 2−(k+m). Hence,

Pe,1 =
∑

c∈Cl\{c̄}

P(Z1(c)|X = x(c̄)) (2.60)

≤ lim
A→0

∑
c∈Cl\{c̄}

P(Z1(c)|X = x(c̄)) (2.61)
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=
∑

c∈Cl\{c̄}

P(Z1(c)|X = O)) (2.62)

= (2k − 1)2−(k+m) ≤ 2−m. (2.63)

For any SNR value, Pe,1 < Pe,λ so that the union bound (2.23) is also an upper bound for

Pe,1. Hence, the minimum between the two is an upper bound on Pe,1. As SNR increases, the

majority of probability will concentrate on the nearest neighbors of c̄, hence, we approximate

Pe,1 only using the nearest neighbors.

For Pe,λ, we upper bound it by the union bound (2.23). For ease of computation, we can

consider the TUB up to a sufficient distance d̃ to approximate the original union bound.

For PNACK,1, in the extremely low SNR regime (i.e., when A is close to 0), Pc,1 ≈ 2−(k+m)

and Pe,1 ≈ 2−m(1− 2−k). It follows that

PNACK,1 = 1− Pe,1 − Pc,1 ≈ 1− 2−m. (2.64)

For an arbitrary SNR, invoking the union bound on PNACK,1 + Pe,1 yields

PNACK,1 + Pe,1 ≤
n∑

d=dhmin

BdQ
(
A
√
d
)
≈

d̃∑
d=dhmin

BdQ
(
A
√
d
)
.

Hence,

PNACK,1 ≈
d̃∑

d=dhmin

BdQ
(
A
√
d
)
− Cdlmin

Q
(
A
√
dlmin

)
. (2.65)

This concludes the proof of Theorem 6.

Fig. 2.4 shows simulation results and approximations for the three probabilities stated

in Theorem 6: PNACK,1, Pe,1, and Pe,λ. As SNR increases, all three approximations become

asymptotically tight to the respective Pe,1, PNACK,1, and Pe,λ. The nearest neighbor approx-

imation will eventually become asymptotically tight for Pe,λ, but is a tight approximation

for Pe,1 at a much lower SNR.
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Figure 2.4: PNACK,1, Pe,λ, and Pe,1 vs. SNR γs for ZTCC (13, 17), degree-6 DSO CRC

polynomial 0x43 and k = 64 in Table 2.2. The TUBs in (2.58) and (2.59) are obtained at

d̃ = 24. The TS bound on PNACK,1 is plotted using [YK04a, Eq. (14)].

We remark that improved upper bounds on PNACK,1 and Pe,λ can be derived using Gal-

lager’s first bounding technique [Gal63], provided that the full distance spectra of Ch and

Cl are known, respectively. Some classical examples include the tangential bound [Ber80],

the tangential sphere (TS) bound [Pol94,YK04a], and the added-hyperplane bound [YK04b].

These bounds provide a tight estimation at high noise levels and converge to the union bound

at low noise levels. As an example, in Fig. 2.4, we plot the minimum between (1− 2−m) and

the TS bound for PNACK,1 following [YK04a, Eq. (14)]. It can be seen that the TS bound

quickly converges to the TUB as SNR increases. Since this chapter mainly focuses on low

target error probability, we only consider the TUB for estimating PNACK,1 and Pe,λ.
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Figure 2.5: An illustration of the projection method.

2.4.2 Analysis of the Expected List Rank

For a fixed transmitted point x̄, observe that P(L = s|X = x̄) =
∑

c∈Cl P(Zs(c)|X = x̄)

is independent of Ψ. Combining with the linearity E[L] = E[L|X = x̄], it follows that E[L]

is a strictly increasing function in Ψ. In the following analysis, we assume that Ψ ≥ λ unless

otherwise specified. Thus, the terminating list rank L ranges from 1 to λ.

Theorem 7. For a given CRC-aided convolutional code decoded with SLVD, limγs→0 E[L] =

E[L|X = O].

Proof. We use the projection method to show the convergence of E[L] in the low SNR regime.

For ease of discussion, let B(a, r) denote the spherical surface of center a and radius r in

Rn, where a ∈ Rn, r ≥ 0. With BPSK modulation, all codewords sit on the codeword sphere

B(O, A
√
n), whereas the received point y lies on the noise sphere B(x̄, w) for some noise

vector with Euclidean norm w added to the transmitted point x̄. The projection method

projects the received point y onto the codeword sphere. Namely, the projected point yp of y

is given by yp = (A
√
n/‖y‖)y. Fig. 2.5 illustrates the geometry of the projection method.

The significance of the projection method introduced above lies in the fact that it pre-
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serves the order of list decoded codewords. By law of cosines at angle θ in Fig. 2.5, we

obtain

‖yp − x̄‖ =


√
‖y−x̄‖2−‖y−yp‖2

1+
‖y−yp‖
A
√
n

, if yp in between O, y√
‖y−x̄‖2−‖y−yp‖2

1− ‖y−yp‖
A
√
n

, otherwise.
(2.66)

Hence, the monotone relation between ‖yp − x̄‖ and ‖y − x̄‖ ensures that performing SLVD

over y is equivalent to that over yp. The essential motivation of projecting points onto the

codeword sphere is to transfer the computation from the noise sphere to the codeword sphere.

To see how the projection method helps to show the convergence of E[L], we first decom-

pose the expected list rank E[L] according to the noise vector norm W = w. By linearity of

the code,

E[L] = E[L|X = x̄] =

∫ ∞
0

fW (w)E[L|W = w,X = x̄] dw, (2.67)

where fW (w) denotes the density function of norm W = w. To find fW (w), let

φn(w) =
1

(
√

2π)n
e−w

2/2, (2.68)

Sn−1(w) =
2π

n
2

Γ(n
2
)
wn−1, (2.69)

be the n-dimensional standard normal density function and the spherical area of B(x̄, w) in

Rn, respectively. Then,

fW (w) = φn(w)Sn−1(w) =
wn−1

2
n−2

2 Γ(n
2
)
e−w

2/2. (2.70)

For a given norm W = w, it follows that

E[L|W = w,X = x̄] =
1

Sn−1(w)

∫
y∈B(x̄,w)\N

L(y) dσ, (2.71)

where σ denotes the spherical measure on B(x̄, w). Using the projection method, the integral

in (2.71) can be transferred to the codeword sphere at the cost of introducing an induced

density function gw(yp). Namely,

E[L|W = w,X = x̄] =

∫
yp∈B(O,A

√
n)\N

L(yp)gw(yp) dσ. (2.72)
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In the Appendix, the induced density function, for w ≥ A
√
n, is given by

gw(yp) =

(‖y(yp)‖
w

)n−1
1

cos∠x̄y(yp)O

1

Sn−1(A
√
n)
, (2.73)

where y(yp) is the preimage of yp on the noise sphere B(x̄, w). Note that gw(yp) is rotation-

ally symmetric with respect to axis Ox̄. The Appendix also shows that

gw(yp) ≥
1

Sn−1(A
√
n)

(
1− A

√
n

w

)n−1

, (2.74)

gw(yp) ≤
1

Sn−1(A
√
n)

(
1 +

A
√
n

w

)n−1

. (2.75)

This implies that for a fixed norm w,

lim
A→0

gw(yp)

(Sn−1(A
√
n))−1

= 1. (2.76)

Hence, for a fixed norm w, it follows that

lim
A→0

E[L|W = w,X = x̄] = lim
A→0

∫
yp∈B(O,A

√
n)\N

L(yp)gw(yp) dσ (2.77)

= lim
A→0

∫
yp∈B(O,A

√
n)\N

L(yp)
1

Sn−1(A
√
n)

dσ (2.78)

= lim
A→0

E[L|W = A
√
n,X = O] (2.79)

= E[L|X = O], (2.80)

where we have used the fact that E[L|W = w,X = O] = E[L|X = O] for all w > 0.

Similarly, we can also show that, for a fixed amplitude A,

lim
w→∞

E[L|W = w,X = x̄] = E[L|X = O]. (2.81)

As a consequence,

lim
γs→0

E[L] = lim
A→0

∫ ∞
0

fW (w)E[L|W = w,X = x̄] dw

=

∫ ∞
0

f(w) lim
A→0

E[L|W = w,X = x̄] dw

=

∫ ∞
0

f(w)E[L|X = O] dw
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= E[L|X = O]. (2.82)

This completes the proof.

In general, E[L|X = O] depends on the geometric structure of the lower-rate code Cl and
the higher-rate code Ch on B(O, A

√
n), and it is not easy to obtain an analytic expression.

Still, using a simple random coding argument, we show that a good concatenated code could

achieve E[L|X = O] ≤ 2m.

Theorem 8. For a given higher-rate code Ch with |Ch| = 2k+m, let Al , {C ′ ⊂ Ch : |C ′| = 2k}.
Let P(C ′) = 1

|Al|
be the uniform distribution defined over Al. Assume C ′ is drawn according

to P(C ′). Then,

EC′
[
E[L|X = O, C ′]

]
≤ 2m. (2.83)

Thus, there exists a lower-rate code C ′ (which may not be a linear code) such that E[L|X =

O, C ′] ≤ 2m.

Proof. Let L(y, C ′) be the terminating list rank for received point y ∈ Rn when the lower-

rate code C ′ ∈ Al is selected. During the SLVD over y using code C ′, if there exist two

codewords cj1 and cj2 that are equidistant from y, we assume that the decoder adopts a

predetermined order relation between cj1 and cj2 . Hence, we obtain

EC′
[
E[L|X = O, C ′]

]
=
∑
C′∈Al

P(C ′) 1

Sn−1(A
√
n)

∫
y∈B(O,A

√
n)

L(y, C ′) dσ

=
1

Sn−1(A
√
n)

∫
y∈B(O,A

√
n)

∑
C′∈Al

P(C ′)L(y, C ′) dσ

=
1

Sn−1(A
√
n)

∫
y∈B(O,A

√
n)

EC′ [L(y, C ′)|y] dσ. (2.84)

Next, we show that for any y ∈ B(O, A
√
n),

EC′ [L(y, C ′)|y] ≤ 2m (2.85)
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for C ′ uniformly drawn from Al. Fix a y ∈ B(O, A
√
n) and let c1(y), c2(y), . . . , c|Ch|(y) be

an enumeration of Ch such that

‖y − x(c1(y))‖ ≤ · · · ≤ ‖y − x(c|Ch|(y))‖.

Hence, the terminating list rank L(y, C ′) of y is given by

L(y, C ′) = min
{
s ∈ {1, 2, . . . , |Ch|} : cs(y) ∈ C ′

}
. (2.86)

For C ′ uniformly drawn in Al, computing EC′ [L(y, C ′)|y] is equivalent to solving the following

problem: there are |Ch| balls in a basket, among which |C ′| of them are red and the rest are

white. Balls are picked up |Ch| times without replacement, and the time at which the first

red ball emerges is marked as the terminating list rank. Since every ordering of ball picking

is equiprobable and is bijective with Al, the expected list rank in ball picking problem is

equal to EC′ [L(y, C ′)|y]. Hence,

EC′ [L(y, C ′)|y] =

|Ch|−|C′|+1∑
s=1

s

(|Ch|−s
|C′|−1

)(|Ch|
|C′|

) (2.87)

=
|Ch|+ 1

|C ′|+ 1
(2.88)

≤ 2m,

where (3.116) follows from a variant of the Chu-Vandermonde identity.

Finally, substituting (2.85) into (2.84) proves Theorem 8.

In (2.67), it is shown that E[L] can be fully characterized by its conditional expectation

E[L|W = w,X = x̄]. For a given w and A, let x̄e = x̄/A be the transmitted point with unit

amplitude per dimension. Then it can be shown that

E[L|W = w,X = x̄] = E[L|W = η,X = x̄e], (2.89)

where η , w/A is called the normalized norm. Hence, it suffices to compute E[L|W =

η,X = x̄e]. The SNR (equivalently, the BPSK amplitude A) only exhibits a scaling effect.
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To evaluate E[L|W = η,X = x̄e], let C−l , Cl \ {c̄} and define the conditional probability of

UE conditioned on the sphere B(x̄e, η) as

Pe,λ(η) ,
∑
c∈C−l

P(Y(c)|W = η,X = x̄e). (2.90)

In general, it is difficult to know the conditional probability of UE Pe,λ(η). Assuming the

knowledge of parametric information Pe,λ(η), we first show an approximation that represents

E[L|W = η,X = x̄e] as a linear combination between L = 1 and L = E[L|X = O] with

coefficient given by Pe,λ(η).

Approximation 3 (Parametric approximation). Define L̄ , E[L|X = O]. For a CRC-

aided convolutional code with corresponding parameters L̄ and Pe,λ(η),

E[L|W = η,X = x̄e] ≈ 1− Pe,λ(η) + Pe,λ(η)L̄. (2.91)

Furthermore, averaging over W = η on both sides of (2.91) yields the parametric approxi-

mation of E[L], i.e.,

E[L] ≈ 1− Pe,λ + Pe,λL̄. (2.92)

Proof. [Justification] For ease of discussion, we use the shorthand notation P(·|η, x̄e) ,

P(·|W = η,X = x̄e) and P(·|O) = P(·|X = O). Let us consider η for which Pe,λ(η) > 0.

Hence,

E[L|W = η,X = x̄e] =
λ∑
s=1

sP(L = s|η, x̄e)

= P(Y(c̄)|η, x̄e) +
λ∑
s=1

sP(L = s|η, x̄e)−
λ∑
s=1

P(Zs(c̄)|η, x̄e)

≥ 1− Pe,λ(η) +
λ∑
s=1

s
(
P(L = s|η, x̄e)−P(Zs(c̄)|η, x̄e)

)
= 1− Pe,λ(η) + Pe,λ(η)

(
λ∑
s=1

s

∑
c∈C−l

P(Zs(c)|η, x̄e)∑
c∈C−l

P(Y(c)|η, x̄e)

)
(2.93)
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≈ 1− Pe,λ(η) + Pe,λ(η)

(
λ∑
s=1

sP(L = s|O)

)
(2.94)

= 1− Pe,λ(η) + Pe,λ(η)L̄,

where (2.94) follows from the substitution below. Consider the conditional list rank distri-

bution

Pη =

(∑
c∈C−l

P(Z1(c)|η, x̄e)∑
c∈C−l

P(Y(c)|η, x̄e)
, . . . ,

∑
c∈C−l

P(Zλ(c)|η, x̄e)∑
c∈C−l

P(Y(c)|η, x̄e)

)
. (2.95)

Using the fact that limη→∞ gη(yp) = 1/Sn−1(
√
n), as η → ∞, the conditional list rank

distribution Pη converges to

P∞ =

(
P(Z1(c)|O)

P(Y(c)|O)
, . . . ,

P(Zλ(c)|O)

P(Y(c)|O)

)
(2.96)

=

(∑
c∈Cl P(Z1(c)|O)∑
c∈Cl P(Y(c)|O)

, . . . ,

∑
c∈Cl P(Zλ(c)|O)∑
c∈Cl P(Y(c)|O)

)
= (P(L = 1|O), . . . ,P(L = λ|O)), (2.97)

where c is any lower-rate codeword in (2.96). Hence, we directly replace Pη with the limit

distribution P∞ in (3.121). Finally, averaging over W = η on both sides of (2.91) yields

(2.92).
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Figure 2.6: The conditional expected list rank E[L|W = η,X = x̄e] vs. the normalized

norm η for the CRC-ZTCC generated with the degree-3 DSO CRC polynomial 0x9 and

ZTCC (13, 17).

Fig. 2.6 shows the simulation results of the conditional expected list rank E[L|W =

η,X = x̄e] vs. the normalized norm η for CRC-ZTCCs with various information lengths.

The corresponding parametric approximation is also provided, where L̄ = E[L|X = O] is

obtained from simulation. We see that the parametric approximation exhibits a remarkable

accuracy that improves as k increases. Observe that for large values of k, the convergent

E[L|W = η,X = x̄e] at sufficiently large η is close to 2m.

Using (2.67) and (2.89), we can produce E[L] as a function of SNR γs. Fig. 2.7 shows E[L]

vs. SNR along with its parametric approximations for ZTCC (13, 17) and various DSO CRC

polynomials of degree m = 3, 4, . . . , 6, where L̄ = E[L|X = O] is obtained from simulation.

We see that the parametric approximation on E[L] remains extremely tight.

The parametric approximation provides a practically useful quantitative connection be-

tween performance and complexity. Specifically, for CRC-ZTCCs with a target probabil-
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Figure 2.7: The expected list rank E[L] vs. SNR for various CRC-ZTCCs, where ZTCC is

(13, 17) and the DSO CRC polynomials are from Table 2.2 with degree m = 3, 4, . . . , 6. The

information length k = 64.

ity of UE P ∗e,λ and L̄ ≈ 2m for CRC degree m, (2.92) implies that a CRC with degree

m ≤ − log(P ∗e,λ) is sufficient to maintain E[L] ≤ 2, which ensures that the average com-

plexity for SLVD to achieve P ∗e,λ is at most one more traceback than the standard Viterbi

decoding.

As an alternative to Approximation 3, we provide a higher-order approximation formula

for a good CRC-aided convolutional code that only requires the knowledge of E[L|X = O].

This alternative approximation is motivated by Shannon’s result [Sha59] that an optimal

(n,M) code places its codewords on the surface of a sphere such that the total solid angle Ω0

is evenly divided among theM Voronoi regions, one for each codeword, and that each Voronoi

region is a circular cone. Hence, if the CRC-aided convolutional code is good enough, the

union of order-1 to order-µ decoding regions Zs(c) for a lower-rate codeword c ∈ Cl should
resemble circular cones, where µ is a parameter to be optimized. From this perspective,
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we propose the onion model for the order-1 to the order-µ decoding regions based on the

following assumptions.

1. The union
⋃s
i=1Zi(c) of order-1 to order-s decoding regions, 1 ≤ s ≤ µ, is a circular

cone with half-angle αs. This implies that each order-s decoding region, 2 ≤ s ≤ µ is

an annulus in between two circular cones.

2. The solid angle Ω(αs) of
⋃s
i=1Zi(c) is equal to s

2k+mΩ0, 1 ≤ s ≤ µ, where Ω0 is the

total solid angle (i.e., the area of a unit sphere in Rn).

3. The conditional expected list rank beyond
⋃µ
i=1Zi(c̄) is equal to L̄ (i.e., E[L|X = O]).

Approximation 4 (Higher-order approximation). For a given CRC-aided convolutional

code, let L̄ = E[L|X = O]. With the onion model assumptions and parameter µ ∈ Z+,

E[L|W = η,X = x̄e] is approximated by

E[L|W = η,X = x̄e] ≈



1, if η <
√
n sinα1

. . .

s−∑s−1
l=1 Fx̄e(l), if

√
n sinαs−1 ≤ η <

√
n sinαs

. . .

L̄− (L̄− µ)Fx̄e(µ)−∑µ−1
l=1 Fx̄e(l), if η ≥ √n sinαµ,

(2.98)

where assuming η ≥ √n sinαs,

Fx̄e(s) =
Γ
(
n
2

)
√
πΓ
(
n−1

2

)(∫ βs,1

0

sinn−2 θ dθ +

∫ βs,2

0

sinn−2 θ dθ

)
, (2.99)

βs,1 =
π

2
+ αs − arcsin

(√
η2 − n sin2 αs

η

)
, (2.100)

βs,2 =

(
π

2
− αs − arcsin

(√
η2 − n sin2 αs

η

))
1{η≤√n}, (2.101)

and αs is the half-angle for which

Ω(αs)

Ω0

=
Γ
(
n
2

)
√
πΓ
(
n−1

2

) ∫ αs

0

sinn−2 θ dθ =
s

2k+m
. (2.102)
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Justification. The onion model assumptions imply that each higher order decoding region

Zs(c), 2 ≤ s ≤ µ, is an annulus in between two circular cones. Hence, P(L = s|W =

η,X = x̄e) is simply the spherical area of B(x̄e, η) cut out by the annulus. To evaluate this

quantity, consider the cumulative probability function of L = s,

Fx̄e(s) , P(L ≤ s,X = x̄e). (2.103)

Thus,

P(L = s|W = η,X = x̄e) = Fx̄e(s)− Fx̄e(s− 1). (2.104)

By the onion model assumptions, for η ≥ √n sinαµ,

E[L|W = η,X = x̄e] ≈
µ∑
l=1

l(Fx̄e(l)− Fx̄e(l − 1)) + L̄(1− Fx̄e(µ)) (2.105)

= L̄− (L̄− µ)Fx̄e(µ)−
µ−1∑
l=1

Fx̄e(l). (2.106)

In the similar fashion, for
√
n sinαs−1 ≤ η <

√
n sinαs, 1 ≤ s ≤ µ,

E[L|W = η,X = x̄e] ≈ s−
s−1∑
l=1

Fx̄e(l). (2.107)

Next, we derive the cumulative probability function Fx̄e(s). Geometrically, Fx̄e(s) is the

fraction of the spherical area of B(x̄e, η) cut out by the circular cone
⋃s
i=1Zs(c̄) with half-

angle αs to the total noise spherical area. Assume that
√
n sinαs ≤ η ≤ √n. Fig. 2.8

shows the side view of this scenario in R3, in which the blue arc represents the spherical area

contained in
⋃s
i=1Zs(c̄). It can be seen that αs will induce two possible half-angles βs,1 and

βs,2. By law of cosines,

β =
π

2
± αs − arcsin

(
r2 − r1

2η

)
(2.108)

=
π

2
± αs − arcsin

(√
η2 − n sin2 αs

η

)
, (2.109)
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O x̄e
αs βs,1βs,2

Figure 2.8: The geometry of the cumulative probability function Fx̄e(s), assuming that
√
n sinαs ≤ η ≤ √n.

where r1, r2 are solutions to

r2 − (2
√
n cosαs)r + (n− η2) = 0. (2.110)

The induced half-angle β becomes unique once η >
√
n.

From [Sha59, Eq. (21)], the solid angle Ω(α) of a circular cone with center O and half-

angle α in n-dimensional Euclidean space is given by

Ω(α) =
2π

n−1
2

Γ
(
n−1

2

) ∫ α

0

sinn−2 θ dθ. (2.111)

The total solid angle Ω0 in n-dimensional Euclidean space is given by

Ω0 =
2π

n
2

Γ
(
n
2

) . (2.112)

Thus, using (2.111), (2.112), we can solve αs from assumption 2 of the onion model. Namely,

αs is the solution to

Ω(α)

Ω0

=
Γ
(
n
2

)
√
πΓ
(
n−1

2

) ∫ α

0

sinn−2 θ dθ =
s

2k+m
. (2.113)

By geometry in Fig. 2.8, Fx̄e(s) in (2.103) is given by

Fx̄e(s) =
Ω(βs,1) + Ω(βs,2)

Ω0

. (2.114)
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Figure 2.9: The higher-order and parametric approximations of E[L|W = η,X = x̄e] for

ZTCC (561, 753) used with the degree-10 DSO CRC polynomial 0x4CF at k = 64. Both the

higher-order and parametric approximations assume the knowledge of L̄ = 1017. The back,

dashed line corresponds to 210.

This concludes the justification of Approximation 4.

To demonstrate the tightness of Approximation 4 for suffi-ciently good CRC-aided convo-

lutional codes, Fig. 2.9 shows approximations of E[L|W = η,X = x̄e] for ZTCC (561, 753)

used with the degree-10 DSO CRC polynomial 0x4CF at k = 64 with µ = 3 and 90. This

concatenated code has a minimum distance dlmin = 20 and thus can be deemed good enough.

When µ = 3, the third order approximation accurately gives the smaller values of the actual

conditional expected list rank. As µ increases, the accuracy of the approximation shifts

towards large values of conditional expected list rank. Fig. 2.10 illustrates approximations

of E[L] vs. SNR via (2.67) and (2.89). The 3rd order and 90th order approximations still

behave in the similar fashion as in Fig. 2.9.
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Figure 2.10: The expected list rank E[L] vs. SNR via (2.67) and (2.89) for ZTCC (561, 753),

degree-10 DSO CRC polynomial 0x4CF at k = 64. The back, dashed line corresponds to

210.

2.4.3 Complexity Analysis

There are a variety of implementations of list decoding of convolutional codes as described in,

e.g., [BMK04,LCC04,RH06,KTK18]. In this chapter, the SLVD implementation maintains a

list of path metric differences by using a red-black tree described in [RH06], which provides

the fastest runtime we found among the data structures that support full floating-point

precision. The literature mentioned above also analyzed the number of bit operations or

the asymptotic complexity of the algorithms presented, but those complexity metrics are

not directly connected with the actual runtime. To compare the complexity of SLVD of a

CRC-aided convolutional code with that of the standard soft Viterbi (SSV) decoding, we

develop an average complexity expression that closely approximates our empirical runtime.

For our specific implementation, three components comprise the average complexity of
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SLVD, given by

CSLVD = CSSV + Ctrace + Clist. (2.115)

The first component CSSV is the complexity required to perform the add-compare-select

(ACS) operation on the trellis of the given convolutional code and perform the initial trace-

back associated with SSV. Specifically, for CRC-ZTCCs, this quantity is given by

CSSV = (2ν+1 − 2) + 1.5(2ν+1 − 2) + 1.5(k +m− ν)2ν+1

+ c1[2(k +m+ ν) + 1.5(k +m)]. (2.116)

For CRC-TBCCs, this quantity is given by

CSSV = 1.5(k +m)2ν+1 + 2ν + 3.5c1(k +m). (2.117)

In order to measure the decoding complexity, define 1 unit of complexity as the complexity

required to perform one addition. In (2.116) and (2.117), we assign 1 unit of complexity to

each addition per branch and 0.5 units of complexity to each compare-select operation per

branch. In the first and second terms of (2.116), (2ν+1 − 2) counts the number of edges in

the initial ν sections and the final ν termination sections of a ZT trellis. In the third term

of (2.116), (k + m− ν)2ν+1 counts the number of edges in the middle (k + m− ν) sections

of a ZT trellis. The fourth term in (2.116) approximates the complexity of the traceback

operation, assigning 2 units of complexity for accessing the parent node per trellis stage

and 1.5 units of complexity per codeword symbol for the CRC verification on the decoded

sequence v̂. In (2.117), the second term stems from that it takes 2ν operations to identify

the optimal termination state with the minimum metric before the first traceback.

The second component Ctrace represents the complexity of additional traceback operations

required by SLVD. Specifically, for a given CRC-ZTCC,

Ctrace = c1(E[L]− 1)[2(k +m+ ν) + 1.5(k +m)]. (2.118)
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For CRC-TBCCs,

Ctrace = 3.5c1(E[L]− 1)(k +m). (2.119)

The third component Clist represents the average complexity of inserting new elements to

maintain an ordered list of path metric differences. For both CRC-ZTCCs and CRC-TBCCs,

Clist = c2E[I] log(E[I]), (2.120)

where E[I] is the expected number of insertions to maintain the sorted list of path metric

differences. According to the mechanism of insertion, for CRC-ZTCCs,

E[I] ≤ (k +m)E[L], (2.121)

and for CRC-TBCCs,

E[I] ≤ (k +m)E[L] + 2ν − 1, (2.122)

where 2ν−1 denotes the number of path metric differences between the optimal terminating

state and any of the remaining 2ν − 1 terminating states.

In (2.116), (2.117), (2.118), (2.119), and (2.120), the constants c1 and c2 character-

ize implementation-specific differences in the implemented complexity of traceback and list

insertion, respectively, as compared to the ACS operations of Viterbi decoding. For our

implementation, we found c1 = 1.5 and c2 = 2.2.

The additional complexity of the SLVD over SSV decoding is completely characterized

by the additional tracebacks along the trellis and the maintenance of an ordered list of path

metric differences. We define the normalized complexity C̄SLVD as the complexity of SLVD

divided by the complexity of SSV decoding, i.e.,

C̄SLVD =
CSLVD

CSSV
= 1 + C̄trace + C̄list. (2.123)

The normalized complexity provides a measure for the additional complexity of operations

associated with the SLVD relative to the complexity of the SSV algorithm.
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Figure 2.11: The complexity of SLVD with different constrained maximum list sizes for

ZTCC (27, 31) and degree-10 DSO CRC polynomial 0x709, with k = 64 at SNR γs = 2 dB.

All variables are normalized by time or the complexity of SSV decoding. In the simulation,

c1 = 1.5 and c2 = 2.2.

We recorded the runtime TSLVD, TSSV, Ttrace, and Tlist on the Intel Core i7-4720HQ using

Visual C++. We then divided all of these terms by TSSV to compute the normalized runtime

T̄ . Fig. 2.11 shows the normalized complexity based on (2.123) and the normalized runtime.

In both cases, the normalization is computed by dividing by the complexity or runtime

associated with SSV, i.e., performing all ACS operations on the trellis and a single traceback

from the state with the best metric. Fig. 2.11 shows that the normalized complexity and

normalized runtime curves are indistinguishable. It also shows that the additional complexity

of SLVD is primarily from maintaining an ordered list of path metric differences.

2.5 Simulation Results

In this section, we present our simulation results of CRC-ZTCCs in Table 2.2 and CRC-

TBCCs in Table 2.3 for the binary-input AWGN channel at k = 64. Finally, we compare
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Figure 2.12: The SNR gap to the RCU bound vs. the average complexity of SLVD for the

family of CRC-ZTCCs in Table 2.2 at target Pe,λ = 10−4. Each color represents a specific

ZTCC shown in parenthesis. Markers from top to bottom with the same color correspond

to the DSO CRC polynomials with m = 3, 4, . . . , 10 in Table 2.2. The information length

and blocklength are given by k = 64 and n = 2(64 +m+ ν), respectively.

the punctured CRC-TBCC with k = 64 and n = 128 designed in our precursor conference

paper [LYD19] with several (128, 64) linear block codes presented in [CDJ19].

2.5.1 Simulation Results for CRC-ZTCCs

Fig. 2.12 shows the trade-off between the SNR gap to the RCU bound and the average

decoding complexity computed using (2.115) for target probability of UE Pe,λ = 10−4. It

is shown that for a given ZTCC, increasing the degree m of DSO CRC polynomials can

significantly diminish the SNR gap to the RCU bound at a relatively small complexity

increase. This SNR gap reduction is especially considerable when ν is small and becomes

less significant as ν becomes large. For all ZTCCs, the complexity cost of increasing m from
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Figure 2.13: The average complexity vs. SNR for ZTCC (247, 371) used with the corre-

sponding DSO CRC polynomials. The ZTCC with no CRC using soft Viterbi decoding is

also given as a reference.

3 to 10 is within a factor of 2. This is consistent with Fig. 2.11 in which the complexity

increases by a factor less than 1.5 even for a very large constrained maximum list size Ψ.

A CRC-ZTCC could be decoded using the Viterbi algorithm alone, without list decoding,

on a trellis with 2m+ν states per trellis stage. The dashed lines in Fig. 2.12 show that the

gap to the RCU bound remains roughly constant for a constant value of m + ν. However,

list decoding with a well chosen (m, ν) pair achieves this performance with a minimum

complexity CSLVD. Thus, for a given target error probability Pe,λ and a fixed value of m+ ν,

the inclusion of CRC-aided list decoding will generally reduce complexity compared to Viterbi

decoding alone on a convolutional code with 2m+ν states per trellis stage.

Fig. 2.13 shows the complexity CSLVD computed using (2.115) as a function of SNR for

ZTCC (247, 371) and the corresponding DSO CRC polynomials with degree m from 3 to 10

from Table 2.2. The ZTCC using soft Viterbi decoding with no CRC is also shown. Here, the
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Figure 2.14: The SNR gap to the RCU bound vs. the average complexity of SLVD for the

family of CRC-TBCCs in Table 2.3 at target Pe,λ = 10−4. Each color represents a specific

TBCC shown in parenthesis. Markers from top to bottom with the same color correspond

to the DSO CRC polynomials with m = 3, 4, . . . , 10 in Table 2.3. The information length

and blocklength are given by k = 64 and n = 2(64 +m), respectively.

target probabilities of UE at 10−2, 10−3, 10−4 for each CRC-ZTCC are marked by squares,

diamonds, and stars, respectively. For each target probability of UE, the corresponding

complexity is within a factor of 2 compared to the soft Viterbi decoding of ZTCC (247, 371).

The termination overhead associated with the ZTCC induces a gap from the RCU bound,

which can be closed by using the corresponding TBCC as we will see below.

2.5.2 Simulation Results for CRC-TBCCs

In Section 4.2 we use the fact that for a CRC-ZTCC, each traceback operation in SLVD

yields a valid higher-rate codeword, i.e., a ZT convolutional codeword. However, for a CRC-
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TBCC, traceback operations in SLVD do not always yield a valid higher-rate codeword, i.e.,

a TB convolutional codeword, because the TB condition is often not met. In view of this,

we can no longer assume that L̄ ≈ 2m. Nevertheless, L̄ can still be obtained from simulation

and Approximations 3 and 4 still apply.

The increased value of L̄ may be understood by considering the higher-rate code Ch to

be the pseudo code represented by all paths on the trellis regardless of whether they meet

the TB condition. Due to the additional complexity required to check the TB condition,

E[I] is significantly increased compared to that for the CRC-ZTCC. While we identified the

empirical value of E[I] for CRC-ZTCCs, in this section we simply assume E[I] attains the

upper bound in (2.122) for CRC-TBCCs. Hence, using (2.117), (2.119) with c1 = 1.5, (2.120)

with c2 = 2.2, together with the aforementioned assumption on E[I], we can compute an

estimate of the average complexity CSLVD of our implementation of SLVD of CRC-TBCCs.

Fig. 2.14 shows the SNR gap to the RCU bound vs. the average complexity for target

probability of UE Pe,λ = 10−4 for all CRC-TBCCs designed in Table 2.3. Compared to

Fig. 2.12, TB encoding significantly reduces the SNR gap to the RCU bound, because the

overhead of termination is avoided. However, this reduction of the SNR gap comes at the

expense of a slight increase in average complexity for checking the TB condition. Note

the exciting result that some CRC-TBCCs outperform the RCU bound for ν = 9 and 10.

Another phenomenon distinct from CRC-ZTCCs is that for TBCCs with large ν, increasing

the DSO CRC polynomial degree from m = 3 to 10 only provides a small benefit. Note,

however, that the degree-3 DSO CRC polynomial does provide a benefit over a TBCC used

with no CRC at all.

Fig. 2.15 shows the trade-off comparison for CRC-TBCCs with m = 10 and ν from 3 to

10 at Pe,λ = 10−4 and Pe,λ = 10−5. We see that as Pe,λ decreases, the SNR gap to the RCU

bound is increased and the average complexity of SLVD is further reduced. However, the

increase in SNR gap depends on ν. As ν increases, the increase in SNR gap is reduced. We

see that at m = 10 and ν = 10, this SNR gap increase becomes negligible.

61



Figure 2.15: The SNR gap to the RCU bound vs. the average complexity of SLVD for the

family of CRC-TBCCs in Table 2.3 with m = 10. For a fixed Pe,λ, the points from the left

to the right correspond to ν from 3 to 10. In this example, k = 64 and n = 148.

To illustrate the performance of the best CRC-TBCCs designed in Table 2.3, we select

ν = 9 and ν = 10 TBCCs as an example. Fig. 2.16 shows two cases: R = 64/134

corresponding to m = 3 and R = 64/146 corresponding to m = 9. The MC bound and

the RCU bounds for these rates are plotted using the saddlepoint approximations provided

in Approximations 1 and 2, respectively. We see that in these two cases, the CRC-TBCCs

in Fig. 2.16 beat the RCU bound at low SNR values. However, this superiority gradually

fades away as SNR increases, although for m = 9, the performance is very close to the RCU

bound even at Pe,λ = 10−5. Simulations also suggest that it is extremely difficult to further

improve the code performance once beyond the RCU bound at low probability of UE.

Fig. 2.17 shows the family of CRC-TBCCs with k = 64 and n = 148 (corresponding to

m = 10). For small ν, we see a visible improvement as ν increases. However, once perfor-
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Figure 2.16: Comparison of Pe,λ with RCU and MC bounds at rates R = 64/134 (m = 3)

and R = 64/146 (m = 9) for the CRC-TBCCs designed in Table 2.3. For the sake of clarity,

only ν = 9, 10 TBCCs are displayed.

mance reaches the RCU bound, further increases in ν provide little benefit. For example,

with m = 10, the CRC-TBCC with ν = 9 attains similar performance to that with ν = 10.

2.5.3 Comparison of (128, 64) Linear Block Codes

Direct comparison of CRC-TBCCs with other codes often requires puncturing to match

rates. For simplicity, we have excluded puncturing from analysis in this chapter. However,

our precursor conference paper [LYD19] designed a v = 8, m = 10 punctured CRC-TBCC

with k = 64 and n = 128 whose frame error rate (FER) performance can be directly

compared to the (128, 64) linear block codes presented in [CDJ19], as shown in Fig. 2.18.

At SNR of 3 dB, the v = 8, m = 10 punctured CRC-TBCC in [LYD19] and the best codes

studied in [CDJ19] all perform similarly. Specifically, the four codes in [CDJ19] with similar
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Figure 2.17: Comparison of Pe,λ with RCU and MC bounds at rate R = 64/148 (i.e., m = 10)

for the CRC-TBCCs designed in Table 2.3.

performance at 3 dB to the v = 8, m = 10 punctured CRC-TBCC are the following: the

v = 14 and v = 11 TBCCs decoded with WAVA, the extended BCH code with order-4 OSD,

and a non-binary LDPC code over F256 with order-4 OSD. As shown in Fig. 2.18, at higher

SNR, the FER performance is more differentiated with the best performance provided by the

v = 14 TBCC, slightly worse performance provided by the v = 8, m = 10 punctured CRC-

TBCC and the extended BCH code with order-4 OSD and further degraded performance by

the v = 11 TBCC and the non-binary LDPC code over F256 with order-4 OSD.

We now consider the decoding complexity of the three best codes described above at

3 dB, excluding the discussion of the non-binary LDPC code due to its further degraded

performance. Actual complexity depends on specific implementation choices, here we con-

sider the total number of computations per codeword as a way to give some flavor of the

complexity differences between these approaches. At SNR of 3 dB, simulation shows that
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Figure 2.18: Comparison of (128, 64) linear block codes.

E[L] = 44.41 for the v = 8, m = 10 punctured CRC-TBCC. Using (2.117), (2.119), (2.120)

together with (2.122), we obtain CSLVD ≤ 1.67× 105.

In terms of WAVA complexity, let I be the number of iterations in WAVA. By assuming

0.5 units of complexity for compare-select operation per branch and 1 unit of complexity

for one addition, the WAVA complexity for a rate-1/ω TBCC with ν memory elements at

information length k is given by

CWAVA = kI(0.5 · 2ν + 2ν+1). (2.124)

Using (2.124), the complexity of 3-round WAVA for v = 11 TBCC in [CDJ19] is 9.83× 105,

which is higher than for the v = 8,m = 10 punctured CRC-TBCC. The best v = 14 TBCC

in [CDJ19] under 3-round WAVA achieves a complexity of 7.86× 106.

A direct complexity comparison of SLVD with OSD is more difficult, but Table V in [FS95]

indicates that at 3 dB, the order-3 OSD of the (128, 64) extended BCH code requires 2.83×105
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operations per codeword on average, which indicates that the order-4 OSD would likely have

a higher complexity than the SLVD of v = 8, m = 10 punctured CRC-TBCC. Based on this

analysis, the CRC-TBCC paradigm appears to be competitive with the existing approaches

that provide similarly excellent FER performance at short blocklength.

2.6 Conclusion

In this chapter, we consider the CRC-aided convolutional code as a promising good short

blocklength code. The concatenated nature of the code permits the use of SLVD that

allows the code to attain the ML decoding performance at low complexity. For k = 64

and the binary-input AWGN channel, we identified the DSO CRC polynomial for a family of

ZTCCs and TBCCs generated with the optimum rate-1/2 convolutional encoders in [LC04]

at sufficiently low target probability of UE. Several CRC-TBCCs beat the RCU bound at

practically interesting values of SNR. In a recent work [Sch21], Schiavone confirmed that the

CRC-TBCC is indeed a powerful short blocklength code by showing that its performance

matches the expurgated ensemble.

All CRC-aided convolutional codes considered in this chapter are designed based on an

optimum convolutional encoder. It would be interesting to investigate whether a suboptimal

convolutional code used with the DSO CRC polynomial can also lead to a good concatenated

code. Another interesting direction is to explore the performance of CRC-aided convolutional

codes in the moderately short blocklength regime, e.g., 128 ≤ k < 1000. If puncturing is

introduced in the code design, the problem of how to jointly design the puncturing pattern

and the optimal CRC polynomial for a given convolutional code still remains open.

The beauty of SLVD lies in the fact that the average complexity is governed by the

expected list rank E[L], a quantity that is inversely proportional to the SNR value. This

allows a huge complexity reduction at operating SNRs of interest that guarantee a low target

probability of UE. In particular, the parametric approximation of E[L] provides an explicit
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characterization of the performance-complexity trade-off. It shows that for CRC-ZTCCs

with a target error probability P ∗e,λ and L̄ ≈ 2m, a CRC degree m ≤ − log(P ∗e,λ) is sufficient

to maintain E[L] ≤ 2. In closing, several theoretical problems are still open, for instance,

how to develop tight bounds on E[L|X = O] and Pe,1 using only the weight spectrum. In

addition, the behavior of the supremum list rank λ is also less understood and is worth future

investigation.
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2.7 Appendix: Derivation of the Induced Density Function

O x̄

yp

J Ky

2α

Figure 2.19: Derivation of the induced density function gw(yp) in Rn.

Let B(a, r) denote the spherical surface of center a and radius r in Rn, where a ∈ Rn

and r ≥ 0. In this section, we derive the induced density function gw(yp) incurred when

projecting a received point y uniformly distributed on B(x̄, w) to point yp = (A
√
n/‖y‖)y

that lies on the codeword sphere B(O, A
√
n) in Rn. As an illustration, Fig. 2.19 depicts

this scenario in R2. For our purposes, we assume that w ≥ A
√
n to ensure the bijective

relationship between y and yp.

Let us consider a circular cone Qα in Rn with apex at the origin O, axis along Oyp, and

half-angle α. Algebraically, define the direction vectors

ye ,
y

‖y‖ , (2.125)

ze ,
y − x̄
‖y − x̄‖ . (2.126)
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Hence, the circular cone Qα is given by

Qα =

{
r ∈ Rn :

r>ye
‖r‖ ≥ cosα

}
=
{
r ∈ Rn : (r − 0)>(I − ε2(α)yey

>
e )(r − 0) ≤ 0

}
, (2.127)

where ε(α) , 1/ cosα denotes the eccentricity of the cone. Cone Qα intersects with the noise

sphere B(x̄, w), thus producing a surface area Qα ∩ B(x̄, w) delimited by J and K on Fig.

2.19. Thus, the induced density at yp is given by

gw(yp) = lim
α→0

S(Qα ∩ B(x̄, w))/Sn−1(w)

S(Qα ∩ B(O, A
√
n))

, (2.128)

where S(·) denotes the surface area in Rn. Note that for sufficiently small α, the spherical

surface around y is equivalent to the tangent hyperplane at y, given by

H =
{
r ∈ Rn : z>e (r − y) = 0

}
=
{
r ∈ Rn : z>e (r − 0) = ĥ

}
, (2.129)

where ĥ , z>e y. Define ρ ,
√

1− (z>e ye)
2. Thus, using the result by Dearing [Dea, Eq. (15)],

if ε(α)ρ < 1, the intersection of hyperplaneH and cone Qα is an ellipsoid of dimension (n−1),

which, after proper rotation T around O, can be written as

T (Qα) ∩ T (H) =
{

(r1, . . . , rn−1, ĥ) :
(r1 − ĉ1)2

â2
+

∑n−1
j=2 (rj − ĉj)2

b̃
= 1
}
,

where

σ = z>e ye, (2.130)

ĉ1 =
ε2(α)ρσĥ

1− ε2(α)ρ2
, ĉj = 0, j = 2, . . . , n− 1, (2.131)

â2 =
(ε2(α)− 1)ĥ2

(1− ε2(α)ρ2)2
, (2.132)

b̃ = â2(1− ε2(α)ρ2). (2.133)
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Since ze and ye are non-orthogonal, 1/ρ > 1. Hence, for sufficiently small α, ε(α) < 1/ρ and

thus Dearing’s result follows. Summarizing the analysis above, we obtain

lim
α→0

S
(
Qα ∩ B(x̄, w)

)
= lim

α→0
S
(
T (Qα) ∩ T (H)

)
(2.134)

= lim
α→0

π
n−1

2

Γ(n+1
2

)
â
(√

b̃
)n−2

= lim
α→0

π
n−1

2

Γ(n+1
2

)

(
(ε2(α)− 1)ĥ2

(1− ε2(α)ρ2)2

)n−1
2 (

1− ε2(α)ρ2
)n−2

2

= lim
α→0

π
n−1

2

Γ(n+1
2

)
2
n−1

2 (ε(α)− 1)
n−1

2 ĥn−1(z>e ye)
−n

= lim
α→0

π
n−1

2

Γ(n+1
2

)
2
n−1

2

(1− cosα

cosα

)n−1
2
( z>e y
z>e ye

)n−1 1

z>e ye

= lim
α→0

π
n−1

2

Γ(n+1
2

)
2
n−1

2

(
2 sin2

(α
2

))n−1
2 ‖y‖n−1

cos∠x̄yO

= lim
α→0

π
n−1

2

Γ(n+1
2

)
αn−1 ‖y‖n−1

cos∠x̄yO
, (2.135)

where (2.134) follows since for sufficiently small half-angle, the spherical surface around y

is equivalent to that of the tangent hyperplane H at y. From [Sha59, Eq. (21)], the area of

the spherical cap S(Qα ∩ B(O, A
√
n)) is given by

S(Qα ∩ B(O, A
√
n)) =

(n− 1)π
n−1

2 (A
√
n)n−1

Γ
(
n+1

2

) ∫ α

0

sinn−2 θ dθ. (2.136)

Substituting (3.180), (3.181) into (3.119), we obtain

gw(yp) = lim
α→0

S(Qα ∩ B(x̄, w))

S(Qα ∩ B(O, A
√
n))

Sn−1(A
√
n)

Sn−1(w)Sn−1(A
√
n)

= lim
α→0

αn−1 ‖y(yp)‖n−1

cos∠x̄y(yp)O

(n− 1)
∫ α

0
θn−2 dθ

1

wn−1

1

Sn−1(A
√
n)

=
(‖y(yp)‖

w

)n−1 1

cos∠x̄y(yp)O

1

Sn−1(A
√
n)
, (2.137)

where y(yp) is the preimage of yp on the noise sphere B(x̄, w). Here, (3.182) is the induced

density function of yp ∈ B(O, A
√
n). Observe that it is rotationally symmetric with respect

to axis Ox̄.
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Next, we develop an alternative expression for gw(yp) to derive its upper and lower

bounds. First, we rotate the coordinate system such that axis Ox̄ is the first coordinate and

the remaining (n− 1) coordinates are orthogonal to Ox̄. In the new coordinate system, let

x̄ = (A
√
n, 0, . . . , 0) ∈ Rn. Hence, for an arbitrary projected point yp = (y1, y2, . . . , yn) ∈

B(O, A
√
n), assume that ρ , ‖y(yp)‖. Thus,

y(yp) =
ρ

A
√
n

(y1, y2, . . . , yn). (2.138)

Since y(yp) ∈ B(x̄, w), (
ρ

A
√
n
y1 − A

√
n

)2

+

(
ρ

A
√
n

)2 n∑
i=2

y2
i = w2. (2.139)

Solving for ρ yields

ρ = y1 +
√
y2

1 + w2 − A2n. (2.140)

By law of cosines, it is shown that

cos∠x̄yO =
ρ2 + w2 − A2n

2ρw
=

√
y2

1 + w2 − A2n

w
. (2.141)

Hence, substituting (3.185) and (3.186) into (3.182) and expressing gw(yp) in terms of y1 ∈
[−A√n,A√n], we obtain

gw(y1) =
1

Sn−1(A
√
n)

(y1 +
√
y2

1 + w2 − A2n)n−2

wn−2

(
1 +

y1√
y2

1 + w2 − A2n

)
. (2.142)

Clearly, gw(y1) is monotonically increasing in y1. Hence,

gw(y1) ≥ gw(−A√n) =
1

Sn−1(A
√
n)

(
1− A

√
n

w

)n−1

, (2.143)

gw(y1) ≤ gw(A
√
n) =

1

Sn−1(A
√
n)

(
1 +

A
√
n

w

)n−1

. (2.144)

Geometrically, this implies that the maximum induced density is attained at the transmitted

point x̄, whereas the minimum induced density is attained at −x̄.
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CHAPTER 3

Binary Asymmetric Channels With Full Feedback

3.1 Introduction

Feedback does not increase the capacity of memoryless channels [Sha56], but it significantly

reduces communication complexity and probability of error, provided that variable-length

feedback (VLF) codes are allowed. For a discrete memoryless channel (DMC) with full

noiseless feedback, Burnashev [Bur76] proposed a pioneering two-phase transmission scheme

that produces the exact optimal error exponent of VLF codes for all rates below capacity. The

first phase is called the communication phase, during which the transmitter seeks to increase

receiver’s posterior probability for the transmitted message. The system transitions from the

communication phase to the confirmation phase when the largest posterior probability at the

receiver exceeds a certain threshold. During the confirmation phase, two most distinguishable

input symbols are used: one for the message with the largest posterior probability, and the

other for the rest of messages. The confirmation phase continues until either the transmission

terminates or the system returns to the communication phase. This two-phase coding scheme

allows Burnashev to obtain a VLF achievability bound that coincides asymptotically with

the VLF converse bound, thus producing the optimal error exponent. However, Burnashev

did not provide an explicit non-asymptotic VLF achievability bound for the DMC.

For the binary symmetric channel (BSC) with noiseless feedback, Horstein [Hor63] devel-

oped a simple, one-phase scheme that maps each message to a subinterval in [0, 1]. The trans-

mitter sends a 0 if the subinterval of the true message lies entirely beneath the median and
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a 1 if it lies entirely above the median. If the subinterval includes the median point, which

will eventually happen as the subinterval of the highest posterior probability grows, then

randomized encoding is employed. Horstein did not provide a rigorous proof to show that

his scheme achieves capacity. In [BZ74], Burnashev and Zigangirov showed that Horstein’s

scheme achieves the capacity of the BSC in the fixed blocklength setting. In [SF11], Shayevitz

and Feder generalized Horstein’s scheme to the concept of posterior matching, thus validating

the capacity-achieving property of Horstein’s scheme. Since Horstein’s work, several authors,

e.g., [Sch71,SP73,TT02,TT06], have constructed coding schemes for the BSC with noiseless

feedback under various assumptions in order to attain capacity or Burnashev’s optimal error

exponent.

In the non-asymptotic regime, Polyanskiy et al. [PPV11] showed that for a target aver-

age blocklength l and error probability ε, the maximal message size M∗(l, ε) for the VLF

code is significantly improved compared to that of fixed-length codes. Polyanskiy et al.

demonstrated this benefit by establishing a non-asymptotic achievability bound for the

variable-length stop-feedback (VLSF) code, a VLF code that makes a very limited use of

feedback [PPV11, Theorem 3]. More specifically, all VLSF codewords are designed and fixed

before transmission. A stop-feedback symbol is only used to inform the encoder of when

to terminate transmission and does not affect the value of the transmitted codeword. A

compelling example of the advantage offered by variable-length coding can be seen for the

BSC with capacity 1/2 and target error probability 10−3. With variable-length coding and

stop feedback, the average blocklength required to achieve 90% of capacity is less than 200,

compared to at least 3100 for the best fixed-blocklength code with noiseless feedback.

In [NWJ12], Naghshvar et al. asked the question of whether having two separate phases

of operations and randomized encoding are necessary to achieve Burnashev’s optimal error

exponent. As a negative response to this question, they presented a deterministic, one-phase

coding scheme that achieves the optimal error exponent for any symmetric binary-input

channels (including the BSC) with full noiseless feedback. The most appealing feature of
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their scheme is that at each time instant, the common codebook available at the encoder

and decoder is generated “on the fly” by a bi-partitioning of the message set such that the

probability difference of the two subsets is small enough (see Sec. IV in [NWJ12]), and

this is sufficient for their scheme to achieve both capacity and the optimal error exponent.

Since the authors did not provide a name for their scheme, here we term their scheme as the

small-enough-difference (SED) coding scheme1. In a subsequent work [NJW15], Naghshvar

et al. applied the extrinsic Jensen-Shannon (EJS) divergence and submartingale synthesis

technique to develop a non-asymptotic VLF achievability bound for the deterministic VLF

code constructed with the SED coding scheme operated over a symmetric binary-input chan-

nel. Recently, Guo et al. [GK21] developed an instantaneous SED code for the symmetric

binary-input channel with feedback for real-time communication.

While Naghshvar et al. obtained a non-asymptotic VLF achievability bound for the

symmetric binary-input channel, this bound appears to be inferior to Polyanskiy’s non-

asymptotic achievability bound for the VLSF code. In general, a system that employs full

noiseless feedback, such as the SED coding scheme, should achieve a rate much better than

that of a VLSF code. This indicates that there is an opportunity to develop a tighter achiev-

ability bound that outperforms Polyanskiy’s VLSF achievability bound. On the other hand,

despite the simplicity of the SED coding scheme for the symmetric binary-input channel,

the extension of this scheme to a general binary-input channel with feedback still remains

unknown, let alone a general multi-input channel with feedback.

As its primary contributions, this chapter extends Naghshvar et al.’s SED coding scheme

to the binary asymmetric channel (BAC) with feedback, including the BSC as a special case.

In general, a BAC has binary input and output alphabets and is specified by two crossover

probabilities: p0 , P (Y = 1|X = 0) and p1 , P (Y = 0|X = 1) that are allowed to be equal.

Therefore, the word “asymmetric” does not exclude the symmetric case. In [MCL10, Section

2.3], it is argued that every BAC can be equivalently transformed into a regularized BAC

1We first coined this name in our conference chapter [YWL20].
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satisfying 0 < p0 < 1/2 and p0 ≤ p1 ≤ 1 − p0 by flipping either the input or the output, or

both. Therefore, our generalized SED coding scheme is mainly for the regularized BAC. In

the definition of a regularized BAC, we exclude p0 = 0 and p0 = p1 = 1/2 cases, in order to

guarantee that important quantities C1 and C2 defined in (3.7) and (3.8) are always positive

and finite. Nonetheless, it has been known that in the degenerate case where p0 = 0, zero-

error VLF capacity is equal to the conventional capacity; see [Bur76, Sec. 6] or [PPV11, Eq.

133].

Unlike Naghshvar et al.’s one-phase SED coding scheme, our SED coding scheme for the

regularized BAC is a deterministic, two-phase coding scheme. More specifically, assume that

(π∗0, π
∗
1) is the capacity-achieving input distribution for a regularized BAC. In the communi-

cation phase where all posterior probabilities are less than π∗1, the message set is partitioned

into two subsets with probabilities π0 and π1 such that the difference π0

π∗0
− π1

π∗1
is small enough.

In the confirmation phase where the largest posterior probability among all messages exceeds

π∗1, we exclusively assign input symbol 1 to the message with the largest posterior probability

and 0 to all remaining messages.

Using the generalized SED coding scheme, we develop a non-asymptotic VLF achievabil-

ity bound that outperforms Polyanskiy’s VLSF achievability bound for a regularized BAC. In

particular, for the BSC with feedback, we develop a refined non-asymptotic VLF achievabil-

ity bound. Numerical evaluations show that for BSC with capacity 1/2 and error probability

10−3, both VLF achievability bounds exceed Polyanskiy et al.’s VLSF achievability bound,

which is expected since a system with full noiseless feedback should perform better than the

system that only employs stop feedback.

In our analysis, the technique for obtaining a VLF achievability bound for a regularized

BAC involves a submartingale synthesis with optimal parameters and a variant of Doob’s

optional stopping theorem. For the specific case of the BSC, the confirmation phase can be

modeled as a Markov chain with possible fallbacks to the communication phase. This facil-

itates a decomposition of the random process concerning the transmitted message into two

75



components: a submartingale describing the first communication phase and a generalized

Markov chain that describes the subsequent behavior (see Section 3.5.6). This decomposi-

tion allows a separate upper bound on the average blocklength to be computed for each of

the two components. The upper bound for the first component is obtained using a surrogate

submartingale construction and a variant of Doob’s optional stopping theorem. The upper

bound for the second component is obtained using time of first-passage analysis on a gener-

alized Markov chain. Finally, the sum of the two upper bounds yields an upper bound on

the overall average blocklength that turns out to be tighter than the bound developed using

a pure submartingale synthesis when the crossover probability is small.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce basic

notation, the regularized BAC and some useful facts, a VLF code for a memoryless channel,

and Naghshvar et al.’s SED coding scheme for symmetric binary-input channels. Next, we

review some important previous results. In Section 3.3, we present the generalized SED

coding scheme for a regularized BAC with full noiseless feedback and a non-asymptotic VLF

achievability bound for a regularized BAC. Section 3.4 presents a refined VLF achievability

bound for the BSC with full noiseless feedback. Section 3.5 contains proofs of our main

results. In Section 3.6, we numerically compare our VLF achievability bounds with the

simulated performance of the SED coding scheme and with some previously known results.

In Section 3.7, we show that for a regularized BAC, our generalized SED coding scheme

achieves both capacity and the optimal error exponent. Section 4.5 concludes the chapter.

3.2 Preliminaries

3.2.1 Notation and Definitions

Let N = {0, 1, 2, . . . } denote the set of natural numbers, and N+ = N \ {0} denote the

set of positive integers. Let [M ] , {1, 2, . . . ,M}. We denote by log(·), ln(·) the base-2

and the natural logarithms, respectively. h(p) , −p log(p) − (1 − p) log(1 − p), p ∈ [0, 1],
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denotes the binary entropy function. Let PY , QY be two distributions over a finite alphabet

Y , the Kullback-Leibler (KL) divergence between PY and QY is defined as D(PY ‖QY ) ,∑
y∈Y PY (y) log PY (y)

QY (y)
with the convention that 0 log 0

a
= 0 and b log b

0
= ∞ for a, b ∈ [0, 1]

with b 6= 0. Let [x]+ = max{0, x}. We denote the collection of all subsets of X by 2X .

3.2.2 The Regularized BAC and Some Useful Facts

A BAC consists of binary input and output alphabets, i.e., X = Y = {0, 1}, and two

crossover probabilities, p0 , PY |X(1|0) ∈ [0, 1] and p1 , PY |X(0|1) ∈ [0, 1]. As noted

in [MCL10], it suffices to restrict our attention to the regularized case where p0 ∈ [0, 1/2]

and p0 ≤ p1 ≤ 1−p0, as any other case can be transformed into this case by swapping either

the input or the output, or both. In this chapter, we say that a BAC(p0, p1) is regularized

if p0 ∈ (0, 1/2) and p0 ≤ p1 ≤ 1 − p0. Namely, we exclude the degenerate case p0 = 0 and

p0 = p1 = 1/2 to guarantee that the quantities C1 and C2 defined in (3.7) and (3.8) are

positive and finite. If p0 = p1 = p ∈ (0, 1/2), we simply write BSC(p).

Let C be the capacity of the BAC(p0, p1) and let (π∗0, π
∗
1) be the corresponding capacity-

achieving input distribution. The following results will be useful in our proofs.

Fact 1. Consider a BAC(p0, p1) with capacity-achieving input distribution (π∗0, π
∗
1). Then,

C =
p0h(p1)

1− p0 − p1

− (1− p1)h(p0)

1− p0 − p1

+ log(1 + z), (3.1)

π∗0 =
1− p1(1 + z)

(1− p0 − p1)(1 + z)
, (3.2)

π∗1 =
(1− p0)(1 + z)− 1

(1− p0 − p1)(1 + z)
, (3.3)

where z = 2
h(p0)−h(p1)

1−p0−p1 . Furthermore, if p0 ∈ (0, 1/2) and p0 ≤ p1 ≤ 1 − p0, then 0 < π∗1 ≤
π∗0 < 1.

The proof of Fact 1 is given in Appendix 3.9.1.
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Encoder
Channel

(X ,Y, PY |X) Decoder
Θ Xt Yt

Y t−1

Θ̂

Figure 3.1: Variable-length coding over a memoryless channel (X ,Y , PY |X) with full noiseless

feedback link.

Fact 2 (Theorem 4.5.1, [Gal68]). Consider a DMC (X ,Y , PY |X) with capacity-achieving

input distribution (π∗0, π
∗
1, . . . , π

∗
|X |−1). For each k ∈ {0, 1, . . . , |X | − 1}, if π∗k > 0, then,

D

P (Y |X = k)
∥∥∥ |X |−1∑

l=0

π∗l P (Y |X = l)

 = C. (3.4)

Let C1 be the maximal KL divergence between two conditional output distributions

defined by

C1 , max
x,x′∈X

D
(
P (Y |X = x)‖P (Y |X = x′)

)
. (3.5)

We also denote

C2 , max
y∈Y

log
maxx∈X PY |X(y|x)

minx∈X PY |X(y|x)
. (3.6)

Fact 3. For a regularized BAC(p0, p1),

C1 = D
(
P (Y |X = 1)‖P (Y |X = 0)

)
, (3.7)

C2 = log
PY |X(1|1)

PY |X(1|0)
= log

1− p1

p0

. (3.8)

The proof of Fact 3 is given in Appendix 3.9.2.

For a regularized BAC, it always holds that 0 < C ≤ C1 ≤ C2 < ∞. Later, we will see

how these quantities are used in our result.
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3.2.3 VLF Codes for a Memoryless Channel

We follow [PPV11] in defining a VLF code for a memoryless channel (X ,Y , PY |X) with full

feedback. Fig. 3.1 depicts the system model of variable-length coding over a memoryless

channel with a full noiseless feedback link.

Definition 3. An (l,M, ε) VLF code for a memoryless channel (X ,Y , PY |X), where l > 0,

M ∈ N+, and ε ∈ (0, 1), is defined by:

1) A random variable C, defined on a set C with |C| ≤ 2, whose realization is revealed to

both the encoder and decoder before the start of transmission. The realization of C is

the common codebook.

2) A sequence of encoding functions et : C × [M ] × Y t−1 → X , t ∈ N+, defining channel

inputs

Xt = et(C,Θ, Y t−1), (3.9)

where Θ is uniformly distributed over [M ].

3) A sequence of decoding functions gt : C×Y t → [M ], t ∈ N+, providing the best estimate

of Θ at time t.

4) A random variable τ ∈ N, a stopping time of the filtration Ft = σ{C, Y t} satisfying

E[τ ] ≤ l. The final decision Θ̂ is computed at stopping time τ , given by

Θ̂ = gτ (Y
τ ). (3.10)

In addition, τ also needs to satisfy

Pe , P{Θ 6= Θ̂} ≤ ε. (3.11)

The rate of an (l,M, ε) VLF code is defined as

R ,
logM

E[τ ]
. (3.12)
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In [Bur76], Burnashev, for the first time, derived the reliability function E(R) of variable-

length coding over a fixed DMC for all rates R < C:

E(R) = C1

(
1− R

C

)
. (3.13)

3.2.4 Naghshvar et al.’s SED Coding Scheme

In [NWJ12], Naghshvar et al. introduced a novel SED coding scheme that produces a

deterministic VLF code for a symmetric binary-input channel with full feedback. We briefly

describe their scheme below.

Let ρi(t) , P {Θ = i|Y t}, t ∈ N, denote the posterior probability of Θ = i. Since Θ is

uniformly distributed before transmission, ρi(0) = 1/M for all i ∈ [M ]. As noted in [NJW15],

a sufficient statistic for estimating Θ is the belief state vector defined by

ρ(t) , [ρ1(t), ρ2(t), . . . , ρM(t)], t ∈ N. (3.14)

According to Bayes’ rule, upon receiving Yt = yt, each ρi(t), i ∈ [M ], can be updated from

ρ(t− 1) by

ρi(t) =
ρi(t− 1)PY |X

(
yt|xt,i

)∑
j∈[M ] ρj(t− 1)PY |X

(
yt|xt,j

) , (3.15)

where xt,j , et(C, j, Y t−1) ∈ {0, 1} denotes the input symbol for message j ∈ [M ]. Thanks

to the full noiseless feedback, the transmitter will be informed of yt at time instant t+ 1 and

thus can calculate the same ρ(t) which will be used to produce Xt+1.

We follow Definition 3 to describe the deterministic VLF code generated with Naghshvar

et al.’s SED coding scheme that guarantees target error probability ε ∈ (0, 1/2).

1) A common codebook generated by SED bipartition: If t = 1, ρ(0) = (1/M)1. If

t ≥ 2, ρ(t− 1) is obtained from Yt−1, ρ(t− 2), and previous input symbol assignments

{xt−1,i}i∈[M ] using Bayes’ rule (3.15). At time t ∈ N+, upon obtaining ρ(t − 1), the
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message set [M ] is partitioned into two subsets S0(t− 1) and S1(t− 1) such that

0 ≤ π0(t− 1)− π1(t− 1) ≤ min
i∈S0(t−1)

ρi(t− 1), (3.16)

where πx(t − 1) ,
∑

i∈Sx(t−1) ρi(t − 1), x ∈ {0, 1}. Then, the input symbol xt,i for

message i ∈ [M ] is 0 if i ∈ S0(t− 1) and is 1 if i ∈ S1(t− 1).

2) Encoding function: At time t ∈ N+, the encoder obtains S1(t − 1) from ρ(t − 1)

according to step 1). The encoding function at time t is given by

et(C,Θ, Y t−1) , 1{Θ∈S1(t−1)}. (3.17)

3) Decoding function: At time t ∈ N+, upon receiving yt, the decoder first obtains input

symbol assignments {xt,i}i∈[M ] from ρ(t − 1) according to step 1). Next, the decoder

computes new belief state vector ρ(t) using yt, ρ(t − 1) and {xt,i}i∈[M ] according to

Bayes’ rule (3.15). The decoding function at time t is given by

gt(C, Y t) , arg max
i∈[M ]

ρi(t). (3.18)

If there are multiple solutions in (3.18), the decoder arbitrarily selects a message among

them.

4) Stopping time τ : The decoder adopts the following stopping time, which is a function

of filtration Ft = σ{Y t},

τ , min
{
t ∈ N : max

i∈[M ]
ρi(t) ≥ 1− ε

}
, (3.19)

where the computation of ρ(t) is described in 3). The final estimate Θ̂ is thus given

by

Θ̂ = arg max
i∈[M ]

ρi(τ). (3.20)

Clearly, the stopping time τ satisfies (4.6) because

Pe = E
[
P{Θ 6= Θ̂|Y τ}

]
= E

[
1−max

i∈[M ]
ρi(τ)

]
≤ ε. (3.21)
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Note that in 1), there are many deterministic partitioning algorithms that achieve (4.10),

yet both the encoder and decoder must agree on the same algorithm. As can be seen,

the common codebook C at time t is a function of Y t−1, hence the resulting VLF code is

deterministic. Since the target error probability ε ∈ (0, 1/2), it follows that (3.20) always

has a unique solution. Later, we show that τ defined in (3.19) under the SED coding scheme

is almost surely (a.s.) finite, i.e., P{τ <∞} = 1; see Lemma 10. Our goal is to determine

a non-asymptotic upper bound on E[τ ].

To analyze the deterministic VLF code constructed with the SED coding scheme, we

examine the log-likelihood ratio defined by

Uj(t) , log
ρj(t)

1− ρj(t)
, j ∈ [M ]. (3.22)

Using the log-likelihood ratio, the stopping time (3.19) can be equivalently written as

τ = min
{
t ∈ N : max

i∈[M ]
Ui(t) ≥ log

1− ε
ε

}
. (3.23)

3.2.5 Previous Results on Average Blocklength of VLF Codes

In [NJW15], for a given message size M ≥ 2 and target error probability ε ∈ (0, 1/2),

Naghshvar et al. used the EJS divergence and submartingale synthesis technique to obtain

a non-asymptotic upper bound on E[τ ] for the deterministic VLF code constructed with the

SED coding scheme operated over the symmetric binary-input channel.

Theorem 9 (Remark 7, [NJW15]). For a given integer M ≥ 2 and ε ∈ (0, 1/2), the deter-

ministic (l,M, ε) VLF code constructed with the SED coding scheme in Sec. 3.2.4 for the

symmetric binary-input channel (X ,Y , PY |X) satisfies

l ≤ logM + log log M
ε

C
+

log 1
ε

+ 1

C1

+
96 · 22C2

CC1

. (3.24)

The technique that underlies this result is a two-stage submartingale resulted from the

SED coding rule described in Sec. 3.2.4.
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Lemma 1 ( [NWJ12]). Fix BSC(p), p ∈ (0, 1/2) and Θ = i ∈ [M ]. The SED coding

scheme in Sec. 3.2.4 induces a submartingale {Ui(t)}∞t=0 with respect to the filtration {Ft}∞t=0

satisfying

E[Ui(t+ 1)|Ft,Θ = i] ≥ Ui(t) + C, if Ui(t) < 0, (3.25a)

E[Ui(t+ 1)|Ft,Θ = i] = Ui(t) + C1, if Ui(t) ≥ 0, (3.25b)

|Ui(t+ 1)− Ui(t)| ≤ C2. (3.25c)

The proof of Lemma 1 can be found in [NWJ12, Appendix A]. We remark that the key

step that links the SED coding scheme to the two-stage submartingale is the introduction

and analysis of extrinsic probabilities ; see [NWJ12, Eq. 19]. The next step is to synthesize

the two-stage submartingale in Lemma 1 into a single submartingale and then apply Doob’s

optional stopping theorem. In [NJW15], Naghshvar et al. generalized [BZ75, Lemma 1] to

obtain the following result.

Lemma 2 (Lemma 8, [NJW15]). Assume that the sequence {ξt}∞t=0 forms a submartingale

with respect to filtration {Ft}∞t=0. Furthermore, assume there exist positive constants K1, K2

and K3 such that

E[ξt+1|Ft] ≥ ξt +K1, if ξt < 0, (3.26a)

E[ξt+1|Ft] ≥ ξt +K2, if ξt ≥ 0, (3.26b)

|ξt+1 − ξt| ≤ K3, if max {ξt+1, ξt} ≥ 0. (3.26c)

Consider the stopping time v = min {t : ξt ≥ B}, B > 0. Then, we have the inequality,

E[v] ≤ B − ξ0

K2

+ ξ01{ξ0<0}

(
1

K2

− 1

K1

)
+

3K2
3

K1K2

. (3.27)

Observe that if Ui(t) in Lemma 1 plays the role of ξt in Lemma 2, the sequence {Ui(t)}∞t=0

meets the conditions in Lemma 2 by setting K1 = C, K2 = C1 and K3 = C2. Thus, by

setting B = log 1−ε
ε
, the stopping rule in Lemma 2 coincides with that in (3.23) and we have

the following corollary.
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Corollary 1. For a given integer M ≥ 2 and ε ∈ (0, 1/2), the deterministic (l,M, ε) VLF

code constructed with the SED coding scheme in Sec. 3.2.4 for the symmetric binary-input

channel satisfies

l ≤ logM

C
+

log 1−ε
ε

C1

+
3C2

2

CC1

. (3.28)

Remark 1. In [NJW15], Naghshvar et al. proved a two-stage submartingale similar to

Lemma 1 by considering the average log-likelihood ratio Ũ(t) of the belief state ρ(t) rather

than that of the transmitted message (see [NJW15, Appendix II]). They showed that the

average drift of Ũ(t) is characterized by the EJS divergence, which is lower bounded by

C or ρ̃C1 depending on whether the sign of Ũ(t) is negative, where ρ̃ ∈ (0, 1) is some

constant. Combining their two-stage submartingale with Lemma 2, they obtained Theorem

18. However, a direct comparison of the third terms in (4.24) and (4.29) immediately reveals

that (4.29) is a significantly tighter upper bound on l.

Next, we recall Polyanskiy’s achievability bound for an (l,M, ε′) VLSF code operated

over an arbitrary DMC.

Theorem 10 (Theorem 3, [PPV11]). Consider a DMC (X ,Y , PY |X). Fix a scalar γ > 0.

Let Xn and X̄n be independent copies from the same process and let Y n be the output of the

DMC when Xn is the input. Define a sequence of information density functions

ι(an; bn) , log
PY n|Xn(bn|an)

PY n(bn)
(3.29)

and a pair of hitting times

ψ , min{n ≥ 0 : ι(Xn;Y n) ≥ γ}, (3.30)

ψ̄ , min{n ≥ 0 : ι(X̄n;Y n) ≥ γ}. (3.31)

Then, for an integer M ≥ 2, there exists an (l,M, ε′) VLSF code satisfying

l ≤ E[ψ], (3.32)

ε′ ≤ (M − 1)P{ψ̄ ≤ ψ}. (3.33)
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In general, it is still difficult to compute E[ψ] and P{ψ̄ ≤ ψ}. Nevertheless, for a DMC

with bounded information density, i.e., a0 , supx∈X ,y∈Y ι(x; y) <∞, Polyanskiy et al. proved

the following useful relaxations by drawing independent and identically distributed (i.i.d.)

Xn from capacity-achieving input distribution P ∗X

E[ψ] ≤ γ + a0

C
, (3.34)

P{ψ̄ ≤ ψ} ≤ 2−γ. (3.35)

Therefore, given a target error probability ε ∈ (0, 1), by setting γ = log M−1
ε

in (3.34) and

(3.35), (3.32) and (3.33) are further relaxed to

l ≤ log M−1
ε

+ a0

C
, (3.36)

ε′ ≤ ε. (3.37)

In this chapter, we use the relaxed upper bounds (3.36), (3.37) to compute Polyanskiy’s

VLSF achievability bound on rate for a regularized BAC.

Finally, we recall Polyanskiy’s converse bound for an (l,M, ε) VLF code operated over a

DMC.

Theorem 11 (Theorems 4 and 6, [PPV11]). Consider a DMC with 0 < C ≤ C1 <∞. Then

any (l,M, ε) VLF code with 0 < ε ≤ 1− 1/M , satisfies both

l ≥ sup
0<ξ≤M−1

M

[
1

C

(
logM−FM(ξ)−min

{
FM(ε),

ε logM

ξ

})
+

[
1− ε
C1

log
λ1ξ

ε(1− ξ) −
h(ε)

C1

]+]
,

(3.38)

and

l ≥ (1− ε) logM − h(ε)

C
, (3.39)

where

FM(x) , x log(M − 1) + h(x), x ∈ [0, 1], (3.40)

λ1 , min
y,x1,x2

PY |X(y|x1)

PY |X(y|x2)
∈ (0, 1). (3.41)
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3.3 Achievable Rates for BAC With Feedback

For a regularized BAC(p0, p1) with p0 6= p1, Naghshvar et al.’s SED coding scheme no longer

applies. In this section, we introduce the generalized SED coding scheme for a regularized

BAC(p0, p1) with full noiseless feedback and develop a non-asymptotic achievability bound.

Intuitively speaking, in order to achieve capacity, the posterior matching principle [SF11]

suggests that the coding scheme should shape the belief state vector ρ(t) into a Bernoulli

distribution (π0(t), π1(t)) such that it is close to the capacity-achieving input distribution

(π∗0, π
∗
1). That is, we wish πx(t)/π∗x ≈ 1 for x ∈ {0, 1}. One way to ask for this is that the

difference π0(t)/π∗0 − π1(t)/π∗1 is close to zero. In analogy with Naghshvar et al.’s analysis

[NWJ12], it suffices to require that this difference be small enough. This motivates our

generalized SED coding scheme for the regularized BAC below.

For a regularized BAC(p0, p1), recall from Fact 1 that 0 < π∗1 ≤ π∗0 < 1. Using this,

we propose the following generalized, deterministic, two-phase SED coding scheme for a

regularized BAC(p0, p1) that is similar to Naghshvar et al.’s SED coding scheme described

in Sec. 3.2.4 with an exception that 1) is replaced by

1’) A common codebook generated by the generalized SED bipartition: If t = 1, ρ(0) =

(1/M)1. If t ≥ 2, ρ(t− 1) is obtained from Yt−1, ρ(t− 2), and previous input symbol

assignments {xt−1,i}i∈[M ] using Bayes’ rule (3.15). At time t ∈ N+, upon obtaining

ρ(t − 1), let î = arg maxj∈[M ] ρj(t − 1). If ρî(t − 1) < π∗1, the message set [M ] is

partitioned into two subsets S0(t− 1) and S1(t− 1) such that

π0(t− 1)

π∗0
− π1(t− 1)

π∗1
≥ −mini∈S1(t−1) ρi(t− 1)

π∗1
, (3.42a)

π0(t− 1)

π∗0
− π1(t− 1)

π∗1
≤ mini∈S0(t−1) ρi(t− 1)

π∗0
, (3.42b)

where πx(t − 1) =
∑

i∈Sx(t−1) ρi(t − 1), x ∈ {0, 1}. If ρî(t − 1) ≥ π∗1, the message set

[M ] is exclusively partitioned into S1(t − 1) = {̂i} and S0(t − 1) = [M ] \ {̂i}. Then,

the input symbol xt,i for message i ∈ [M ] is 0 if i ∈ S0(t− 1) and is 1 if i ∈ S1(t− 1).
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Remark 2. First, we see that in the second case where ρî(t−1) ≥ π∗1, the partition S1(t−1) =

{̂i}, S0(t− 1) = [M ] \ {̂i} still meets (3.42). Second, if p0 = p1, then π∗0 = π∗1 = 1/2. Thus,

(3.42) simplifies to

π0(t− 1)− π1(t− 1) ≥ − min
i∈S1(t−1)

ρi(t− 1), (3.43a)

π0(t− 1)− π1(t− 1) ≤ min
i∈S0(t−1)

ρi(t− 1). (3.43b)

Clearly, this is a relaxation of (4.10). If ρî(t − 1) ≥ 1/2, (4.10) is met if and only if

S0(t − 1) = {̂i} and S1(t − 1) = [M ] \ {̂i}. In [NWJ12], Naghshvar et al. showed that this

partition achieves C1 defined in (3.5). However, by symmetry of the BSC, one can show that

the partition S1(t− 1) = {̂i}, S0(t− 1) = [M ] \ {̂i}, which corresponds to the second case in

1’), also achieves the same C1. Therefore, our SED coding scheme serves as a generalization

of Naghshvar et al.’s SED coding scheme.

The significance of our generalized SED coding scheme is that Lemma 1 now holds for

the regularized BAC. For the sake of completeness, we state this result in a separate lemma.

Lemma 3. Fix a regularized BAC(p0, p1) and Θ = i ∈ [M ]. The generalized SED coding

scheme induces a submartingale {Ui(t)}∞t=0 with respect to the filtration {Ft}∞t=0 satisfying

E[Ui(t+ 1)|Ft,Θ = i] ≥ Ui(t) + C, if Ui(t) < 0, (3.44a)

E[Ui(t+ 1)|Ft,Θ = i] = Ui(t) + C1, if Ui(t) ≥ 0, (3.44b)

|Ui(t+ 1)− Ui(t)| ≤ C2. (3.44c)

Proof. The proof fully exploits the properties of extrinsic probabilities originally proposed

in [NWJ12]. See Section 3.5.1 for the complete proof.

Since Lemma 2 is developed from a poor choice of parameters, here we perform a sub-

martingale synthesis with optimized parameters to obtain the best possible achievability

bound for a regularized BAC with feedback.
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Theorem 12. For a given integer M ≥ 2 and ε ∈ (0, 1/2), the deterministic (l,M, ε) VLF

code constructed with the generalized SED coding scheme for the regularized BAC(p0, p1)

satisfies

l <
logM

C
+

log 1−ε
ε

+ C2

C1

+ C2

(
1

C
− 1

C1

)
1− ε

1−ε2
−C2

1− 2−C2
. (3.45)

Proof. See Section 3.5.2.

Algorithm 3 Original SED Partitioning Algorithm
Require: maxi∈[M ] ρi < π∗1;

1: S0 ← {1, 2, . . . ,M} and S1 ← ∅;

2: π0 ← 1, π1 ← 0, λ← π∗1/π
∗
0, δ ← λ, ρmin,0 ← mini∈S0 ρi, and ρmin,1 ← 0;

3: while (δ < −ρmin,1) || (δ > λρmin,0) do

4: if δ < −ρmin,1 then

5: j ← arg mini∈S1
ρi;

6: S0 ← S0 ∪ {j} and S1 ← S1 \ {j};
7: π0 ← π0 + ρj and π1 ← π1 − ρj;
8: end if

9: if δ > λρmin,0 then

10: j ← arg mini∈S0
ρi;

11: S0 ← S0 \ {j} and S1 ← S1 ∪ {j};
12: π0 ← π0 − ρj and π1 ← π1 + ρj;

13: end if

14: δ ← λπ0 − π1, ρmin,0 ← mini∈S0 ρi, ρmin,1 ← mini∈S1 ρi;

15: end while

16: for i← 1, 2, . . . ,M do

17: xt,i =


0, if i ∈ S0

1, if i ∈ S1

18: end for
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Algorithm 4 Greedy SED Partitioning Algorithm
Require: maxi∈[M ] ρi < π∗1;

1: j1 ← arg maxi∈[M ] ρi;

2: S0 ← {j1} and S1 ← ∅;

3: π0 ← ρj1 , π1 ← 0 and λ← π∗1/π
∗
0;

4: for s← 2, 3, . . . ,M do

5: js ← arg maxi∈[M ]\{j1,...,js−1} ρi;

6: if π1 ≥ λπ0 then

7: S0 ← S0 ∪ {js};
8: π0 ← π0 + ρjs ;

9: else

10: S1 ← S1 ∪ {js};
11: π1 ← π1 + ρjs ;

12: end if

13: end for

14: for i← 1, 2, . . . ,M do

15: xt,i =


0, if i ∈ S0

1, if i ∈ S1

16: end for

In the following, we show that the condition (3.42) required by the generalized SED coding

scheme is always attainable at each time t. This is accomplished by solving a particular

minimization problem.

Theorem 13. For a regularized BAC with capacity-achieving input distribution (π∗0, π
∗
1), let

λ , π∗1/π
∗
0 ∈ (0, 1] according to Fact 1. For a given belief state vector ρ = [ρ1, ρ2, . . . , ρM ]

satisfying maxi∈[M ] ρi < π∗1, define the following objective function f : 2[M ] → R:

f(S) , λ
(
π1(S)− λπ0(S)

)
1{π1(S)≥λπ0(S)} +

(
λπ0(S)− π1(S)

)
1{π1(S)<λπ0(S)}, (3.46)

89



where π0(S) ,
∑

i∈S ρi and π1(S) ,
∑

i∈[M ]\S ρi. Assume S∗0 ⊆ [M ] minimizes (3.46). Then,

the partition (S∗0 , [M ] \ S∗0) satisfies (3.42).

Proof. See Section 3.5.3.

Theorem 13 implies that when all posterior probabilities in ρ(t) is less than π∗1, it is always

possible to identify a bipartition of [M ] that satisfies (3.42). In fact, the proof of Theorem

13 already reveals such a partitioning algorithm described in Algorithm 3. The algorithm is

initialized with a partition of [M ] that fails to meet (3.42) and then successively constructs

a new partition from the previous one that reduces f(S). The termination condition is given

by (3.42). Theorem 13 ensures that the termination will always be triggered at some point.

Finally, we present a greedy SED partitioning algorithm described in Algorithm 4 that

provably meets (3.42). We state this result in the following theorem.

Theorem 14. Let (π∗0, π
∗
1) be the capacity-achieving input distribution for a regularized BAC.

Let ρ = [ρ1, ρ2, . . . , ρM ] be the belief state vector for Algorithm 4 satisfying maxi∈[M ] ρi < π∗1.

Let (S0, S1) be the bipartition of [M ] generated by Algorithm 4. Then, (S0, S1) satisfies (3.42).

Proof. See Section 3.5.4.

Remark 3. Both Algorithms 3 and 4 have complexity O(M logM), making them not suitable

for practical implementation. It still remains open how to further reduce the complexity of

the SED partitioning algorithm for a regularized BAC. Nevertheless, in [AYW20], Antonini

et al. proposed a type-based partitioning algorithm for the BSC based on a relaxed SED

condition with a reduced complexity O(log2M). Simulations show that the coding scheme

based on their relaxed SED condition achieves a similar performance as the original SED

coding scheme.
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3.4 Achievable Rates for BSC With Feedback

In this section, we present our refined non-asymptotic achievability bound for the determin-

istic VLF code constructed with the SED coding scheme for the BSC(p), p ∈ (0, 1/2), with

full noiseless feedback. Both Naghshvar et al.’s and our SED coding scheme yield the same

achievability bound. Therefore, the SED coding scheme refers to either of them.

Theorem 15. For a given integer M ≥ 2 and ε ∈ (0, 1/2), the deterministic (l,M, ε) VLF

code constructed with the SED coding scheme for the BSC(p), p ∈ (0, 1/2), satisfies

l <
logM + 1

q
log 2q

C
+

log 1−ε
ε

+ C2

C1

+ 2−C2C2

(
1

C
− 1

C1

+

1
q

log 2q

CC2

)
1− ε

1−ε2
−C2

1− 2−C2
. (3.47)

This result is a consequence of two supporting lemmas. To aid our discussion, let q = 1−p
and let us consider two stopping times for Θ = i when the log-likelihood ratio Ui(t) first

crosses 0 and log 1−ε
ε
, respectively. Namely,

νi , min{t ∈ N : Ui(t) ≥ 0}, (3.48)

τi , min

{
t ∈ N : Ui(t) ≥ log

1− ε
ε

}
. (3.49)

Clearly, νi ≤ τi. Equivalently, νi and τi also represent the stopping times when ρi(t) first

crosses 1/2 and 1− ε, respectively.

We are now in a position to introduce the two supporting lemmas. First, note that

E[τ ] =
1

M

M∑
i=1

E[τ |Θ = i] ≤ 1

M

M∑
i=1

E[τi|Θ = i], (3.50)

where the inequality follows since τ ≤ τi for all i ∈ [M ]. Next, for E[τi|Θ = i], it can be

decomposed into

E[τi|Θ = i] = E[νi|Θ = i] + E[τi − νi|Θ = i]

= E[νi|Θ = i] + E
[
E[τi − νi|Θ = i, Ui(νi) = u]|Θ = i

]
. (3.51)
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The intuition behind decomposition (3.51) is that E[νi|Θ = i] corresponds to the average

blocklength in the first communication phase (i.e., Ui(t) traversing from log ρi(0)
1−ρi(0)

to 0),

and E[τi − νi|Θ = i, Ui(νi) = u] corresponds to the expected additional time spent in the

confirmation phase with fallbacks to the communication phase. Here, u represents the value

at which Ui(t) arrives when it crosses threshold 0 for the first time.

Our next step is to develop upper bounds on E[νi|Θ = i] and E[τi − νi|Θ = i, Ui(νi) = u]

that are independent from Θ = i and Ui(νi) = u. We state each upper bound in Lemmas

4 and 5, respectively. Thus, summing up the two bounds will yield an upper bound on

E[τi|Θ = i], hence an upper bound on E[τ ] using (3.50).

We remark that the technique for developing an upper bound on E[νi|Θ = i] makes

use of a surrogate submartingale, thus allowing us to obtain a tighter constant term. In

order to upper bound E[τi − νi|Θ = i, Ui(νi) = u], we first observe that the behavior of

Ui(t) in the confirmation phase can be modeled as a Markov chain with a fallback self

loop on the initial state. This loop represents the probability that Ui(t) first falls back to

the communication phase and then returns to the confirmation phase. We first show that

E[τi − νi|Θ = i, Ui(νi) = u] is upper bounded by a particular expected first-passage time on

a generalized Markov chain. Further upper bounding the expected first-passage time yields

the desired upper bound. Detailed analysis can be found in the proofs of Lemmas 4 and 5.

Lemma 4. Fix a BSC(p), p ∈ (0, 1/2). The stopping time νi defined in (3.48) under the

SED coding scheme satisfies

E[νi|Θ = i] <
logM + 1

q
log 2q

C
. (3.52)

Proof. See Section 3.5.5.

Lemma 5. Fix a BSC(p), p ∈ (0, 1/2). The stopping times νi and τi defined in (3.48) and
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(3.49) under the SED coding scheme satisfy

E[τi − νi|Θ = i, Ui(νi) = u] ≤ log 1−ε
ε

+ C2

C1

+ C22−C2

(
1

C
− 1

C1

+

1
q

log 2q

CC2

)
1− ε

1−ε2
−C2

1− 2−C2
.

(3.53)

Proof. See Section 3.5.6.

3.5 Proofs

In this section, we prove our main results.

3.5.1 Proof of Lemma 3

Several steps in the proof of Lemma 3 are analogous to that in [NWJ12], for instance, the

introduction of the extrinsic probabilities. However, the distinction is that our generalized

SED coding scheme generalizes the analysis in [NWJ12, Appendix A2] which only works for

symmetric binary-input channels.

Let Θ = i ∈ [M ] be fixed. For brevity, let xi be the input symbol for Θ = i at time

t + 1. Let Ft = σ{C, Y t} denote the filtration generated by both the codebook C and Y t.

Thus, given Ft and Θ = i, Yt+1 is distributed according to P (Y |X = xi). Hence, by letting

x̄ = 1− x,

E[Ui(t+ 1)− Ui(t)|Ft,Θ = i]

=
∑
y∈Y

PY |X(y|xi)
(

log
ρi(t+ 1)

1− ρi(t+ 1)
− log

ρi(t)

1− ρi(t)

)

=
∑
y∈Y

PY |X(y|xi)

log

ρi(t)PY |X(y|xi)∑
x∈X πx(t)PY |X(y|x)

1− ρi(t)PY |X(y|xi)∑
x∈X πx(t)PY |X(y|x)

− log
ρi(t)

1− ρi(t)


=
∑
y∈Y

PY |X(y|xi) log
PY |X(y|xi)

πxi (t)−ρi(t)
1−ρi(t) PY |X(y|xi) +

πx̄i (t)

1−ρi(t)PY |X(y|x̄i)
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=
∑
y∈Y

PY |X(y|xi) log
PY |X(y|xi)∑

x∈X π̃x,i(t)PY |X(y|x)
(3.54)

= D
(
P (Y |X = xi)‖P (Ỹ )

)
, (3.55)

where in (3.54), we define the extrinsic probabilities by

π̃xi,i(t) ,
πxi(t)− ρi(t)

1− ρi(t)
, (3.56)

π̃x̄i,i(t) ,
πx̄i(t)

1− ρi(t)
. (3.57)

Clearly, π̃xi,i(t) + π̃x̄i,i(t) = 1. Note that π̃xi,i(t) ≥ 0 because i ∈ Sxi(t). In (3.55), Ỹ is the

output induced by the channel (X ,Y , PY |X) for an input X̃ distributed as (π̃0,i(t), π̃1,i(t)).

Next, Lemmas 6 and 7 play a key role in connecting our generalized SED coding scheme

to the two-stage submartingale in Lemma 3.

Lemma 6. The extrinsic probability π̃xi,i(t) under the generalized SED coding scheme in Sec.

3.3 for a BAC(p0, p1) with capacity-achieving input distribution (π∗0, π
∗
1) satisfies π̃xi,i(t) ≤

π∗xi, where xi is the input symbol for Θ = i at time t+ 1.

Proof. Let î = arg maxj∈[M ] ρj(t). We distinguish two cases: ρî(t) < π∗1 and ρî(t) ≥ π∗1.

When ρî(t) < π∗1, we further discuss two subcases: xi = 0 and xi = 1. If xi = 0, then

i ∈ S0(t). Invoking (3.42b), we have

π̃0,i(t)− π∗0 = (π∗0 + π∗1)π̃0,i(t)− π∗0
= π∗1π̃0,i(t)− π∗0(1− π̃0,i(t))

= π∗1π̃0,i(t)− π∗0π̃1,i(t)

=
π∗0π

∗
1

1− ρi(t)

(
π0(t)− ρi(t)

π∗0
− π1(t)

π∗1

)
≤ π∗0π

∗
1

1− ρi(t)

(
π0(t)−minj∈S0(t) ρj(t)

π∗0
− π1(t)

π∗1

)
≤ 0. (3.58)
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If xi = 1, then i ∈ S1(t). By invoking (3.42a), we show in a similar fashion that

π̃1,i(t)− π∗1 =
π∗0π

∗
1

1− ρi(t)

(
π1(t)− ρi(t)

π∗1
− π0(t)

π∗0

)
≤ π∗0π

∗
1

1− ρi(t)

(
π1(t)−minj∈S1(t) ρj(t)

π∗1
− π0(t)

π∗0

)
≤ 0. (3.59)

Therefore, Lemma 6 holds for ρî(t) < π∗1.

When ρî(t) ≥ π∗1, by the encoding rule, S1(t) = {̂i} and S0(t) = [M ] \ {̂i}. If î = i, then

S1(t) = {i} and S0(t) = [M ] \ {i}. Thus, π̃1,i(t) = 0 < π∗1. If î 6= i, then i ∈ S0(t). Since

π1(t) = ρî(t) ≥ π∗1, it follows that π0(t) ≤ π∗0. Combining with the fact that π̃0,i(t) ≤ π0(t),

we conclude that π̃0,i(t) ≤ π∗0. Therefore, Lemma 6 also holds in this case.

Summarizing the above two cases, we conclude that Lemma 6 holds in general.

Note that Lemma 6 does not require that the BAC be regularized. However, the regu-

larized BAC is needed when we prove (3.44b). Next, we borrow a useful lemma on the KL

divergence proved in [NJW15].

Lemma 7 (Lemma 1, [NJW15]). For any two distributions P and Q on a set Y and α ∈
[0, 1], D(P‖αP + (1− α)Q) is decreasing in α.

By Lemma 7, let P ≡ P (Y |X = xi), Q ≡ P (Y |X = x̄i), and α = π̃xi,i(t). Then, (3.55)

is lower bounded by

D
(
P (Y |X = xi)‖P (Ỹ )

)
= D

(
P‖αP + (1− α)Q

)
(3.60)

≥ D
(
P‖π∗xiP + π∗x̄iQ

)
(3.61)

= C, (3.62)

where (3.61) follows from Lemma 6 and (3.62) follows from Fact 2. Therefore, with the

generalized SED coding scheme, it always holds that

E[Ui(t+ 1)|Ft,Θ = i] ≥ Ui(t) + C. (3.63)
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As a result, (3.44a) is proved.

In particular, if Ui(t) ≥ 0, this is equivalent to ρi(t) ≥ 1/2 and thus i is the index with the

maximum posterior. Using Fact 1 that π∗1 ≤ 1/2, it follows that maxj∈[M ] ρj(t) = ρi(t) ≥ π∗1.

Thus, according to the generalized SED coding scheme in Sec. 3.3, the message set [M ] is

exclusively partitioned into S1(t) = {i} and S0(t) = [M ] \ {i}, resulting in π̃1,i(t) = 0 and

D
(
P (Y |X = xi)‖P (Ỹ )

)
= D

(
P (Y |X = 1)‖P (Y |X = 0)

)
= C1, (3.64)

where (3.64) follows from Fact 3. Therefore, (3.44b) is proved. We also remark that for

Yt+1 = y,

Ui(t+ 1) = Ui(t) + log
PY |X(y|1)

PY |X(y|0)
, if Ui(t) ≥ 0. (3.65)

Hence, C1 can be thought of as the average drift of Ui(t) whenever Ui(t) ≥ 0.

To prove (3.44c), we note that when Yt+1 = y, by (3.15),

|Ui(t+ 1)− Ui(t)| =
∣∣∣∣log

ρi(t+ 1)

1− ρi(t+ 1)
− log

ρi(t)

1− ρi(t)

∣∣∣∣
=

∣∣∣∣∣log

(
ρi(t)PY |X(y|xt+1,i)∑
j 6=i ρj(t)PY |X(y|xt+1,j)

· 1− ρi(t)
ρi(t)

)∣∣∣∣∣
=

∣∣∣∣∣log
PY |X(y|xt+1,i))∑

j 6=i
ρj(t)

1−ρi(t)PY |X(y|xt+1,j))

∣∣∣∣∣ (3.66)

≤ log
maxx∈X PY |X(y|x)

minx∈X PY |X(y|x)
. (3.67)

Hence, we have

|Ui(t+ 1)− Ui(t)| ≤ max
y∈Y

log
maxx∈X PY |X(y|x)

minx∈X PY |X(y|x)
,

= C2, (3.68)

which completes the proof of (3.44c).
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3.5.2 Proof of Theorem 12

The proof of Theorem 12 involves a submartingale synthesis with optimized parameters

(Lemma 8) and a variant of Doob’s optional stopping theorem (Lemma 9). We estab-

lish auxiliary Lemmas 11 and 10 to show that the sufficient conditions in Lemma 9 hold.

Throughout the proof, we fix Θ = i ∈ [M ] to avoid writing the conditioning Θ = i unless

otherwise specified.

Let the sequence {Ui(t)}∞t=0 be the two-stage submartingale defined in (3.44) with respect

to filtration {Ft}∞t=0 as a result of the generalized SED coding scheme over a regularized

BAC(p0, p1). Let us consider a sequence {η(t)}∞t=0 defined as

η(t) ,


−A+ Ui(t)

C
− t, if Ui(t) < 0,

−Ae−sUi(t) + Ui(t)
C1
− t, if Ui(t) ≥ 0,

(3.69)

where s > 0 and A > 0 are two parameters to be chosen. This particular sequence is

originally considered by Burnashev and Zigangirov that facilitates a general upper bound on

the expected stopping time [BZ75, Eq. 4.9]. For our purposes, we require that parameters s

and A meet the following two equations,

A(1− e−sC2)− C2

(
1

C
− 1

C1

)
= 0, (3.70)

p1e
−s log

p1
1−p0 + (1− p1)e

−s log
1−p1
p0 = 1. (3.71)

The motivation behind these equations is to select the best parameters that make {η(t)}∞t=0

just a submartingale. This will become clearer as our proof proceeds. Solving (3.70) and

(3.71) yields

s = ln 2, (3.72)

A =
C2

1− 2−C2

(
1

C
− 1

C1

)
. (3.73)

Lemma 8. The sequence {η(t)}∞t=0 with parameters s and A satisfying (3.70) and (3.71)

forms a submartingale with respect to the filtration {Ft}∞t=0.
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Proof. We will show that E[η(t+ 1)|Ft] ≥ η(t). There are two cases.

Case 1 (Ui(t) < 0): there are two subcases. If Ui(t+1) ≥ 0, then from (3.44c), Ui(t+1) <

C2. Consider the function

f(x) , A− Ae−sx −
(

1

C
− 1

C1

)
x, (3.74)

where s and A satisfy equations (3.70) and (3.71). Since f(0) = 0, f(C2) = 0 due to (3.70),

and f(x) is a concave function, it follows that f(x) > 0 for x ∈ (0, C2). Let Ui(t + 1) play

the role of x. Using f(Ui(t+ 1)) > 0, we obtain

η(t+ 1) = −Ae−sUi(t+1) +
Ui(t+ 1)

C1

− (t+ 1)

> −A+
Ui(t+ 1)

C
− (t+ 1). (3.75)

If Ui(t+ 1) < 0, then

η(t+ 1) = −A+
Ui(t+ 1)

C
− (t+ 1). (3.76)

Hence, regardless of the sign of Ui(t+ 1), it holds that

E[η(t+ 1)|Ft] ≥ E
[
− A+

Ui(t+ 1)

C
− (t+ 1)

∣∣∣Ft] (3.77)

≥ −A+
Ui(t) + C

C
− (t+ 1) (3.78)

= η(t), (3.79)

where (3.78) follows from (3.44a).

Case 2 (Ui(t) ≥ 0): there are two subcases. If Ui(t+ 1) < 0, using f(x) defined in (3.74),

f(Ui(t+ 1)) < 0. Therefore,

η(t+ 1) = −A+
Ui(t+ 1)

C
− (t+ 1) (3.80)

≥ −Ae−sUi(t+1) +
Ui(t+ 1)

C1

− (t+ 1). (3.81)

If Ui(t+ 1) ≥ 0, then

η(t+ 1) = −Ae−sUi(t+1) +
Ui(t+ 1)

C1

− (t+ 1). (3.82)
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Hence, regardless of the sign of Ui(t+ 1), it holds that

E[η(t+ 1)|Ft] ≥ E
[
− Ae−sUi(t+1) +

Ui(t+ 1)

C1

− (t+ 1)
∣∣∣Ft] (3.83)

= −AE[e−sUi(t+1)|Ft] +
E[Ui(t+ 1)|Ft]

C1

− (t+ 1) (3.84)

= −A
(
p1e
−s log

p1
1−p0 + (1− p1)e

−s log
1−p1
p0

)
e−sUi(t) +

Ui(t)

C1

− t (3.85)

= η(t), (3.86)

where (3.85) follows from (3.44b) and (3.65), and (3.86) follows from (3.71).

Summarizing the above two cases, we conclude that E[η(t+ 1)|Ft] ≥ η(t).

Next, we follow [BZ75] to prove a variant of Doob’s optional stopping theorem which

will be useful in proving the main result. For a given submartingale {U(t)}∞t=0, the original

Doob’s optional stopping theorem [Wil91, Sec. 10.10] requires that the stopping time T

satisfy E[T ] < ∞ and |U(t + 1) − U(t)| be bounded. In contrast, we show that if T is an

upper-threshold-crossing stopping time, then it suffices to ask for T being a.s. finite and

|U(t+ 1)− U(t)| being bounded.

Lemma 9 (Variant of Doob’s Optional Stopping Theorem). Let {U(t)}∞t=0 be a submartingale

with respect to filtration {Ft}∞t=0 satisfying |U(t+ 1)−U(t)| ≤ K for some positive constant

K. Let T = min{t : U(t) ≥ ζ}, ζ > 0 be a stopping time and assume that T is a.s. finite.

Then,

U(0) ≤ E[U(T )]. (3.87)

Proof. Let t∧T , min{t, T}. From the martingale theory [Wil91, Sec. 10.9], if {U(t)}∞t=0 is

a submartingale, then the stopped process {U(t ∧ T )}∞t=0 is also a submartingale. Thus, we

obtain

U(0) ≤ E[U(t ∧ T )] (3.88)

≤ lim
t→∞

E[U(t ∧ T )] (3.89)
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≤ E[ lim
t→∞

U(t ∧ T )] (3.90)

= E[U(T )].

In the above,

• (3.88) follows from applying Doob’s optional stopping theorem [Wil91, Sec. 10.10] to

the stopped process {U(t ∧ T )}∞t=0.

• (3.89) follows from that E[U(t ∧ T )] ≤ E[U((t+ 1) ∧ T )] for submartingales. This can

be seen by noting that

E[U((t+ 1) ∧ T )]− E[U(t ∧ T )]

= E[(U(t+ 1)− U(t))1{T≥t+1}] + E[0 · 1{T≤n}]

= E
[
E[(U(t+ 1)− U(t))1{T≥t+1}|Ft]

]
= E

[
1{T≥t+1}E[(U(t+ 1)− U(t))|Ft]

]
≥ 0,

where the last step follows from submartingale property E[U(t+ 1)|Ft] ≥ U(t).

• (3.90) follows from the fact that U(t∧T ) is uniformly bounded above, the assumption

that T is a.s. finite, and the reverse Fatou’s lemma.

This concludes the proof of Lemma 9.

In the next two lemmas, we show that the sufficient conditions in Lemma 9 indeed holds

for the submartingale {η(t)}∞t=0 in Lemma 8.

Lemma 10. Let {U(t)}∞t=0 be the submartingale in (3.44) with respect to filtration {Ft}∞t=0.

Consider the stopping time T , min{t : U(t) ≥ ζ}, where ζ > 0 is some constant. Then,

P{T <∞} = 1. Namely, T is a.s. finite.
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Proof. We first recall Azuma-Hoeffding inequality for a general submartingale {ξ(t)}∞t=0: If

{ξ(t)}∞t=0 is a submartingale that satisfies |ξ(t+ 1)− ξ(t)| ≤ K for all t ≥ 0, then for a given

σ > 0,

P{ξ(t)− ξ(0) ≤ −σ} ≤ exp

( −σ2

2tK2

)
. (3.91)

Let us consider ξ(t) , U(t)
C
− t. We show that {ξ(t)}∞t=0 is also a submartingale with respect

to filtration {Ft}∞t=0. Specifically, if U(t) < 0, then

E[ξ(t+ 1)|Ft] =
E[U(t+ 1)|Ft]

C
− (t+ 1) (3.92)

≥ U(t) + C

C
− (t+ 1) (3.93)

= ξ(t). (3.94)

If U(t) ≥ 0, using the fact that C1 ≥ C, we can also show that E[ξ(t+ 1)|Ft] ≥ ξ(t). Hence,

{ξ(t)}∞t=0 is a submartingale with respect to filtration {Ft}∞t=0. Furthermore, for any t ≥ 0,

|ξ(t+ 1)− ξ(t)| =
∣∣∣∣U(t+ 1)− U(t)

C
− 1

∣∣∣∣ ≤ C2

C
+ 1. (3.95)

Let K = C2

C
+ 1 for shorthand notation. Thus, appealing to Azuma-Hoeffding inequality

(3.91),

P {U(t) ≤ (t− σ)C + U(0)} = P

{
U(t)

C
− t− U(0)

C
≤ −σ

}
(3.96)

= P {ξ(t)− ξ(0) ≤ −σ} (3.97)

≤ exp

( −σ2

2tK2

)
. (3.98)

Equating ζ = (t− σ)C + U(0) yields σ = t− ζ−U(0)
C

, t > ζ−U(0)
C

. Hence,

P {U(t) ≤ ζ} ≤ exp

(
−(t− ζ−U(0)

C
)2

2tK2

)
(3.99)

= exp

(
− t

2K2
+O(t−1)

)
. (3.100)
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It follows that

lim
t→∞

P {U(t) ≤ ζ} ≤ lim
t→∞

exp

(
− t

2K2
+O(t−1)

)
= 0. (3.101)

This implies that

P {T =∞} = lim
t→∞

P

(
t⋂

k=1

{U(k) < ζ}
)

(3.102)

≤ lim
t→∞

P {U(t) ≤ ζ} (3.103)

= 0. (3.104)

Namely, P {T <∞} = 1.

Lemma 11. The sequence {η(t)}∞t=0 with parameters s and A satisfying (3.70) and (3.71)

has the property that the difference between η(t + 1) and η(t) is absolutely bounded. More

specifically,

|η(t+ 1)− η(t)| ≤ A+
2C2

C
+ 1. (3.105)

Proof. We distinguish four cases.

Case 1 : Ui(t) < 0 and Ui(t+ 1) < 0. In this case,

|η(t+ 1)− η(t)| =
∣∣∣∣Ui(t+ 1)− Ui(t)

C
− 1

∣∣∣∣
≤ |Ui(t+ 1)− Ui(t)|

C
+ 1

≤ C2

C
+ 1 (3.106)

Case 2 : Ui(t) < 0 and Ui(t+ 1) ≥ 0. In this case, Ui(t+ 1) ≤ C2 by (3.44c), and

|η(t+ 1)− η(t)| =
∣∣∣∣A(1− e−sUi(t+1)) +

Ui(t+ 1)

C1

− Ui(t)

C
− 1

∣∣∣∣
≤ A(1− e−sC2) +

C2

C
+ 1. (3.107)
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Case 3 : Ui(t) ≥ 0 and Ui(t+ 1) < 0. In this case, Ui(t) ≤ C2 by (3.44c), and

|η(t+ 1)− η(t)| =
∣∣∣∣A(e−sUi(t) − 1) +

Ui(t+ 1)

C
− Ui(t)

C1

− 1

∣∣∣∣
≤ A|1− e−sUi(t)|+

∣∣∣∣Ui(t+ 1)− Ui(t)
C

+

(
1

C
− 1

C1

)
Ui(t)

∣∣∣∣+ 1

≤ A(1− e−sC2) +
C2

C
+

(
1

C
− 1

C1

)
C2 + 1. (3.108)

Case 4 : Ui(t) ≥ 0 and Ui(t+ 1) ≥ 0. In this case,

|η(t+ 1)− η(t)| =
∣∣∣∣−A(e−sUi(t+1) − e−sUi(t)

)
+
Ui(t+ 1)− Ui(t)

C1

− 1

∣∣∣∣
≤ A

∣∣e−sUi(t+1) − e−sUi(t)
∣∣+
|Ui(t+ 1)− Ui(t)|

C1

+ 1

≤ A(1− e−sC2) +
C2

C1

+ 1, (3.109)

where (3.109) follows from the inequality |e−sy − e−sx| ≤ 1 − e−s|y−x| for s ≥ 0, x ≥ 0 and

y ≥ 0.

Note that the upper bounds in (3.106), (3.107), (3.108) and (3.109) are no greater than

A+ 2C2

C
+ 1. The proof is completed.

We are now in a position to derive a non-asymptotic upper bound on E[τ ]. Let us consider

the stopping time

τi , min

{
t ∈ N : Ui(t) ≥ log

1− ε
ε

}
. (3.110)

Lemmas 10 and 11 indicate that the submartingale {η(t)}∞t=0 in (3.69) with parameters s

and A given by (3.72) and (3.73) and the stopping time τi in (3.110) meet the conditions in

Lemma 9. Hence, by Lemma 9,

η(0) ≤ E[η(τi)|Θ = i]

= E
[
−Ae−sUi(τi) +

Ui(τi)

C1

− τ
∣∣∣Θ = i

]
(3.111)
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≤ −Ae−s(log 1−ε
ε

+C2) +
log 1−ε

ε
+ C2

C1

− E[τi|Θ = i], (3.112)

where (3.112) follows since

E[Ui(τ)] = E[Ui(τi − 1)] + E[Ui(τi)− Ui(τi − 1)] (3.113)

< log
1− ε
ε

+ C2. (3.114)

Rewriting (3.112) and substituting s and A with (3.72) and (3.73) respectively yield

E[τi|Θ = i] ≤ −Ae−s(log 1−ε
ε

+C2) +
log 1−ε

ε
+ C2

C1

− η(0)

= −Ae−s(log 1−ε
ε

+C2) +
log 1−ε

ε
+ C2

C1

+ A− Ui(0)

C

<
logM

C
+

log 1−ε
ε

+ C2

C1

+ C2

(
1

C
− 1

C1

)
1− ε

1−ε2
−C2

1− 2−C2
, (3.115)

where we have used the fact that Ui(0) = − log(M − 1) ≤ 0. Finally,

E[τ ] =
1

M

M∑
i=1

E[τ |Θ = i] ≤ 1

M

M∑
i=1

E[τi|Θ = i], (3.116)

where the last inequality follows since τ ≤ τi for all i ∈ [M ]. Finally, combining (3.115) and

(3.116) completes the proof of Theorem 12.

3.5.3 Proof of Theorem 13

We prove Theorem 13 by contradiction. Let S∗0 ⊆ [M ] be an optimal subset of [M ] that

minimizes f(S) in (3.46). If the partition (S∗0 , [M ] \ S∗0) does not meet (3.42), one can

construct another subset S ′0 ⊆ [M ] from S∗0 such that f(S ′0) < f(S∗0), thus contradicting the

assumption that S∗0 minimizes f(S).

Assume that the partition (S∗0 , [M ] \ S∗0) does not meet (3.42), there are two cases.

Case 1 : the partition (S∗0 , [M ] \ S∗0) satisfies λπ0(S∗0) − π1(S∗0) < −mini∈[M ]\S∗0 ρi. Let

i∗ = arg mini∈[M ]\S∗0 ρi. Then,

f(S∗0) = λ
(
π1(S∗0)− λπ0(S∗0)

)
> λρi∗ . (3.117)
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Consider a new subset S ′0 , S∗0 ∪ {i∗}. Next, we show that f(S ′0) < f(S∗0). There are two

subcases. If π1(S ′0) ≥ λπ0(S ′0), then

f(S ′0) = λ
(
π1(S ′0)− λπ0(S ′0)

)
= λ

(
π1(S∗0)− ρi∗ − λπ0(S∗0)− λρi∗

)
< λ

(
π1(S∗0)− λπ0(S∗0)

)
(3.118)

= f(S∗0),

where (3.118) follows since all elements in ρ remain strictly positive during Bayes’ update.

If π1(S ′0) < λπ0(S ′0), then

f(S ′0) = λπ0(S ′0)− π1(S ′0)

= λ
(
π0(S∗0) + ρi∗

)
−
(
π1(S∗0)− ρi∗

)
= λρi∗ −

(
π1(S∗0)− λπ0(S∗0)− ρi∗

)
< f(S∗0), (3.119)

where (3.119) follows from the assumption that λπ0(S∗0)−π1(S∗0) < −ρi∗ and (3.117). Hence,

the optimality assumption of S∗0 is contradicted in Case 1.

Case 2 : the partition (S∗0 , [M ] \ S∗0) satisfies λπ0(S∗0) − π1(S∗0) > λmini∈S∗0 ρi. Let i∗ =

arg mini∈S∗0 ρi. Then,

f(S∗0) = λπ0(S∗0)− π1(S∗0) > λρi∗ . (3.120)

Consider a new subset S ′0 , S∗0 \ {i∗}. We next show that f(S ′0) < f(S∗0). There are two

subcases. If π1(S ′0) ≥ λπ0(S ′0), then

f(S ′0) = λ
(
π1(S ′0)− λπ0(S ′0)

)
= λ

(
π1(S∗0) + ρi∗ − λπ0(S∗0) + λρi∗

)
= λρi∗ − λ

(
λπ0(S∗0)− π1(S∗0)− λρi∗

)
< f(S∗0), (3.121)
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where (3.121) follows from the assumption that λπ0(S∗0) − π1(S∗0) > λρi∗ and (3.120). If

π1(S ′0) < λπ0(S ′0), then

f(S ′0) = λπ0(S ′0)− π1(S ′0)

= λ
(
π0(S∗0)− ρi∗

)
− π1(S∗0)− ρi∗

< λπ0(S∗0)− π1(S∗0)

= f(S∗0). (3.122)

Hence, the optimality assumption of S∗0 is contradicted in Case 2.

In summary, we have shown that if the partition (S∗0 , [M ] \ S∗0) does not meet (3.42),

the optimality assumption of S∗0 will be contradicted. Therefore, the partition (S∗0 , [M ] \S∗0)

must satisfy (3.42). This concludes the proof of Theorem 13.

3.5.4 Proof of Theorem 14

Let us write π(s)
0 and π

(s)
1 to denote the probabilities of S(s)

0 and S
(s)
1 at iteration s, s =

1, 2, . . . ,M . We prove Theorem 14 by induction.

Base case: For s = 1, π(1)
0 = ρj1 and π(1)

1 = 0. Clearly,

λπ
(1)
0 − π(1)

1 = λρj1 ∈ [0, λρj1 ]. (3.123)

Hence, π(1)
0 and π(1)

1 meet the condition in (3.42).

Inductive step: Assume that for s = k, (3.42) holds for π(k)
0 and π(k)

1 . We will show that

(3.42) will also hold for π(k+1)
0 and π(k+1)

1 . There are two cases.

Case 1 : π(k)
1 ≥ λπ

(k)
0 . According to Algorithm 4, π(k+1)

0 = π
(k)
0 + ρjk+1

and π(k+1)
1 = π

(k)
1 .

Meanwhile, ρjk+1
= min

i∈S(k+1)
0

ρi and min
i∈S(k)

1
ρi = min

i∈S(k+1)
1

ρi. Therefore,

λπ
(k+1)
0 − π(k+1)

1 =
(
λπ

(k)
0 − π(k)

1

)
+ λρjk+1

≤ λ min
i∈S(k+1)

0

ρi, (3.124)
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and

λπ
(k+1)
0 − π(k+1)

1 =
(
λπ

(k)
0 − π(k)

1

)
+ λρjk+1

≥ − min
i∈S(k+1)

1

ρi. (3.125)

Hence, (3.42) holds for π(k+1)
0 and π(k+1)

1 in Case 1.

Case 2 : π(k)
1 < λπ

(k)
0 . According to Algorithm 4, π(k+1)

0 = π
(k)
0 and π(k+1)

1 = π
(k)
1 + ρjk+1

.

Meanwhile, ρjk+1
= min

i∈S(k+1)
1

ρi and min
i∈S(k)

0
ρi = min

i∈S(k+1)
0

ρi. Therefore,

λπ
(k+1)
0 − π(k+1)

1 =
(
λπ

(k)
0 − π(k)

1

)
− ρjk+1

≤ λ min
i∈S(k+1)

0

ρi, (3.126)

and

λπ
(k+1)
0 − π(k+1)

1 =
(
λπ

(k)
0 − π(k)

1

)
− ρjk+1

> − min
i∈S(k+1)

1

ρi. (3.127)

Hence, (3.42) holds for π(k+1)
0 and π(k+1)

1 in Case 2.

In summary, (3.42) holds for π(k+1)
0 and π(k+1)

1 at iteration s = k + 1. Therefore, when

the algorithm terminates, a bipartition of [M ] will be formed and the corresponding π(M)
0

and π(M)
1 will satisfy (3.42). This completes the proof of Theorem 14.

3.5.5 Proof of Lemma 4

The proof of Lemma 4 includes a construction of a surrogate submartingale and an applica-

tion of the variant of Doob’s optional stopping theorem (Lemma 9).

Let xi be the input symbol for Θ = i at time t+ 1 and define x̄i , 1− xi. Following the

derivation of (3.54), for Yt+1 = y,

Ui(t+ 1) = log
ρi(t+ 1)

1− ρi(t+ 1)
(3.128)
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= Ui(t) + log
PY |X(y|xi)∑

x∈X π̃x,i(t)P (y|x)
, (3.129)

where π̃x,i(t), x ∈ {0, 1}, are the extrinsic probabilities defined in (3.56) and (3.57). For

brevity, let us define the instantaneous step size

wi(t, y) , log
PY |X(y|xi)∑

x∈X π̃x,i(t)P (y|x)
. (3.130)

From previous analysis in Section 3.5.1, we showed in (3.62) that with the SED encoding

rule,

E[Wi(t, Y )|Ft] ≥ C. (3.131)

where C is the capacity of the BSC(p).

Here, we seek a surrogate submartingale U ′i(t) satisfying the following two conditions:

1. ∀t ≥ 0 and ∀yt, U ′i(t) ≤ Ui(t) with U ′i(0) = Ui(0);

2. E[U ′i(t+ 1)|Ft] = U ′i(t) + C.

The motivation behind Condition 1) is that if we consider stopping time

ν ′i , min{t : U ′i(t) ≥ 0}, (3.132)

then, Condition 1) implies that νi ≤ ν ′i.

Construction of {U ′i(t)}∞t=0: Let U ′i(0) = Ui(0). For t ≥ 0 and Yt+1 = y,

U ′i(t+ 1) , U ′i(t) + w′i(t, y), (3.133)

where w′i(t, y) is defined as

w′i(t, xi) , log 2PY |X(xi|xi)−
PY |X(x̄i|xi)
PY |X(xi|xi)

log
1/2∑

x∈X π̃x,i(t)P (x̄i|x)
, (3.134)

w′i(t, x̄i) , log 2PY |X(x̄i|xi) + log
1/2∑

x∈X π̃x,i(t)P (x̄i|x)
. (3.135)
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We see that the only distinction between w′i(t, y) and wi(t, y) defined in (3.130) lies in

w′i(t, xi) 6= wi(t, xi). We now show that {U ′i(t)}∞t=0 in (3.133) indeed satisfies the two condi-

tions aforementioned. First,

E[W ′
i (t, Y )|Ft] = PY |X(xi|xi)w′i(t, xi) + PY |X(x̄i|xi)w′i(t, x̄i) (3.136)

= PY |X(xi|xi) log 2PY |X(xi|xi) + PY |X(x̄i|xi) log 2PY |X(x̄i|xi) (3.137)

= C. (3.138)

This implies that {U ′i(t)}∞t=0 is a submartingale satisfying Condition 2). Specifically, E[U ′i(t+

1)|Ft] = U ′i(t) + C.

Next, we show Condition 1) also holds for {U ′i(t)}∞t=0. Note that the only difference

between wi(t, y) and w′i(t, y) is when y = xi, thus, it suffices to show w′i(t, xi) ≤ wi(t, xi).

Indeed,

wi(t, xi) = log 2PY |X(xi|xi) + log
1/2∑

x∈X π̃x,i(t)P (xi|x)

≥ log 2PY |X(xi|xi)+
PY |X(x̄i|xi)
PY |X(xi|xi)

log
1/2∑

x∈X π̃x,i(t)P (xi|x)

≥ log 2PY |X(xi|xi)+
PY |X(x̄i|xi)
PY |X(xi|xi)

log

∑
x∈X π̃x,i(t)P (x̄i|x)

1/2
(3.139)

= w′i(t, xi), (3.140)

where (3.139) follows from the inequality below. Let us use the shorthand notation πx,i =

πx,i(t), p = PY |X(x̄|x) and q = PY |X(x|x). Then,

(π̃xi,iq + π̃x̄i,ip)(π̃xi,ip+ π̃x̄i,iq) = (π̃xi,iq + π̃x̄i,ip)
[
1− (π̃xi,iq + π̃x̄i,ip)

]
≤ 1

4
(3.141)

with equality if and only if π̃xi,i = 1/2. Note that by Lemma 6, π̃xi,i(t) ∈ [0, 1/2] for

the BSC. As a result,
∑

x∈X π̃x,i(t)P (x̄i|x) = −(q − p)π̃xi,i(t) + q ∈ [1/2, q], implying that

w′i(t, xi) ≥ log 2q > 0. Thus, w′i(t, y) ≤ wi(t, y) for y ∈ {0, 1} and Condition 1) follows.

Finally, we apply Lemma 9 to the surrogate submartingale {U ′i(t)}∞t=0 to obtain an upper

bound on E[ν ′i]. Observe that for any t ≥ 0 and yt,

|w′i(t, y)| ≤ |wi(t, y)| ≤ C2. (3.142)
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Sn

q

1

Figure 3.2: An example of the generalized Markov chain with initial value u, u ∈ [0, C2),

assuming that Ui(t) arrives at u when crossing threshold 0 and remains nonnegative all the

time. The value beside each branch denotes the transition probability. The value inside the

jth circle represents the unique active value in Sj, j ∈ [n].

Hence, the conditions in Lemma 9 are met.

Consider a normalized sequence {η(t)}∞t=0 defined as

η(t) ,
U ′i(t)

C
− t. (3.143)

It is straightforward to show that {η(t)}∞t=0 is a martingale with the difference |η(t+1)−η(t)|
bounded from above. Therefore, by Lemma 9,

Ui(0)

C
= η(0)

≤ E[η(ν ′i)]

=
E[U ′i(ν

′
i)− U ′i(ν ′i − 1)] + E[U ′i(ν

′
i − 1)]

C
− E[ν ′i]

≤ w′i(t, xi) + 0

C
− E[ν ′i] (3.144)

≤
1
q

log 2q

C
− E[ν ′i] (3.145)

where (3.144) follows from the fact that U ′i(t) has to cross the threshold 0 from t = ν ′i− 1 to

t = ν ′i and that w′i(t, xi) is the only positive step size, (3.145) follows from the fact that

w′i(t, xi) ≤ log 2q − p

q
log

1/2

q
=

1

q
log 2q. (3.146)

Combining (3.145) with the fact that νi ≤ ν ′i,

E[νi] ≤ E[ν ′i] ≤
1
q

log 2q

C
−

log 1/M
1−1/M

C
(3.147)
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<
logM + 1

q
log 2q

C
. (3.148)

This completes the proof of Lemma 4.

3.5.6 Proof of Lemma 5

The proof requires several steps. First, we show that when Ui(t) ≥ 0, the behavior of Ui(t)

can be modeled as a Markov chain with a fallback self loop. This self loop represents the

probability that Ui(t) first falls back to the communication phase and eventually returns

to the confirmation phase. Next, we show that E[τi − νi|Θ = i, Ui(νi) = u] can be upper

bounded by the expected first-passage time from the initial state to the terminating state on

a generalized Markov chain. Further upper bounding this expected first-passage time yields

the desired upper bound.

Let q , 1 − p. For BSC(p), p ∈ (0, 1/2), by Fact 3, C2 = log(q/p) and C1 = (q − p)C2.

In the following analysis, we fix Θ = i ∈ [M ] unless otherwise specified.

Recall that with the SED coding scheme, the one-step update for Ui(t) when Ui(t) ≥ 0

is given by (3.65). In the case of BSC(p), we have

Ui(t+ 1) = Ui(t) +W, (3.149)

whereW = C2 with probability q = PY |X(1|1) andW = −C2 with probability p = PY |X(0|1).

Assume that Ui(νi) = u ∈ [0, C2). Clearly, the behavior of Ui(t) is a Markov chain with initial

value u, provided that Ui(t) ≥ u for all t ≥ νi.

Unfortunately, the above Markov chain is too simple to capture the reality. First, Ui(t)

can fall back to the communication phase (i.e., Ui(t) < 0) at some time t′ where t′ > νi.

Second, if Ui(t) falls back and then returns to the confirmation phase at time t′′, t′′ > νi, the

value at which Ui(t′′) ≥ 0 might be different from u.

Nevertheless, we make two important observations. First, the prior probability that

Ui(t) falls back to the communication phase is p. Given that Ui(t) falls back, the conditional

111



probability that Ui(t) eventually returns to the confirmation phase is 1, since τi is a.s. finite

by Lemma 10. Hence, the transition probability from the initial state value u at which Ui(t)

falls back to another initial state value u′ at which Ui(t) returns is p. Second, assume u is

the initial value when Ui(t) first enters the confirmation phase. By (3.149), the subsequent

values that Ui(t) assumes are of the form u + jC2, j ∈ N, provided that Ui(t) ≥ 0 all the

time. These observations motivate the definition of a generalized Markov chain.

Definition 4. Let S0 = [0, C2) represent the set of values of Ui(t) when transitioning from

below 0 to above 0 for the first time. Let n , d 1
C2

log 1−ε
ε
e. Define Sj , [jC2, jC2 + C2),

j ∈ [n]. The generalized Markov chain consists of a sequence of states S0,S1, . . . ,Sn satisfying

P {Sj+1|Sj} , PV |U(u+ C2|u), u ∈ Sj, 0 ≤ j ≤ n− 1,

P {Sj−1|Sj} , PV |U(u− C2|u), u ∈ Sj, 1 ≤ j ≤ n,

P {S0|S0} , P (V ∈ S0|U = u), u ∈ S0,

P {Sn|Sn} , 1,

where if u ∈ S0, P (V ∈ S0|U = u) = p and P (V = u + C2|U = u) = q. If u ∈ Sj, j ≥ 1,

P (V = u+ C2|U = u) = q and P (V = u+ C2|U = u) = p.

The distinction between the generalized Markov chain and a conventional Markov chain

discussed above is that each state is an interval rather than a single value. However, as soon

as Ui(t) ≥ 0, only a single value in each set Sj remains active and is uniquely determined

by the initial value in S0. Specifically, if the initial value is u, then the only active value in

Sj is given by u + jC2, j ∈ [n]. For this reason, each state Sj, albeit defined as an interval,

resembles a “single value”, and one can directly define transition probabilities between two

consecutive states. Fig. 3.2 illustrates an example of the generalized Markov chain with an

initial value u ∈ [0, C2).

Let us consider a new stopping time

τ ∗i , min

{
t :

⌊
Ui(t)

C2

⌋
≥
⌈

log 1−ε
ε

C2

⌉}
. (3.150)
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By definition, τ ∗i is independent from the initial value Ui(t)− bUi(t)/C2cC2 and is achieved

whenever Ui(t) enters Sn for the first time. Moreover,

Ui(τ
∗
i )

C2

≥
⌊
Ui(τ

∗
i )

C2

⌋
≥
⌈

log 1−ε
ε

C2

⌉
≥ log 1−ε

ε

C2

. (3.151)

Hence, by definition of τi in (3.49), we obtain

τi ≤ τ ∗i . (3.152)

This implies that

E[τi − νi|Θ = i, Ui(νi) = u] ≤ E[τ ∗i − νi|Θ = i, Ui(νi) = u]. (3.153)

Note that E[τ ∗i − νi|Θ = i, Ui(νi) = u] represents the expected first-passage time from initial

state u ∈ S0 when Ui(t) first crosses threshold 0 at time νi to state Sn. In Appendix 3.9.3,

the time of first passage analysis shows that

E[τ ∗i − νi|Θ = i, Ui(νi) = u] =
n

1− 2p
+

p

1− 2p

(
1−

(p
q

)n)(
∆0 −

2q

1− 2p

)
(3.154)

=
nC2

C1

+
2−C2

1− 2−C2
(1− 2−nC2)

(
∆0 − 1− C2

C1

)
, (3.155)

where ∆0 represents the expected self loop time of Ui(t) from S0 to S0. Assume that after

fallback, Ui(t) = u− C2 < 0. Following (3.145) in Section 3.5.5, we immediately obtain

∆0 ≤ 1 +

1
q

log 2q

C
− u− C2

C
(3.156)

= 1 +

1
q

log 2q + C2 − u
C

(3.157)

≤ 1 +

1
q

log 2q + C2

C
. (3.158)

Substituting (3.158) into (3.155) yields

E[τ ∗i − νi|Θ = i, Ui(νi) = u] ≤ nC2

C1

+ C22−C2

(
1

C
− 1

C1

+

1
q

log 2q

CC2

)
1− 2−nC2

1− 2−C2
. (3.159)
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Using n = d 1
C2

log 1−ε
ε
e ≤ 1

C2
log 1−ε

ε
+ 1, we obtain the desired upper bound

E[τ ∗i − νi|Θ = i, Ui(νi) = u] ≤ log 1−ε
ε

+ C2

C1

+ C22−C2

(
1

C
− 1

C1

+

1
q

log 2q

CC2

)
1− ε

1−ε2
−C2

1− 2−C2
.

(3.160)

Combining (3.153) and (3.160) completes the proof of Lemma 5.

3.6 Numerical Simulation

In this section, we simulate the performance of the generalized SED coding scheme in Sec.

3.3 for a regularized BAC(p0, p1) with full noiseless feedback. The empirical rate is computed

with (3.12). The achievability bound on rate can be obtained from the non-asymptotic upper

bound on E[τ ]. We consider target error probability ε = 10−3 and a regularized BAC and

a BSC both with capacity 1/2. In each case, we compare the empirical rate attained by

the SED coding scheme with our VLF achievability bounds and with previous achievability

bounds.

3.6.1 The Regularized BAC with Feedback

Consider the target error probability ε = 10−3 and the regularized BAC(0.03, 0.22) with

feedback. Using Facts 1 and 3, one can compute

C = 0.5, C1 = 3.1954, C2 = 4.7. (3.161)

For ε = 10−3 and the BAC(0.03, 0.22) with feedback, Fig. 3.3 shows the empirical rate

achieved by the generalized SED coding scheme, along with the VLF converse bound in The-

orem 11, our VLF achievability bound in Theorem 12 and Polyanskiy’s VLSF achievability

bound in Theorem 10 evaluated with (3.36), (3.37). Since the generalized SED partitioning

algorithm has an exponential complexity in message length k, we were only able to simulate

message lengths k from 1 to 20. We see in Fig. 3.3 that the empirical rate achieved by
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Figure 3.3: The rate as a function of average blocklength for the BAC(0.03, 0.22) with

noiseless feedback. Target error probability ε = 10−3. In this example, the message length k

in the simulation ranges from 1 to 20.

the SED coding scheme is much better than our VLF achievability bound, implying that

there is still room for improvement. Nevertheless, our VLF achievability bound outperforms

Polyanskiy’s VLSF achievability bound as desired.

3.6.2 The BSC with Feedback

Consider the target error probability ε = 10−3 and the BSC(0.11) with feedback. Using

Facts 1 and 3,

C = 0.5, C1 = 2.3527, C2 = 3.0163. (3.162)

One can verify that this setting satisfies the technical conditions in [NJW15]. Thus, by

Theorem 18 of Naghshvar et al.,

E[τ ] ≤ logM + log logM

0.5
+ 5352.67, (3.163)
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Figure 3.4: The rate as a function of average blocklength over the BSC(0.11) with noiseless

feedback. Target error probability ε = 10−3.

which turns out to be an extremely loose upper bound on E[τ ]. The corresponding achiev-

ability bound even falls out of the average blocklength region of interest, thus is omitted

from the simulation plot.

For ε = 10−3 and BSC(0.11) with feedback, Fig. 3.4 shows the empirical rate achieved

by the generalized SED coding scheme, along with the VLF converse bound in Theorem 11,

our refined VLF achievability bound for BSC in Theorem 15, the VLF achievability bound

for the BSC in Theorem 12, Polyanskiy’s VLSF achievability bound in Theorem 10, and

the VLF achievability bound in Corollary 1. Thanks to Polyanskiy, we directly evaluate the

VLSF achievability bound in Theorem 10, rather than using relaxations in (3.36) and (3.37).

Due to the exponential complexity of the SED partitioning algorithm, we were only able to

simulate message lengths k from 1 to 20.

Despite that Corollary 1 is a better result compared to Theorem 18, the resulting VLF

achievability bound still falls beneath Polyanskiy’s VLSF achievability bound. In contrast,
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our VLF achievability bound in Theorem 12 exceeds Polyanskiy’s VLSF achievability bound

in Theorem 10 as desired. Indeed, this should be expected since a system that employs

full noiseless feedback should perform better than a system that employs stop feedback. In

particular, our refined VLF achievability bound for the BSC in Theorem 15 is a further

improvement compared to Theorem 12.

3.7 Implications on the Reliability Function

In this section, we show that for a regularized BAC with feedback, the deterministic VLF code

constructed with our generalized SED coding scheme described in Sec. 3.3 asymptotically

achieves both capacity and Burnashev’s optimal error exponent.

Let c be a variable-length coding scheme such that for each positive number l, one out

of Mcl equiprobable messages is transmitted at an error probability Pe,c and with an average

blocklength Ecl [τ ]. We say that the scheme c achieves rate R if for any small numbers δ > 0,

ε ∈ [0, 1) and all sufficiently large l, the following three conditions hold:

Pe,cl ≤ ε, (3.164a)

Mcl ≥ 2l(R−δ), (3.164b)

Ecl [τ ] ≤ l. (3.164c)

Furthermore, if the scheme c satisfies (3.164b), (3.164c) and a stronger condition

Pe,cl ≤ 2−l(E−δ), (3.165)

for some positive real number E, then we say the scheme c achieves error exponent E at rate

R.

We invoke a general result from [NJW15] to show our claim.

Lemma 12 (Lemma 4, [NJW15]). Suppose that we have a VLF coding scheme c that for

each message size M ∈ N+ and each positive ε ∈ (0, 1), satisfies Pe,c ≤ ε with expected
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stopping time

Ec[τ ] ≤
(

logM

Rmin

+
log 1

ε

Emin

)(
1 + o(1)

)
(3.166)

for some positive numbers Emin and Rmin, where o(1)→ 0 as ε→ 0 or M →∞. Then, the

scheme c can achieve any rate R ∈ [0, Rmin] with error exponent E, if

E ≤ Emin

(
1− R

Rmin

)
. (3.167)

Observe that in Theorem 12 and Theorem 15, both upper bounds can be relaxed and

written in the form of

logM

C
+

log 1
ε

C1

+
K(C,C1, C2)

CC1

, (3.168)

where K(C,C1, C2) is a constant that only relies on C,C1, C2. Hence, for sufficiently large

M or sufficiently small ε,

K(C,C1, C2)

CC1

≤ C1 logM + C log 1
ε

CC1

=
logM

C
+

log 1
ε

C1

.

Another way to write the above inequality is that

K(C,C1, C2)

CC1

=

(
logM

C
+

log 1
ε

C1

)
o(1), (3.169)

where o(1) → 0 as ε → 0 or M → ∞. This implies that the non-asymptotic upper bounds

in both Theorem 12 and Theorem 15 meet the condition in Lemma 12. Therefore, the SED

encoding scheme can achieve any rate R ∈ [0, C] with error exponent

E ≤ C1

(
1− R

C

)
, (3.170)

thus the claim is proved.

3.8 Conclusion

In this chapter, we proposed a generalized SED coding scheme for the regularized BAC with

full noiseless feedback. For a BSC with feedback, our generalized SED coding scheme is a
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relaxation of Naghshvar et al.’s SED coding scheme. This chapter develops a non-asymptotic

VLF achievability bound for the deterministic VLF code constructed with the generalized

SED coding scheme. For the BSC, we develop another refined VLF achievability bound

using a two-phase analysis. Numerical evaluations show that our VLF achievability bounds

outperform Polyanskiy’s VLSF achievability bound as desired. In summary, the SED coding

scheme is a powerful tool that helps facilitate stronger VLF achievability bounds.

Two important technical ingredients lead our generalized SED coding scheme to a non-

asymptotic VLF achievability bound that asymptotically achieves both capacity and Burna-

shev’s optimal error exponent. The first ingredient is that our scheme guarantees that at each

time t, the extrinsic probability π̃xi,i(t) for the input symbol xi associated with the trans-

mitted message Θ = i ∈ [M ] is always upper bounded by π∗xi ; see Lemma 6. This is key to

achieving capacity C. The second ingredient is that for regularized BAC, 0 < π∗1 ≤ 1/2 and

transmitting input symbol 1 achieves C1 i.e., D(P (Y |X = 1)‖P (Y |X = 0)) > D(P (Y |X =

0)‖P (Y |X = 1)). This guarantees that once the transmitted message Θ = i has posterior

probability at least 1/2, our scheme exclusively partitions the message set [M ] into S1 = {i}
and S0 = [M ] \ {i}, thus achieving the C1 constant.

However, the challenge for extending the SED coding scheme to an arbitrary binary-

input DMC (B-DMC) mainly lies in the second technical ingredient. Namely, does the input

symbol x ∈ {0, 1} that achieves C1 constant satisfy π∗x ≤ 1/2 for an arbitrary B-DMC?

Unfortunately, we discovered counterexamples that give a negative answer to the above

problem. For example, consider the following B-DMC with X = {0, 1}, Y = {0, 1, 2}, and
transition matrix [

0.5645 0.3687 0.0668

0.3714 0.0212 0.6074

]
. (3.171)

The capacity-achieving input distribution identified by the Blahut-Arimoto algorithm [Ari72,

Bla72] is given by

(π∗0, π
∗
1) = (0.50507, 0.49493), (3.172)
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achieving capacity C = 0.33. Two KL divergences are computed as

D
(
P (Y |X = 0)‖P (Y |X = 1)

)
= 1.6474, (3.173)

D
(
P (Y |X = 1)‖P (Y |X = 0)

)
= 1.6227. (3.174)

This implies that transmitting input symbol 0 achieves C1 constant, yet π∗0 > 1/2. This

example suggests that new analysis is required in order to extend the SED coding scheme

to an arbitrary B-DMC.
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3.9 Appendices

3.9.1 Proof of Fact 1

Let (π0, 1−π0) be an input distribution to a BAC(p0, p1). Hence, Y is also a binary random

variable with

P {Y = 0} = π0(1− p0) + (1− π0)p1. (3.175)

Therefore, the mutual information I(π0) between X and Y is given by

I(π0) = h
(
π0(1− p0) + (1− π0)p1

)
− π0h(p0)− (1− π0)h(p1)

= h
(
π0(1− p0 − p1) + p1

)
− π0

(
h(p0)− h(p1)

)
− h(p1). (3.176)

Since mutual information I(π0) is concave in π0 ∈ [0, 1] [CT06b, Theorem 2.7.4], the optimal

π∗0 satisfies I ′(π∗0) = 0. The first derivative of I(π0) is given by

I ′(π0) = (1− p0 − p1) log

(
1

π0(1− p0 − p1) + p1

− 1

)
−
(
h(p0)− h(p1)

)
. (3.177)

Clearly, I ′(π0) is a monotonically decreasing function in π0 ∈ (0, 1). Let z , 2
h(p0)−h(p1)

1−p0−p1 . By

setting I ′(π0) = 0, we obtain π∗0 in (3.2). Using (3.176) and the relation π∗1 = 1 − π∗0, we
obtain capacity C in (3.1) and π∗1 in (3.3).

If p0 ∈ (0, 1/2) and p0 ≤ p1 ≤ 1− p0, it is straightforward to see that C > 0. Note that

I(0) = I(1) = 0. This implies that π∗0 ∈ (0, 1) and π∗1 ∈ (0, 1).

To show that p0 ∈ (0, 1/2) and p0 ≤ p1 ≤ 1− p0 imply π∗0 ≥ 1/2, it suffices to show that

I ′
(

1

2

)
≥ 0. (3.178)

Note that

I ′
(

1

2

)
=− (1− p0 − p1) log

(
1

(1−p1)+p0

2

− 1

)
− h(p0) + h(1− p1). (3.179)
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Therefore, it is equivalent to showing that

h(1− p1) ≥ h(p0) + (1− p1 − p0) log

(
1

(1−p1)+p0

2

− 1

)
. (3.180)

Let us fix p0 ∈ (0, 1/2) and define x , 1− p1 ∈ [p0, 1− p0]. Then, (3.180) simplifies to

h(x) ≥ h(p0) + (x− p0) log

(
1

x+p0

2

− 1

)
. (3.181)

In order to show (3.181), we introduce the following useful lemma.

Lemma 13. Let f : (0, 1)→ R be convex in (0, 1/2] and be concave in [1/2, 1). Additionally,

f(x) = −f(1− x). Then, ∀x, y ∈ (0, 1) with x+ y < 1,

f(x) + f(y) ≥ 2f

(
x+ y

2

)
. (3.182)

Proof. Without loss of generality, assume that x < y. If y ≤ 1/2, (3.182) directly follows

from convexity of f(x) in x ∈ (0, 1/2]. Now consider y > 1/2. Therefore,

f

(
x+ y

2

)
− f(y) = f

(
y + x

2

)
− f (1/2) + f (1/2)− f(y)

≤ f

(
1− y + x

2

)
− f(1− y) + f (1/2)− f(y) (3.183)

= f(1/2)− f
(

1 + y − x
2

)
(3.184)

≤ f

(
1− x+ y

2

)
− f(1− x) (3.185)

= f(x)− f
(
x+ y

2

)
. (3.186)

In the above,

• (3.183) follows from the convexity property that for a fixed δ > 0,

f(x)− f(x+ δ) ≤ f(y)− f(y + δ), whenever x ≥ y,

• (3.184) and (3.186) follow from f(x) = −f(1− x),
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• (3.185) follows from the concavity property that for a fixed δ > 0,

f(x)− f(x+ δ) ≤ f(y)− f(y + δ), whenever x ≤ y.

This completes the proof of Lemma 13.

We are now in a position to prove (3.181). Let g(x) , log(1/x − 1), x ∈ [p0, 1 − p0].

Observe that g(x) meets the conditions in Lemma 13 and h′(x) = g(x). Hence, appealing to

Lemma 13, we obtain

h(x) = h(p0) +

∫ x

p0

g(z) dz (3.187)

= h(p0) +

∫ x+p0
2

p0

(
g(z) + g(x+ p0 − z)

)
dz (3.188)

≥ h(p0) +

∫ x+p0
2

p0

2g

(
x+ p0

2

)
dz (3.189)

= h(p0) + (x− p0) log

(
1

x+p0

2

− 1

)
. (3.190)

This implies that (3.181) indeed holds. Hence, π∗0 ≥ 1/2, concluding the proof of Fact 1.

3.9.2 Proof of Fact 3

For brevity, let us define two distributions

P , P (Y |X = 0) = [1− p0, p0], (3.191)

Q , P (Y |X = 1) = [p1, 1− p1]. (3.192)

Hence, it is equivalent to show that

D
(
Q‖P

)
≥ D

(
P‖Q

)
. (3.193)

Let us define the function

f(p0, p1) , D
(
Q‖P

)
−D

(
P‖Q

)
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= (1− p0 + p1) log
p1

1− p0

+ (1 + p0 − p1) log
1− p1

p0

. (3.194)

The first and second derivatives with respect to p1 are, respectively, given by

∂f

∂p1

= log
p1

1− p0

− log
1− p1

p0

+ (log e)
(1− p0

p1

− p0

1− p1

)
(3.195)

∂2f

∂p2
1

=
−(log e)(2p1 − 1)(p1 − 1 + p0)

p2
1(1− p1)2

(3.196)
< 0, if p1 ∈ [p0, 1/2)

≥ 0, if p1 ∈ [1/2, 1− p0].

(3.197)

Hence, for a given p0 ∈ (0, 1/2), f(p0, p1) is concave in p1 ∈ [p0, 1/2] and is convex in

p1 ∈ [1/2, 1− p0]. Next, we borrow a classical result in analysis [Rud76].

Lemma 14. Consider a function φ : I → R defined on an interval I , [a, b] with a < b. If

the first derivative φ′(x) is continuous on I and the second derivative φ′′(x) exists for every

x ∈ Io , (a, b), then the following two properties hold

1) if φ′′(x) ≥ 0, x ∈ Io, and φ′(x∗) = 0 for some x∗ ∈ I, then φ(x) ≥ φ(x∗) for all x ∈ I.

2) If φ′′(x) ≤ 0, x ∈ Io, then φ(x) ≥ min{φ(a), φ(b)} for all x ∈ I.

By Lemma 14, for p1 ∈ [p0, 1/2], due to concavity,

f(p0, p1) ≥ min{f(p0, p0), f(p0, 1/2)} (3.198)

= min{0, f(p0, 1/2)}. (3.199)

Similarly, for p1 ∈ [1/2, 1− p0], due to convexity and the fact that ∂f
∂p1

∣∣
p1=1−p0

= 0,

f(p0, p1) ≥ f(p0, 1− p0) = 0, (3.200)

implying that f(p0, 1/2) ≥ 0. Combining this with (3.199) and (3.200), we conclude that

f(p0, p1) ≥ 0 for all p1 ∈ [p0, 1 − p0], thus establishing (3.193). This completes the proof of

(3.7).

Next, we prove (3.8). This is equivalent to showing that p1(1 − p1) ≥ p0(1 − p0), which

clearly holds when p0 ≤ p1 ≤ 1− p0.
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u+(n− 1)C2

Sn−1

p u+ nC2

Sn

q

1

Figure 3.5: An equivalent Markov chain from Sn−1 to Sn.

3.9.3 Time of First Passage Analysis

In this section, we compute the expected first-passage time from S0 to Sn for the generalized

Markov chain, as depicted in Fig. 3.2. Consider the general case where the self loop for state

S0 has weight ∆0 (i.e., the expected self loop time from S0 to S0), and all other transitions in

graph has weight 1. Let vi denote the expected first-passage time from Si to Sn, 0 ≤ i ≤ n−1.

Our goal is to compute v0, which is equal to E[τ ∗i − νi|Θ = i, Ui(νi) = u].

This appendix computes v0 by first simplifying the expected first-passage time node

equations into an expression involving only v0 and vn−1. Characterizing the entire process

to the left of Sn−1 as a self loop with weight ∆n−1 yields an explicit expression for vn−1.

This eventually produces an expression for v0 that naturally decomposes into the expected

first-passage time for a classical random walk plus a differential term.

3.9.3.1 Simplifying Node Equations

Following [Gal13, Chapter 4.5.1], the node equations for the generalized Markov chain in

Fig. 3.2 are as follows:

vn−1 = 1 + pvn−2, (3.201a)

vn−2 = 1 + pvn−3 + qvn−1, (3.201b)

vn−3 = 1 + pvn−4 + qvn−2, (3.201c)
...

v2 = 1 + pv1 + qv3, (3.201d)
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v1 = 1 + pv0 + qv2, (3.201e)

v0 = q + pv0 + qv1 + p∆0. (3.201f)

Summing all equations in (3.201) yields

n−1∑
i=0

vi = n− 1 + q +
n−2∑
i=1

vi + qvn−1 + 2pv0 + p∆0. (3.202)

Solving for v0 yields

v0 =
n

1− 2p
+

p

1− 2p
(∆0 − vn−1 − 1). (3.203)

Thus, what remains to determine v0 is to determine vn−1.

3.9.3.2 Expressing vn−1 in Terms of ∆0

In this subsection, we aim to express vn−1 in terms of ∆0. By characterizing the entire

process to the left of Sn−1 as a self loop with weight ∆n−1 and transition probability p, the

generalized Markov chain in Fig. 3.2 reduces to a two-state Markov chain as shown in Fig.

3.5. The node equation at Sn−1 in Fig. 3.5 is given by

vn−1 = p∆n−1 + q + pvn−1. (3.204)

Solving for vn−1 yields

vn−1 =
p

q
∆n−1 + 1. (3.205)

Next, we develop a recursive equation to solve ∆n−1. Let ∆i denote the expected self loop

weight for Si, 0 ≤ i ≤ n− 1. Fig. 3.6 shows the transition between Si−1 and Si conditioned
on circling over Si once. Thus, from Fig. 3.6, we obtain

∆i = 1 +
∞∑
k=0

pkq(k∆i−1 + 1) (3.206)

= 2 +
p

q
∆i−1. (3.207)

126



u+(i− 1)C2

Si−1

p u+ iC2

Si

q

1

Figure 3.6: Recursive relation between ∆i and ∆i−1.

Since (3.207) holds for an arbitrary i, 0 ≤ i ≤ n − 1, applying (3.207) in a recursive

manner yields

∆n−1 =

(
p

q

)n−1

∆0 +
2q

1− 2p

[
1−

(
p

q

)n−1
]
. (3.208)

Substituting (3.208) into (3.205), we obtain

vn−1 =

(
p

q

)n
∆0 +

2p

1− 2p

[
1−

(
p

q

)n−1
]

+ 1. (3.209)

3.9.3.3 Finding the General Expression for v0

Substituting (3.209) into (3.203),

v0 =
n

1− 2p
+

p

1− 2p

{[
1−

(
p

q

)n]
∆0 −

2p

1− 2p

[
1−

(
p

q

)n−1
]
− 2

}
(3.210)

=
n

1− 2p
+

p

1− 2p

(
1−

(
p

q

)n)(
∆0 −

2q

1− 2p

)
. (3.211)

This completes the derivation of v0.

Remark 4. For an i.i.d. random walk that moves forward by 1 with probability q and moves

backward by 1 with probability p, all ∆i’s are identical. Using (3.207), we obtain

∆i =
2q

1− 2p
, ∀i ∈ Z. (3.212)

Thus, (3.211) can be thought of as the expected first-passage time for an i.i.d. random walk

plus a differential term that depends on the difference between the self loop weight ∆0 of the

actual random process and the self loop weight of a standard i.i.d. random walk.
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CHAPTER 4

BI-AWGN Channels With Finite, Stop Feedback

4.1 Introduction

Feedback has been shown to be useful both in the variable-length and fixed-length regimes,

even though it does not improve the capacity of a memoryless, point-to-point channel [Sha56].

In the variable-length regime, feedback has been shown to simplify the construction of coding

schemes [Hor63, SK66, SF11,NWJ12,NJW15,YPA22], to significantly improve the optimal

error exponent [Bur76], and to achieve universality [Lub02,DFK04,YKE21a]. In the fixed-

length regime, feedback is shown to improve the second-order coding rate for the compound-

dispersion discrete memoryless channels [WSA20].

In [PPV11], Polyanskiy et al. introduced variable-length feedback (VLF) codes, variable-

length feedback with termination (VLFT) codes, and a special VLF code called a variable-

length stop-feedback (VLSF) code. The infinite-length VLSF codewords are fixed before the

start of transmission and feedback only affects the portion of a codeword being transmitted

rather than the value of that codeword. During transmission, a feedback symbol “0” indicates

that the decoder is not ready to decode and the transmission should continue, whereas a “1”

signifies that the decoder is ready to decode and the transmitter must stop. Using VLSF

codes, Polyanskiy et al. demonstrated that C
1−ε is achievable by stopping the code at τ = 0

with a small probability, where C denotes channel capacity, and ε denotes the target error

probability [PPV11].

The VLSF code defined in [PPV11] can be thought of as a VLF code with infinitely many
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decoding times, i.e., the number of decoding times m = ∞. However, in practical systems,

the feedback opportunities are limited, i.e., m < ∞, and the decoder is only allowed to

decode at time instants n1, n2, . . . , nm. In [KSL15], Kim et al. investigated VLSF codes with

m periodic decoding times and derived a lower bound on throughput. In order to minimize

the average blocklength, Vakilinia et al. [VRD16] developed the sequential differential op-

timization (SDO) procedure that produces decoding time ni+1 based on the knowledge of

ni, ni−1, and their successful decoding probabilities approximated by a differentiable func-

tion. The SDO in [VRD16] uses the Gaussian tail probability to approximate the probability

of successful decoding. Later, variations of SDO were developed to improve the Gaussian

model accuracy [WWB17,WWB18]. The SDO algorithm is used to optimize systems that

employ incremental redundancy and hybrid automatic repeat request (ARQ) [WVW17], and

to code for the binary erasure channel [HCP18,HCW19]. However, in this chapter, we show

that the Gaussian model is still imprecise for small values of n. Additionally, the existing

SDO procedure fails to consider the inherent gap constraint that two decoding times must

be separated by at least one.

In [YKE21b], Yavas et al. developed an achievability bound for VLSF codes with m

decoding times for the additive white Gaussian noise channel with capacity C, dispersion

V , and maximal power constraint P . The asymptotic expansion of the maximum message

size M is given by lnM ≈ lC
1−ε −

√
l ln(m−1)(l)

V
1−ε where ln(k)(·) denotes the k-fold nested

logarithm, l and ε are the upper bounds on average blocklength and error probability of

the VLSF code, respectively. They showed that a slight increase in m can dramatically

improve the achievable rate of VLSF codes. Unfortunately, due to the nested logarithm

term, Yavas et al. were only able to show achievability bounds for m ≤ 4, ε = 10−3, and

l ≤ 2000. They also demonstrated that within their code construction, the decoding times

chosen by the SDO will yield the same second- and third-order coding rates as attained by

their construction of decoding times.

In this chapter, we are interested in the performance of a VLSF code with m optimal
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decoding times for the binary-input additive white Gaussian noise (BI-AWGN) channel. We

first develop tight approximations to the tail probability of length-n cumulative information

density. Building on the result of Yavas et al. [YKE21b], for a fixed information density

threshold γ, we formulate an integer program of minimizing the upper bound on average

blocklength over all decoding times n1, n2, . . . , nm subject to average error probability, min-

imum gap and integer constraints. Finally, minimization of locally minimum upper bounds

over information density threshold γ yields the globally minimum upper bound, and this

method is called the two-step minimization. For the integer program, we present a greedy

algorithm that yields possibly suboptimal integer decoding times. By allowing positive real-

valued decoding times, we develop the gap-constrained SDO procedure that captures the

minimum gap constraint for the relaxed program. In [PPV11], Polyanskiy et al. demon-

strated that the rate C
1−ε is achievable by allowing the VLSF code to stop at zero with a

small probability. In this chapter, we identify the error regime where Polyanskiy’s scheme

of stopping at zero does not improve the achievability bound. In this error regime, the two-

step minimization with the gap-constrained SDO procedure shows that a finite m suffices to

attain Polyanskiy’s bound for VLSF codes with m =∞.

This chapter is organized as follows. Section 4.2 introduces the notation, the BI-AWGN

channel model, and the VLSF code with m decoding times. Section 4.3 develops tight

approximations to the tail probability of length-n cumulative information density. Section

4.4 introduces the integer program, the two-step minimization, and a greedy algorithm,

develops the gap-constrained SDO procedure for the relaxed program, identifies the error

regime where stopping at zero does not help, and shows numerical comparisons. Section 4.5

concludes the chapter.
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4.2 Preliminaries

4.2.1 Notation

For k ∈ Z+, [k] , {1, 2, . . . , k}. We use xji to denote a sequence (xi, xi+1, . . . , xj), 1 ≤
i ≤ j. When the context is clear, xn1 is abbreviated to xn. All logarithms are taken to

the base 2. We use φ(x),Φ(x), Q(x) to respectively denote the probability density function

(PDF), cumulative distribution function (CDF), and the tail probability of a standard normal

N (0, 1).

4.2.2 Channel Model and VLSF Codes with m Decoding Times

Let Xn be a sequence of independent and identically distributed (i.i.d.) random variables,

with each Xi uniformly distributed over {−
√
P ,
√
P}, where

√
P denotes the amplitude of

binary-phase shift keying (BPSK). The output Y n of a memoryless, point-to-point BI-AWGN

channel in response to Xn is given by

Y n = Xn + Zn, (4.1)

where Z1, Z2, . . . , Zn are i.i.d. standard normal random variables. The SNR of the BI-AWGN

channel is given by P .

For a BI-AWGN channel with a uniformly distributed input symbol, the information

density ι(x; y) , log P (y|x)
P (y)

is given by

ι(x; y) = 1− log
(
1 + exp

(
− 2xy

))
. (4.2)

Furthermore, the channel capacity C = E[ι(X;Y )] and dispersion V = var(ι(X;Y )). Since

the inputs are i.i.d. and the channel is memoryless, the cumulative information density for

xn and yn is given by

ι(xn; yn) , log
P (yn|xn)

P (yn)
=

n∑
i=1

ι(xi; yi). (4.3)
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Next, we follow [YKE21b] in describing a VLSF code with m decoding times for the

BI-AWGN channel. Due to BPSK, we omit the power constraint from the definition.

An (l, nm1 ,M, ε) VLSF code, where l is a positive real, nm1 andM are non-negative integers

satisfying n1 < n2 < · · · < nm, ε ∈ (0, 1), is defined by

1) A finite alphabet U and a probability distribution PU on U defining the common

randomness random variable U that is revealed to both the transmitter and the receiver

before the start of transmission.

2) A sequence of encoders fn : U × [M ]→ X , n = 1, 2, . . . , nm, defining channel inputs

Xn = fn(U,W ), (4.4)

where W ∈ [M ] is the equiprobable message.

3) A non-negative integer-valued random stopping time τ ∈ {n1, n2, . . . , nm} of the filtra-
tion generated by {U, Y ni}mi=1 that satisfies an average decoding time constraint

E[τ ] ≤ l. (4.5)

4) m decoding functions gni : U×Yni → [M ], providing the best estimate ofW at time ni,

i = 1, 2, . . . ,m. The final decision Ŵ is computed at time instant τ , i.e., Ŵ = gτ (U, Y
τ )

and must satisfy

Pe , P[Ŵ 6= W ] ≤ ε. (4.6)

The rate of a VLSF code is given by R , logM/E[τ ]. In the above definition, the cardinality

U specifies the number of deterministic codes under consideration to construct the random

code. In [YKE21a, Appendix D], Yavas et al. showed that |U| ≤ 2 suffices.
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4.3 Tight Approximations to P[ι(Xn;Y n) ≥ γ]

In the analysis of (l, nm1 ,M, ε) VLSF codes, a key step is to develop a differentiable function

Fγ(n) to approximate or to bound the tail probability P[ι(Xn;Y n) ≥ γ] with a fixed γ.

In [VRD16,WWB17,WVW17,WWB18], P[ι(Xn;Y n) ≥ γ] is approximated with a Gaussian

tail probability, e.g., Q
(
γ−nC√
nV

)
used in [WWB17]. However, we will show that for short

blocklength n, the Gaussian model is imprecise and a better approximation is desired.

In probability theory, both the Edgeworth expansion [Edg05,Hal92] and the Petrov ex-

pansion [Pet75] have been known as powerful tools to approximate the distribution of the

sum of n i.i.d. random variables. In this chapter, we apply these expansions to approximate

P[ι(Xn;Y n) ≥ γ].

We first introduce the cumulant of a random variable, which will play an important role

in the above expansions.

Definition 5. Let KW (t) = lnE[etW ] =
∑∞

j=1 κj
tj

j!
denote the cumulant generating function

for a random variable W . The jth cumulant of W , κj, can be computed using the noncentral

moments E[W l], 1 ≤ l ≤ j [BM98, Eq. (32)],

κj = j!
∑
{kl}

(−1)r−1(r − 1)!

j∏
l=1

1

kl!

(
E[W l]

l!

)kl
, (4.7)

where in (4.7), the set {kl} consists of all non-negative solutions to
∑j

l=1 lkl = j, r ,
∑j

l=1 kl.

Theorem 16 (Edgeworth Expansion, Equation (2.18), [Hal92]). Let W1,W2, . . . ,Wn be

a sequence of i.i.d. random variables with zero mean and a finite variance σ2. Define

Gn(x) , P[
∑n

i=1 Wi ≤ xσ
√
n]. Let χW (t) , E[eitW ] be the characteristic function of

W and let {κi}∞i=1 be the cumulants of W . If E[|W |s+2] < ∞ for some s ∈ Z+ and

lim sup|t|→∞ |χW (t)| < 1 (known as Cramér’s condition), then,

Gn(x) = Φ(x) + φ(x)
s∑
j=1

n−
j
2pj(x) + o(n−s/2), (4.8)
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where by letting κ̄m = σ−mκm be the mth cumulant for W/σ,

pj(x)=−
∑
{km}

Hej+2r−1(x)

j∏
m=1

1

km!

(
κ̄m+2

(m+ 2)!

)km
, (4.9)

Hej(x) = j!

bj/2c∑
k=0

(−1)kxj−2k

k!(j − 2k)!2k
, (4.10)

where the set {kl} and r in (4.9) are defined analogously as in (4.7). Hej(x) is known as

the degree-j Hermite polynomial. In [BM98], the authors presented the formula (4.10) and

provided an efficient algorithm to compute the set {km} in (4.9).

As an application of Theorem 16, letW = 1−log
(
1+e−2P−2Z

√
P
)
−C, where Z ∼ N (0, 1).

Clearly, W has a proper density function and E[|W |s+2] <∞ holds for each s ∈ Z+. Hence,

for moderate and large values of n, the differentiable function Fγ(n) we use to approximate

P[ι(Xn;Y n) ≥ γ] is given by the order-s Edgeworth expansion, i.e.,

Fγ(n) = Q

(
γ − nC√

nV

)
− φ

(
γ − nC√

nV

) s∑
j=1

n−
j
2pj

(
γ − nC√

nV

)
. (4.11)

By (4.9), we see that an order-s Edgeworth expansion utilizes order 3 to s + 2 cumulants.

In this chapter, we define the order of an expansion as the highest order of cumulants minus

two.

A caveat of using the order-s Edgeworth expansion is that for small values of n, the order-

s Edgeworth expansion oscillates around 0 due to truncation of an infinite series, making it

no longer a suitable approximation function to the tail probability. To remedy the situation,

we resort to the Petrov expansion [Pet75] for small n.

Theorem 17 (Theorem 1, [Pet75]). Let W1,W2, . . . ,Wn be a sequence of i.i.d. random

variables with zero mean and a finite variance σ2. Define Gn(x) , P [
∑n

i=1Wi ≤ xσ
√
n].

If x ≥ 0, x = o(
√
n), and the moment generating function E[etW ] <∞ for |t| < H for some

H > 0, then

Gn(x) = 1−Q(x) exp

{
x3

√
n

Λ

(
x√
n

)}[
1 +O

(
x+ 1√
n

)]
, (4.12)
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Gn(−x) = Q(x) exp

{−x3

√
n

Λ

(−x√
n

)}[
1 +O

(
x+ 1√
n

)]
, (4.13)

where Λ(t) =
∑∞

k=0 akt
k is called the Cramér series1. In [Pet75], Petrov provided the order-3

Cramér series Λ[3](t),

Λ[3](t) =
κ3

6κ
3/2
2

+
κ4κ2 − 3κ2

3

24κ3
2

t+
κ5κ

2
2 − 10κ4κ3κ2 + 15κ3

3

120κ
9/2
2

t2. (4.14)

where {κi}∞i=1 denote the cumulants for W .

For small n satisfying n < γ/C, the function Fγ(n) we use to approximate P[ι(Xn;Y n) ≥
γ] is given by the order-3 Petrov expansion, where the order of 3 is determined by κ5 in (4.14),

Fγ(n) = Q

(
γ − nC√

nV

)
exp

{
(γ − nC)3

n2V 3/2
Λ[3]

(
γ − nC
n
√
V

)}
. (4.15)

Note that at the 0th order, both expansions reduce to Φ(x).

We remark that both finite-order Edgeworth and Petrov expansions are approximations

that are obtained by truncating an infinite series. Edgeworth expansion assumes a constant

target probability compared to n, whereas Petrov expansion assumes that the target prob-

ability decays sub-exponentially to 0 as n → ∞, defining a moderate deviation sequence in

n. Therefore, the former performs better in the large n regime, while the latter performs

better in small n regime.

In our implementation, we found that the order-5 Edgeworth expansion meets our desired

approximation accuracy at large n. The switch from the order-5 Edgeworth expansion to the

order-3 Petrov expansion occurs at the largest value for which two expansions are equal with

a common value less than 1/2. Fig. 4.1 shows the comparison of different approximation

models for P[ι(Xn;Y n) ≥ γ] with γ = 13.62 for BI-AWGN channel at 0.2 dB. The Gaussian

model in Fig. 4.1 is given by Q
(
γ−nC√
nV

)
. Fig. 4.1 shows that the Gaussian model fails to

capture the true tail probability at small n. The order-5 Edgeworth expansion oscillates

1Details on Cramér series can be found in the proof of [Pet75, Sec. VIII, Theorem 2].
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Figure 4.1: Comparison of various approximation models for P[ι(Xn;Y n) ≥ γ] with a fixed

γ > 0. In this example, k = 6, ε = 10−2, γ = log 2k−1
ε/2

= 13.62 for BI-AWGN channel at 0.2

dB.

around 0 when n < 16 and is extremely accurate when n ≥ 16. In contrast, the order-3

Petrov expansion is loose yet close to the Gaussian model when n ≥ 24 and becomes tight

when n ≤ 14. Therefore, the combination of the order-2 Petrov expansion and the order-

5 Edgeworth expansion at switching threshold n = 16.84 provides a remarkably precise

estimate of the tail probability P[ι(Xn;Y n) ≥ γ].
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4.4 VLSF Codes With m Optimal Decoding Times

In this section, we develop numerical tools to evaluate the achievable rate of a VLSF code

with m optimal decoding times. We mainly consider the error regime where Polyanskiy’s

scheme of stopping at zero does not improve the achievability bound [PPV11].

4.4.1 An Integer Program and a Greedy Algorithm

In [YKE21b], Yavas et al. proved an achievability bound for an (l, nm1 ,M, ε) VLSF code

for the AWGN channel. With a slight modification, this result is directly applicable to the

BI-AWGN channel.

Theorem 18 (Theorem 3, [YKE21b]). Fix a constant γ > 0 and decoding times n1 < · · · <
nm. For any positive numbers l and ε ∈ (0, 1), there exists an (l, nm1 ,M, ε′) VLSF code for

the BI-AWGN channel (4.1) with

l ≤ nm +
m−1∑
i=1

(ni − ni+1)P

[
i⋃

j=1

{ι(Xnj ;Y nj) ≥ γ}
]
, (4.16)

ε′ ≤ 1−P[ι(Xnm ;Y nm) ≥ γ] + (M − 1)2−γ, (4.17)

where PXnm is the product of distribution of m subvectors of length nj − nj−1, j ∈ [m], with

the convention n0 = 0. Namely,

PXnm (xnm) =
m∏
j=1

P
X
nj
nj−1+1

(x
nj
nj−1+1). (4.18)

Remark 5. In [YKE21b] (and its full version [YKE21c]), Yavas et al. obtained Theorem

18 by constructing a random VLSF code according to distribution (4.18) and applying an

information density threshold decoder that favors the largest message index whose cumulative

information density exceeds γ for the first time among any other message indices at decoding

times {n1, n2, . . . , nm}.
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In (4.17), the first term upper bounds the probability that the true message never crosses

γ and the second term upper bounds the probability that any other message crosses γ sooner

than the true message.

Interested readers can refer to the full version [YKE21c] of [YKE21b] for the proof of

Theorem 18. By relaxing the probability of union events P
[⋃i

j=1{ι(Xnj ;Y nj) ≥ γ}
]
in

(4.16) to the marginal probability P[ι(Xni ;Y ni) ≥ γ], Theorem 18 motivates the following

integer program. Define

N(γ, nm1 ) , nm +
m−1∑
i=1

(ni − ni+1)P[ι(Xni ;Y ni) ≥ γ], (4.19)

Fm(γ,M, ε) , {nm1 : ni+1 − ni ≥ 1, i ∈ [m− 1]

and P[ι(Xnm ;Y nm) ≥ γ] ≥ 1− ε+ (M − 1)2−γ}. (4.20)

For a given m ∈ Z+,M ∈ Z+, ε ∈ (0, 1), and γ ≥ log M−1
ε

,

min N(γ, nm1 )

s. t. nm1 ∈ Fm(γ,M, ε)

nm1 ∈ Zm+ .

(4.21)

In the integer program (4.21), we consider the minimum gap and average error probability

constraints as in (4.20), and the constraint that all decoding times must be integers.

Let Ñ(γ) denote the locally minimum upper bound N(γ, nm1 ) on E[τ ] for a given γ in

program (4.21). Then, minγ Ñ(γ) yields the globally minimum upper bound N(γ, nm1 ). In

this chapter, we solve the globally minimum upper bound N(γ, nm1 ) using this two-step

minimization approach.

In general, an integer program is NP-complete. For the specific integer program (4.21),

additional challenge is caused by that there is no closed-form expression for P[ι(Xnk ;Y nk) ≥
γ] and n1, n2, . . . , nm are required to be monotonically increasing integers.

138



While a complete solution to the integer program (4.21) remains open, we propose a

greedy algorithm for a fixed γ: Start from m = n∗ where n∗ , min{n ∈ Z+ : P[ι(Xn;Y n) ≥
γ] ≥ 1−ε+(M−1)2−γ}. Suppose that nm1 is the solution for m. Then, the solution ñm−1

1 for

m− 1 is identified by removing the decoding time ni in nm−1
1 that minimizes Nγ(n

i−1
1 , nmi+1).

Note that the decoding time nm is always retained to ensure that the target error probability

is met via (4.17).

4.4.2 The Relaxed Program and the Gap-Constrained SDO

To facilitate a program that is computationally tractable, we consider the relaxed program

that allows nm1 ∈ Rm
+ : For a given m ∈ Z+,M ∈ Z+, ε ∈ (0, 1) and γ ≥ log M−1

ε
,

min N(γ, nm1 )

s. t. nm1 ∈ Fm(γ,M, ε),
(4.22)

where the tail probability P[ι(Xn;Y n) ≥ γ] is approximated by a monotonically increasing

and differentiable function Fγ(n) with Fγ(0) = 0 and Fγ(∞) = 1, for instance, the piecewise

function2 introduced in Section 4.3. Let

fγ(n) ,
dFγ(n)

dn
. (4.23)

For the relaxed program (4.22) with a fixed γ, the optimal, real-valued decoding times

n∗1, n
∗
2, . . . , n

∗
m are given by the following theorem.

Theorem 19. Assume ι(X;Y ) is continuous and Fγ(n) is an increasing, differentiable func-

tion. For a given m ∈ Z+,M ∈ Z+, ε ∈ (0, 1) and γ ≥ log M−1
ε

, the optimal real-valued

decoding times n∗1, n∗2, . . . , n∗m in program (4.22) satisfy

n∗m = F−1
γ

(
1− ε+ (M − 1)2−γ

)
, (4.24)

2The first derivative of Fγ(n) at the switching threshold does not exist. Nonetheless, one can assign the
right (or left) derivative as the derivative for the switching threshold so that the solution is not affected
significantly.
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n∗k+1 = n∗k + max

{
1,
Fγ(n

∗
k)− Fγ(n∗k−1)− λk−1

fγ(n∗k)

}
, (4.25)

λk = max{λk−1 + fγ(n
∗
k)− Fγ(n∗k) + Fγ(n

∗
k−1), 0}, (4.26)

where k ∈ [m− 1], λ0 , 0 and n∗0 , 0.

Proof. For brevity, define n , (n1, n2, . . . , nm). By introducing the Lagrangian multipliers

ν, λm−1
1 , the Lagrangian of program (4.22) is given by

L(n, ν, λm−1
1 ) = n1 + ν(1− Fγ(nm) + (M − 1)2−γ − ε)

+
m−1∑
i=1

(ni+1 − ni)(1− Fγ(ni)) +
m−1∑
i=1

λi(ni − ni+1 + 1).

By the Karush-Kuhn-Tucker (KKT) conditions, the optimal decoding times n∗ = (n∗1, n
∗
2, . . . , n

∗
m)

must satisfy

∂L
∂nk

∣∣∣
n=n∗

= Fγ(n
∗
k)− Fγ(n∗k−1)− (n∗k+1 − n∗k)fγ(n∗k) + λk − λk−1 = 0, k ∈ [m− 1], (4.27)

∂L
∂nm

∣∣∣
n=n∗

= 1− Fγ(n∗m−1)− νfγ(n∗m) = 0, (4.28)

ν(1− Fγ(n∗m) + (M − 1)2−γ − ε) = 0, (4.29)

λk(n
∗
k − n∗k+1 + 1) = 0, k ∈ [m− 1]. (4.30)

Since Fγ(n) ∈ (0, 1) and fγ(n) > 0 for n > 0, (4.28) indicates that ν > 0. Hence, we obtain

n∗m = F−1
γ (1− ε+ (M − 1)2−γ) from (4.29).

Next, we analyze (4.30). There are two cases. If λk > 0, then n∗k+1 = n∗k + 1. By (4.27),

we obtain

λk = λk−1 + fγ(n
∗
k)− Fγ(n∗k) + Fγ(n

∗
k−1). (4.31)

If n∗k+1 > n∗k + 1, then λk = 0. By (4.27), we obtain

n∗k+1 = n∗k +
Fγ(n

∗
k)− Fγ(n∗k−1)− λk−1

fγ(n∗k)
. (4.32)

Rewriting the above two cases in a compact form yields (4.25) and (4.26).
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The procedures (4.25) and (4.26) are called the gap-constrained SDO procedure for the

relaxed program (4.22). In contrast, the unconstrained SDO procedure studied in [VRD16,

WWB17,WWB18,WVW17,HCP18,HCW19] derived from the relaxed program (4.22) does

not consider the gap constraint3 and admits a simple recursion

n∗k+1 = n∗k +
Fγ(n

∗
k)− Fγ(n∗k−1)

fγ(n∗k)
, k ∈ [m− 1], (4.33)

where n∗0 , 0. We will show that for small values of m, the gap-constrained SDO procedure

behaves indistinguishably as the unconstrained SDO procedure in (4.33). However, as m

becomes large, the decoding times provided by these two algorithms differ noticeably.

In practice, after solving n∗m via (4.24), one would apply a bisection search between 0.5

and dn∗me − m + 0.5 for n1 and the SDO to identify n∗1. This guarantees that the nearest

integer to n∗1 is at least 1.

When evaluating at small n, both Fγ(n) and fγ(n) will become infinitesimally small. In

this case, a direct numerical computation using (4.25) and (4.26) may cause the precision

issue. Fortunately, the SDO described by (4.25) and (4.26) also admits a ratio form. Define

λ
(r)
k , λk/fγ(n

∗
k). Thus, (4.25) and (4.26) are equivalent to

n∗k+1 = n∗k + max

{
1,
Fγ(n

∗
k)

fγ(n∗k)
− Fγ(n

∗
k−1)

fγ(n∗k)
− λ(r)

k−1

fγ(n
∗
k−1)

fγ(n∗k)

}
,

λ
(r)
k = max

{
λ

(r)
k−1

fγ(n
∗
k−1)

fγ(n∗k)
+ 1− Fγ(n

∗
k)

fγ(n∗k)
+
Fγ(n

∗
k−1)

fγ(n∗k)
, 0

}
.

The purpose of using Fγ(ñ)/fγ(n), fγ(ñ)/fγ(n), and λ
(r)
k is that they have a closed-form

expression that cancels out the common infinitesimal factor in both the numerator and

denominator. In our implementation, we applied the ratio form of the gap-constrained SDO

procedure.

3The error probability constraint is also different, yet it does not affect the SDO procedure.
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4.4.3 Error Regime Where Stopping at Zero Does Not Help

In [PPV11], Polyanskiy et al. demonstrated that the VLSF code with infinitely many stop-

ping times can achieve C
1−ε . This is accomplished by the following scheme: With probability

p = ε−ε′
1−ε′ , the code immediately stops at τ = 0 without any channel use, and with proba-

bility 1 − p, employs an (l′,M, ε′) VLSF code satisfying logM = Cl′ + log ε′ − a0, where

a0 , supx,y ι(x; y). The overall code has an error probability

1 · p+ ε′(1− p) = ε, (4.34)

and average blocklength

0 · p+ l′(1− p) = l′(1− p). (4.35)

In this section, we identify the error regime where Polyanskiy’s scheme of stopping at

τ = 0 does not improve the achievability bound.

Theorem 20. For a given a0 ∈ R+, M ∈ Z+, define

ε∗ , arg min
x∈(0,1)

logM + a0 − log x

1− x . (4.36)

If ε ∈ (0, ε∗], stopping at τ = 0 does not improve the achievability bound for VLSF codes.

Proof. By Polyanskiy’s scheme, solving the error regime where stopping at zero does not

improve the achievability bound is equivalent to identifying the error regime in which ε′ = ε

is the minimizer to the following program: For a given C, a0 ∈ R+, M ∈ Z+, and ε ∈ (0, 1),

min
ε′

l′(1− p)

s. t. logM = Cl′ + log ε′ − a0

p =
ε− ε′
1− ε′

ε′ ∈ (0, ε].

(4.37)

142



The program (4.37) is equivalent to the following program

min
ε′

(
1− ε
C

)
f(ε′)

s. t. ε′ ∈ (0, ε],

(4.38)

where

f(x) ,
logM + a0 − log x

1− x . (4.39)

Since f(x) is convex in (0, 1), there exists a unique minimizer ε∗ ∈ (0, 1). Therefore, if ε ≤ ε∗,

then ε′ = ε minimizes the objective function in (4.38), giving p = 0. Namely, stopping at

zero does not improve the achievability bound.

We remark that there is no closed-form solution to ε∗ in Theorem 20. Nonetheless, one

can numerically solve ε∗ for a given M and a0.
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Figure 4.2: Comparison of the real-valued decoding times by the gap-constrained SDO proce-

dure, the real-valued decoding times by the unconstrained SDO procedure, and the integer–

valued decoding times by the greedy algorithm for k = 20, ε = 10−2, δ = 1/2, γ = log 2k−1
δε

and BI-AWGN channel at 0.2 dB. m ranges from 1 to dn∗me = 102, where n∗m = 101.91 is

given by (4.24).
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4.4.4 Numerical Evaluation

Let M = 2k, k ∈ Z+. We consider the BI-AWGN channel at 0.2 dB with a capacity of 0.5

and the error regime in which stopping at zero does not improve the achievability bound.

By Theorem 20, if k ≤ 100, ε ≤ 1.33 · 10−2 is the error regime where stopping at zero does

not help. In the following example, we consider ε = 10−2.

We consider the relaxed program and apply the two-step minimization and the gap-

constrained SDO procedure introduced in Section 4.4 to obtain the globally minimum upper

bound N∗(γ, nm1 ). Thus, k/N∗(γ, nm1 ) gives the achievability bound. In [PPV11], Polyanskiy

et al. showed that the average blocklength E[τ ] of a VLSF code withm =∞ and no stopping

at τ = 0 is upper bounded by

E[τ ] ≤ log M−1
ε

+ a0

C
, (4.40)

where a0 , supx,y ι(x; y). This bound yields the VLSF achievability bound on rate. For

BI-AWGN channel, a0 = 1.

For a fixed γ at k = 20 and ε = 10−2, Fig. 4.2 shows how the decoding times evolve

with m for the three algorithms: the gap-constrained SDO procedure, the unconstrained

SDO procedure, and the greedy algorithm. For m ≤ 60, the gap-constrained SDO procedure

behaves indistinguishably as the unconstrained SDO procedure since the SDO solution natu-

rally has gaps larger than one. The greedy algorithm is forced to choose from the remaining

decoding times, leading to a possibly suboptimal solution. For large m, the unconstrained

SDO procedure avoids early decoding times and instead adds later decoding times so densely

that their separation is less than one. In contrast, the gap-constrained SDO procedure is

forced to add early decoding times when all existing gaps become one.

The greedy algorithm lacks the optimality guarantee of the gap-constrained SDO pro-

cedure and is computationally more intensive. Despite their distinct design perspectives,

the greedy algorithm and the gap-constrained SDO procedure arrive at essentially the same
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Figure 4.3: Globally optimal δ∗, γ∗, and n∗m as a function of the number of decoding times

m. In the VLSF achievability bound, δ = 1 and γ = log M−1
ε

. In this example, ε = 10−2,

k = 20 for BI-AWGN channel at 0.2 dB.

solution for large m. For k = 20, ε = 10−2, and γ = log (2k−1)
ε/2

, Fig. 4.2 shows that n1 is

never less than 37 when m ≤ 32 and grows as the number of decoding times decreases.

We remark that Fig. 4.2 assumes a constant γ over all number of decoding times. How-

ever, in the two-step minimization with the gap-constrained SDO procedure, the globally

optimal γ∗ is a function of m. Therefore, the globally optimal n∗m may not stay as constant

as shown in Fig. 4.2.

Let δ ∈ [0, 1] and assume that the first and second terms in the right-hand side of (4.17)

are equal to (1−δ)ε and δε, respectively. Then, both γ∗ and n∗m can be thought as a function

of δ∗, i.e.,

γ∗(δ∗) = log
M − 1

εδ∗
, (4.41)
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n∗m(δ∗) = F−1
γ∗ (1− ε+ εδ∗). (4.42)

Thus, minimization over γ is equivalent to minimization over δ. For k = 20, ε = 10−2, and

BI-AWGN channel at 0.2 dB, Fig. 4.3 shows how the globally optimal δ∗ and the associated

globally optimal γ∗, n∗m vary with m during the two-step minimization. We see that when m

is small, δ∗ is far from 1, indicating a large value of γ∗ and a small value of n∗m. As m gets

large, we observe that δ∗ monotonically increases, which, by (4.41) and (4.42), implies that

γ∗ decreases and n∗m increases. In particular, as m→∞, δ∗ → 1, and consequently,

lim
δ∗→1

γ∗(δ∗) = log
M − 1

ε
, (4.43)

lim
δ∗→1

n∗m(δ∗) =∞. (4.44)

In Polyanskiy’s setting [PPV11], the first term in (4.17) is zero since nm = ∞ and the

optimal γ can thus be computed as γ = log M−1
ε

from (4.17), implying that δ = 1. Fig. 4.3

shows that as m increases, δ∗, γ∗, and n∗m rapidly approach those in Polyanskiy’s setting.

Fig. 4.4 shows the achievable rate of a VLSF code with m optimal decoding times

estimated by the two-step minimization with the gap-constrained SDO procedure. We see

that a finite m suffices to achieve Polyanskiy’s VLSF achievability bound derived from VLSF

codes with infinitely many decoding times. For instance, for the BI-AWGN channel at 0.2

dB and ε = 10−2, the achievable rate estimated by the SDO for VLSF codes with k ≤ 6

and m = 32 beats the VLSF bound. Additionally, for BI-AWGN channel at 0.2 dB, with

16 decoding times, the achievable rate by SDO is within 0.66% of the VLSF achievability

bound for k ≤ 100. With 32 decoding times, it becomes hard to distinguish the achievable

rate by SDO from the VLSF achievability bound for k ≤ 30.

4.5 Conclusion

This chapter provides a new SDO that includes the gap constraint. Using this improved

SDO, the chapter demonstrates that Polyanskiy’s VLSF achievability bound with infinitely
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Figure 4.4: Comparison of achievable rate estimation by the gap-constrained SDO procedure

and by the greedy algorithm for VLSF codes with m optimal decoding times. The gray

dashed line represents the (E[τ ], R) pairs such that RE[τ ] = k. In this example, ε = 10−2

and the BI-AWGN channel is at 0.2 dB.

many decoding times can be closely approached with a finite and relatively small number of

decoding times.
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CHAPTER 5

Conclusion

This dissertation investigated efficient reliable communication for the BI-AWGN channel

without feedback, BAC (and BSC) with full noiseless feedback, and the BI-AWGN channel

with finite, stop feedback. Three chapters are independent of each other and are interesting

in its own right. Below we discuss open problems, possible extensions related to each chapter

and their connections that could be further explored.

Chapter 2 investigated the design method, performance, and complexity of the proposed

CRC-aided convolutional code under SLVD for the non-feedback BI-AWGN channel. As dis-

cussed in the Conclusion of Chapter 2, it would be interesting to study whether a suboptimal

convolutional code used with the DSO CRC polynomial can also lead to a good concatenated

code. Another interesting direction is to explore the performance of CRC-aided convolutional

codes in the moderately short blocklength regime, e.g., 128 ≤ k < 1000. If puncturing is

introduced in the code design, the problem of how to jointly design the puncturing pattern

and the optimal CRC polynomial for a given convolutional code still remains open. Besides,

there are several interesting theoretical open problems regarding SLVD, for instance, how to

develop tight bounds on E[L|X = O] and Pe,1 using only the weight spectrum. In addition,

the behavior of the supremum list rank λ, a quantity that governs the worst SLVD decoding

complexity, is also less understood. Furthermore, the distribution of the terminating list

rank L as a function of SNR remains unknown and is crucial to analyzing the SLVD decod-

ing complexity. For 5G physical broadcast channel (PBCH), King et al. [KKY22] recently

showed that the CRC-TBCC outperforms the PBCH polar codes in 5G standard both in
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terms of the frame error rate and the decoding runtime, suggesting that CRC-TBCCs are

good candidates to be considered for 6G. However, the CRC polynomial used with the polar

code is poorly designed. How to design optimal CRC generator polynomials for polar codes

still remains largely open.

Chapter 3 extended Naghshvar et al.’s SED coding scheme for the symmetric binary-

input channel with feedback to the BAC with feedback. The theoretical development of

our generalized SED coding scheme and the associated non-asymptotic VLF achievability

bound utilized the concept of extrinsic probabilities introduced by Naghshvar et al. and

the fact that π∗1 ≤ π∗0 implies that transmitting symbol 1 attains the maximum relative

entropy C1. However, it remains open whether these observations also hold for a general

binary-input channel with feedback. Furthermore, can we develop a similar SED coding

scheme for multi-input DMCs, e,g., DMCs with |X | > 2? In [AYW20], Antonini et al.

considered systematic transmission followed by a type-based, relaxed SED coding scheme for

the BSC (the systematic transmission automatically meets the original SED requirement)

which significantly reduced the coding complexity. Simulations show that the type-based,

relaxed SED coding scheme still achieve a similar performance as the original SED coding

scheme. Yet it remains open to prove this phenomenon analytically.

Chapter 4 developed tight approximations for the tail probability of the cumulative infor-

mation density that underlies the numerical evaluation of the VLSF code with finite decoding

times for the BI-AWGN channel with feedback. In view of the inherent inaccuracy of ap-

proximations, it would be interesting to develop theoretically tight upper and lower bounds

for the distribution of cumulative information density that would enable a more rigorous

characterization of the performance of the VLSF code with finite decoding times. Another

interesting direction is to extend our technique to more classical channels and to compare

with the previously known achievability bounds. On a practical point of view, how to design

a structured VLSF code with finite decoding times that outperforms our non-asymptotic

VLSF achievability bound still remains open.
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Although the three chapters in this dissertation are independent, tight connections among

these topics exist and could be explored in future research. For example, the CRC-aided con-

volutional codes under SLVD can be applied to the variable-length coding with stop feedback

framework by treating a NACK as a stop-feedback symbol that asks for retransmission. In

this case, it still remains open how to determine the maximum list size Ψ for each decoding

time such that the throughput is maximized while maintaining a target error probability.

It also remains open how this system will perform by using the CRC-aided convolutional

code as a VLSF code for the BI-AWGN channel with stop feedback. On the other hand,

the CRC-aided convolutional code can be applied to probabilistic amplitude shaping (PAS)

system that employs nonbinary constellations. In [WSA21], Wang et al. recently showed

that the code generated by PAS and CRC-aided trellis coded modulation outperforms the

RCU bound in the short blocklength regime.

The connection between channels with full feedback and channels with finite stop feedback

can be seen as follows. Assume that the decoder is only allowed to send full feedback at

time instants n1, n2, . . . , nm. At time ni, the decoder can send a single non-binary symbol

represented by Y ni
ni−1+1 to the transmitter via the full feedback link. Clearly, this will result in

an achievable rate upper bounded by that of the full-feedback system and lower bounded by

that of the stop-feedback system. Then, for such a system, what is the maximal achievable

rate and which coding scheme achieves the maximal achievable rate?

To summarize, the efficient reliable communication under different types of feedback

opened a wide array of new directions that are of both theoretical interest and practical

importance.
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