
University of California

Los Angeles

Source and Channel Coding for Speech

Transmission and Remote Speech Recognition

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Alexis Pascal Bernard

2002



c© Copyright by

Alexis Pascal Bernard

2002



The dissertation of Alexis Pascal Bernard is approved.

Alan McCree

Stanley Osher

Lieven Vandenberghe

Richard D. Wesel

Abeer A.H. Alwan, Committee Chair

University of California, Los Angeles

2002

ii



In memory of

Bonne-Mammie

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Speech production overview . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Physiological mechanisms of speech production . . . . . . 2

1.1.2 Implications for speech coding and recognition . . . . . . . 4

1.2 Auditory perception overview . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Physiological mechanisms of speech perception . . . . . . . 6

1.2.2 Critical bands and masking phenomena . . . . . . . . . . . 7

1.3 Speech coding overview . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Speech coding strategies . . . . . . . . . . . . . . . . . . . 9

1.3.2 Linear predictive coding . . . . . . . . . . . . . . . . . . . 10

1.3.3 Evaluation of speech coders . . . . . . . . . . . . . . . . . 12

1.4 Speech recognition overview . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Front-end signal processing . . . . . . . . . . . . . . . . . . 14

1.4.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . 17

1.4.3 Three uses of an HMM . . . . . . . . . . . . . . . . . . . . 18

1.5 Digital communication overview . . . . . . . . . . . . . . . . . . . 20

1.5.1 Source coding . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.2 Modulator and demodulator . . . . . . . . . . . . . . . . . 22

1.5.3 Channel coding . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Adaptive multi-rate speech transmission . . . . . . . . . . . . . . 26

1.7 Remote speech recognition over error-prone channels . . . . . . . 28

iv



1.8 Dissertation road map . . . . . . . . . . . . . . . . . . . . . . . . 30

I Speech transmission using rate-compatible trellis codes

and embedded source coding 32

2 Embedded speech coding . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Desired properties for speech coding . . . . . . . . . . . . . . . . . 33

2.2 Perceptually-based embedded subband speech coder . . . . . . . . 36

2.2.1 Description of the coder . . . . . . . . . . . . . . . . . . . 36

2.2.2 Bit error sensitivity analysis . . . . . . . . . . . . . . . . . 37

2.3 Embedded ADPCM G.727 speech coder . . . . . . . . . . . . . . 40

2.3.1 Description of the coder . . . . . . . . . . . . . . . . . . . 40

2.3.2 Bit error sensitivity analysis . . . . . . . . . . . . . . . . . 42

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Rate-compatible punctured trellis codes . . . . . . . . . . . . . . 46

3.1 RCPC, RCPT and RCPC-BICM codes . . . . . . . . . . . . . . . 46

3.2 RCPT code design . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Comparison of rate-compatible codes . . . . . . . . . . . . . . . . 55

3.4 RCPT codes for fading channels . . . . . . . . . . . . . . . . . . . 62

3.5 Traceback depth and frame size . . . . . . . . . . . . . . . . . . . 66

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 AMR system design and performance . . . . . . . . . . . . . . . 69

v



4.1 AMR system design for the subband speech coder . . . . . . . . . 69

4.2 AMR system design for the G.727 ADPCM coder . . . . . . . . . 75

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

II Source and channel coding for low-bit rate remote

speech recognition over error prone channels 79

5 Source coding for remote speech recognition . . . . . . . . . . . 80

5.1 Recognition based on decoded speech signals . . . . . . . . . . . . 81

5.2 Recognition based on speech coding parameters . . . . . . . . . . 84

5.3 Quantization of ASR features: PLP . . . . . . . . . . . . . . . . . 88

5.3.1 Quantizing P-LSFs or P-LPCCs . . . . . . . . . . . . . . . 88

5.3.2 Mathematical sensitivity analysis to P-LSF quantization . 96

5.3.3 Quantization using perceptual line spectral frequencies . . 106

5.4 Quantization of ASR features: MFCC . . . . . . . . . . . . . . . . 109

5.4.1 MFCC quantization . . . . . . . . . . . . . . . . . . . . . 112

5.4.2 Inverted cepstra quantization . . . . . . . . . . . . . . . . 114

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Channel coding and decoding for remote speech recognition . 118

6.1 The effect of channel errors and erasures on remote speech recog-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.1 The effect of channel errors and erasures . . . . . . . . . . 119

vi



6.1.2 Recognition experiment with channel errors and erasures . 121

6.1.3 Channel erasure models . . . . . . . . . . . . . . . . . . . 125

6.2 Channel coding for remote speech recognition applications . . . . 128

6.2.1 Description of error detecting linear block codes . . . . . . 129

6.2.2 The search for “good” codes . . . . . . . . . . . . . . . . . 130

6.3 Channel decoding for remote speech recognition applications . . . 132

6.3.1 Hard decision decoding . . . . . . . . . . . . . . . . . . . 132

6.3.2 Soft decision decoding . . . . . . . . . . . . . . . . . . . . 135

6.3.3 Soft decision decoding using maximum a posteriori proba-

bilities (β-soft) . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.4 Soft decision decoding using log likelihood ratios (λ-soft) 139

6.3.5 Comparison between β- and λ-soft decision decoding . . . 143

6.4 Performance of the different channel decoding schemes . . . . . . 145

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Remote recognition system design and performance . . . . . . . 151

7.1 Alleviating the effect of channel transmission and erasures . . . . 151

7.1.1 Frame dropping . . . . . . . . . . . . . . . . . . . . . . . 152

7.1.2 Weighted Viterbi recognition (WVR) . . . . . . . . . . . . 152

7.1.3 Frame erasure concealment . . . . . . . . . . . . . . . . . 154

7.1.4 Erasure concealment combined with WVR . . . . . . . . . 155

7.2 Recognition results for the different techniques alleviating the ef-

fect of channel erasures . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 Note on channel multi-conditional training . . . . . . . . . . . . . 160

vii



7.4 Performance of complete remote recognition systems . . . . . . . 165

7.4.1 Comparison between hard and soft decision decoding . . . 166

7.4.2 Comparison between WVR with and without frame erasure

concealment . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5 Performance of remote recognition systems using quantized MFCCs170

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8 Summary, discussion and future work . . . . . . . . . . . . . . . . 174

8.1 Adaptive multi-rate speech transmission . . . . . . . . . . . . . . 175

8.2 Remote speech recognition . . . . . . . . . . . . . . . . . . . . . . 177

8.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.4 Looking forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

viii



List of Figures

1.1 Speech production overview (inspired by [1]). . . . . . . . . . . . . 3

1.2 Quality comparison of speech coding schemes (after [2]). . . . . . 13

1.3 Structure of a speech recognizer based on HMM models. . . . . . 14

1.4 A schematic representation of a hidden Markov model. . . . . . . 17

1.5 Basic elements of a digital communication system. . . . . . . . . . 21

1.6 Block diagram of a remote speech recognition system. . . . . . . . 29

1.7 Dissertation road map. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 Block diagram of the perceptually-based subband speech codec. . 36

2.2 Example of bit allocation and bit prioritization for the subband

coder operating at 32 kbps. Each block represents the allocation

of one bit to each subband sample (1 kbps). The first three blocks

(3 kbps) are reserved for the transmission of the side information

(bit allocation and the different gains). The priority of each block

is indicated by the number in its center. Note that the coder

operating at m kbps would consist of the first m allocated blocks. 38

2.3 Bit error sensitivity analysis of the perceptually-based subband

coder operating at 32 kbps. Note that sensitivities tend to reach

plateaus of 8 blocks, which typically correspond to the allocation

of one block to each subband. Eight English sentences are used to

generate these plots. . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Simplified diagrams of the embedded ADPCM G.727: (a) encoder

and (b) decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



2.5 Bit error sensitivity analysis for the embedded ADPCM (5,2) speech

coder operating at 40 kbps (5 bits/sample). Bit error rates ana-

lyzed range from 10−4 to 10−1. . . . . . . . . . . . . . . . . . . . 44

3.1 Schematic representation of the different rate-compatible punc-

tured encoding schemes: (a) RCPC, (b) RCPT and (c) RCPC-

BICM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Bit error rate curves for the (a) RCPT, (b) RCPC-BICM and

(c) RCPC encoding schemes presented in Tables 3.3–3.5 over an

AWGN channel. Traceback depth used is 41. . . . . . . . . . . . . 59

3.3 For a required BER level of 10−3 and an AWGN channel, the figure

illustrates the achievable information rates (in source bits/transmitted

symbols) for RCPT, RCPC-BICM and RCPC as a function of the

channel SNR. The information rates and SNRs can also be found

in Figure 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Bit error rate curves for the RCPC and RCPT encoding schemes

with 4 memory elements (Tables 3.6 and 3.7) under independent

Rayleigh fading channels. Traceback depth used is 128. . . . . . . 65

3.5 Unequal error protection illustration using (a) RCPT and (b) RCPC

codes. Traceback depth used is L=96. Each level of protection is

96 bits long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Perceptual spectral distortion (SDP) for the subband coder with

RCPT at different bit rates over an AWGN channel. Speech ma-

terial used is 8 English sentences (4 males and 4 females) from the

TIMIT database. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

x



4.2 Comparison of the operational rate-distortion curves for the com-

plete AMR systems using RCPC, RCPT and RCPC-BICM over

an AWGN channel. Speech material used is 8 English sentences

(4 males and 4 females) from the TIMIT database. . . . . . . . . 73

4.3 Effect of channel mismatch on the subband source coder-RCPT

channel coder AMR system performance. . . . . . . . . . . . . . . 74

4.4 Operating distortion curves using RCPC, RCPT and RCPC-BICM

with the embedded ADPCM coder. . . . . . . . . . . . . . . . . . 77

5.1 Block diagram of the different approaches for remote speech recog-

nition: a) ASR features extracted from decoded speech, b) trans-

formation of speech coding parameters to ASR features, c) ASR

feature quantization. . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Block diagram of possible MELP-based recognition experiments. . 85

5.3 Illustration of the (a) spectrogram, (b) P-LPCCs and (c) P-LSFs

of the digit string “9 6 0” pronounced by a male speaker. . . . . 90

5.4 Quantization error sensitivity analysis of the (a) P-LSFs and (b)

P-LPCCs extracted from PLP6. . . . . . . . . . . . . . . . . . . 92

5.5 Sensitivity analysis of the cepstral coefficients after P-LSF quanti-

zation at different SNRs: (a) mean output SNR for each cepstral

coefficient; (b) mean SNR of all cepstra depending on the quan-

tized P-LSF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Illustration of the first column ( ∂ci

∂α1
) of the Jacobian matrix JC . . 102

5.7 Illustration of the Jacobian matrix JA = ∂αk

∂ωj
. . . . . . . . . . . . . 102

5.8 Illustration of the Jacobian matrix J = ∂ci

∂ωj
. . . . . . . . . . . . . 103

xi



5.9 Spectra of the different columns of JA = ∂αk

∂ωj
. . . . . . . . . . . . . 104

5.10 Spectra of the first six columns of JA = ∂αk

∂ωj
when using high order

linear prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.11 Illustration of speech recognition accuracy using different speech

coding standards (squares), MELP based remote recognition using

MSVQ quantization of the line spectral frequencies (stars), and

quantized P-LSFs (circles), using the Aurora-2 database. . . . . . 108

5.12 Illustration of the (a) log energy outputs of the Mel filterbank

(M=23); (b) Mel frequency cepstral coefficients (N=13); and (c)

inverted cepstra (N=13) for the digit string “9 6 0” pronounced

by a male speaker. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.13 Quantization SNRs for each cepstral coefficient after predictive

split vector quantization of the cepstral coefficients (o) and the

inverted cepstra (.) using 9, 6 and 4 bits per split. . . . . . . . . . 116

6.1 Illustration of the Viterbi speech recognition algorithm (after [3]). 120

6.2 Illustration of the effect of (a) a frame error and (b) a frame erasure

on Viterbi speech recognition. . . . . . . . . . . . . . . . . . . . . 121

6.3 Illustration of the consequence of a channel erasure and error on

the most likely paths taken in the trellis by the received sequence

of observations, given a 16-state word digit model. The erasure

and error occur at frame number 17. . . . . . . . . . . . . . . . . 123

6.4 Illustration of the consequence of a channel erasure and error on

the average probability of observing the features in each state of

the trellis, given a 16-state word digit model. The erasure and

error occur at frame number 17. . . . . . . . . . . . . . . . . . . . 124

xii



6.5 Illustration of the consequence of a channel erasure and error on

the accumulated probability of observation, given a 16-state word

digit model. The final accumulated likelihoods represent the prob-

ability of observing the complete sequence of observations given

the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Simulation of the effect of channel erasures and errors on continu-

ous digit recognition performance using the Aurora-2 database and

PLP features. Recognition accuracies are represented in percent

on a gray scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.7 State diagram for the Gilbert-Elliot bursty channel. . . . . . . . . 127

6.8 Illustration of hard decision decoding for the (2,1) block code.

Color code is white for correct decoding (CD), light gray for error

detection (ED), and dark gray for incorrect decoding or undetected

error (UE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.9 Illustration of soft decision decoding for the (2,1) block code. Color

code is white for correct decoding (CD) and dark gray for incorrect

decoding or undetected error (UE). . . . . . . . . . . . . . . . . . 136

6.10 Illustration of a posteriori β-soft decision decoding for the (2,1)

block code. Color code is white for correct decoding (CD), light

gray for error detection (ED), and dark gray for incorrect decoding

or undetected error (UE). . . . . . . . . . . . . . . . . . . . . . . 140

6.11 Illustration of a posteriori λ-soft decision decoding for the (2,1)

block code. Color code is white for correct decoding (CD), light

gray for error detection (ED), and dark gray for incorrect decoding

or undetected error (UE). . . . . . . . . . . . . . . . . . . . . . . 142

xiii



6.12 Comparison of the probability of correct detection (PCD), error de-

tection (PED) and undetected error (PUE) depending on the chan-

nel decoding system used (β-soft or λ-soft) for the (2,1) linear

block codes over an independent Rayleigh fading channel at -2 dB

SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.13 Illustration of the probability of correct detection (PCD), error

detection (PED) and undetected error (PUE) as a function of the

parameter λ when using λ-soft decision decoding of the (10,7) DED

linear block code over an independent Rayleigh fading channel at

5 dB SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.14 Illustration of the probability of correct detection (PCD), error

detection (PED) and undetected error (PUE) as a function of the

independent Rayleigh fading channel SNR for a variety of linear

block codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Sigmoid function mapping relative Euclidean distance difference

(βt) to confidence measure (γt). . . . . . . . . . . . . . . . . . . . 167

7.2 Recognition accuracy using the P-LSFs of PLP6 quantized with 6

bits per frame and the (10,6) linear block code over an independent

Rayleigh fading channel. . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 Recognition accuracy after transmission of the P-LSFs of PLP6

over an independent Rayleigh fading channel. . . . . . . . . . . . 169

7.4 Recognition accuracy after transmission of the 13 MFCCs over an

independent Rayleigh fading channel. . . . . . . . . . . . . . . . . 173

xiv



List of Tables

1.1 Classifying frequency ranges of speech. . . . . . . . . . . . . . . . 5

3.1 Characteristics of the 8-PSK, 16-states (ν = 4), rate-1/3 and

period-8 RCPT codes. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Characteristics of the 16-QAM, 64-states (ν = 6), rate-1/4 and

period-8 RCPT codes. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Characteristics of the 8-PSK, 64-states (ν = 6), rate-1/3 RCPT

codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Characteristics of the 8-PSK, 64-states (ν = 6), rate-1/3 RCPC-

BICM codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Characteristics of the 4-PSK, 64-states (ν = 6), rate-1/2 RCPC

codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Characteristics of the 8-PSK, 16-states (ν = 4), rate-1/3 RCPT

codes for Rayleigh fading channels. . . . . . . . . . . . . . . . . . 64

3.7 Characteristics of the 4-QAM, 16-states (ν = 4), rate-1/2 RCPC

codes for Rayleigh fading channels. . . . . . . . . . . . . . . . . . 64

4.1 Unequal error protection puncturing architecture for RCPT, RCPC-

BICM, and RCPC codes of Tables 3.3–3.5 applied to the subband

coder. The notation xn indicates that n bits are protected using

the x curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xv



4.2 Unequal error protection puncturing for RCPT, RCPC-BICM and

RCPC codes of Tables 3.3–3.5 applied on the embedded ADPCM

G.727 coder. The notation xn indicates that n bits are protected

using the x curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Isolated digit recognition accuracy based on LPCCs extracted from

MELP and CELP decoded speech signals at different BERs using

the TI-46 database. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Illustration of speech recognition accuracy using different speech

coding standards, using the TI-46 database. . . . . . . . . . . . . 83

5.3 Recognition performance using different MELP coding based ASR

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Average (across all digits) inter-frame correlations between the six

P-LSFs and P-LPCCs extracted from PLP6 of adjacent frames,

using 25 ms Hamming windows shifted every 20 ms for 5 minutes

of speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Intra-frame correlation of the residual (a) P-LSFs and (b) P-LPCCs

after first-order prediction. . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Analysis of the partial sensitivities ∂ci

∂ωj
by studying the effect on the

ith cepstral coefficient of quantizing the jth perceptual line spectral

frequency. Each P-LSF is individually quantized at 0 dB. . . . . . 94

5.7 Continuous digit recognition accuracy using the Aurora-2 database

after quantization of the P-LSFs of PLP6 using first order predic-

tive weighted VQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Continuous digit recognition accuracy using the Aurora-2 database

after non-predictive vector quantization of the P-LSFs of PLP5. . 109

xvi



5.9 Average (across all digits) inter-frame correlations between the 13

MFCCs and ICPs, using 25 ms Hamming windows shifted every

10 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10 Mean of the elements of the ith diagonal of the average (across all

digits) intra-frame correlation matrix ρ(i, j) for the 13 ICPs and

MFCCs obtained after first order prediction. . . . . . . . . . . . . 112

5.11 Recognition accuracy after quantization noise is added to each

individual feature, one at a time. Quantization SNRs are expressed

in dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.12 Continuous digit recognition accuracy using the Aurora-2 database

after quantizing the MFCCs using first order predictive weighted

split VQ. Notation 8+8 means 8 bits for the first split and 8 bits

for the second. Subscripts Q indicate that the HMM models have

been trained on quantized features. . . . . . . . . . . . . . . . . . 114

5.13 Continuous digit recognition using the Aurora-2 database after

quantizing the inverted cepstra (ICP) using first order predictive

weighted split VQ. Notation 8+8 means 8 bits for the first split

and 8 bits for the second. Subscripts Q indicate that the HMM

models have been trained on quantized features. . . . . . . . . . . 115

6.1 Characteristics of the Gilbert-Elliot channels of interest. Proba-

bilities are given in percent. . . . . . . . . . . . . . . . . . . . . . 127

6.2 Characteristics of the linear block codes that can be used for chan-

nel coding of ASR features. Acronyms SED, DED and TED stand

for Single, Double and Triple Error Detection, respectively. . . . . 131

xvii



6.3 Probability of correct detection (PCD), error detection (PED) and

undetected error (PUE) using hard, soft and λ-soft (λ = 0.16)

decision decoding for the proposed linear block codes over different

independent Rayleigh fading channel SNRs. PED = 0 for soft

decision decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Probability of correct detection (PCD), error detection (PED) and

undetected error (PUE) using hard, soft and λ-soft (λ = 0.16)

decision decoding for the proposed linear block codes over different

AWGN channel SNRs. PED = 0 for soft decision decoding. . . . . 150

7.1 Example of computation of temporal and dynamic features in the

presence of frame erasures. . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Determination of the frame erasure concealment based weighting

coefficients for WVR. . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Recognition accuracy with the Aurora-2 database and PLP D A

features using two types of channel erasures: (a) independent

and (b) bursty. Different techniques for the effect of channel era-

sures are compared: frame dropping; frame dropping with binary

WVR (γt = 0 if frame is dropped); frame erasure concealment (rep-

etition); and repetition with continuous WVR (γ
k,t

=
√

ρ
k
(t− tc)). 159

7.4 Comparison between performance of channel based continuous WVR

(γt = λ2
t ) and erasure concealment based continuous WVR (γk,t =

√
ρk(t− tc)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xviii



7.5 Probability of correct detection (PCD), error detection (PED) and

undetected error (PUE) using hard, soft and λ-soft (λ = 0.16)

decision decoding for the proposed linear block codes over different

independent Rayleigh fading channel SNRs. PED = 0 for soft

decision decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xix



Acknowledgments

I would like to express my deepest gratitude to my advisor, Professor Abeer Alwan.

She has been such a wonderful advisor that it is impossible to describe the extent of

my appreciation. Not only was she actively involved in this research, she provided the

best research environment one could hope for. I appreciate her intellectual guidance

which encourages the exploration of new ideas.

I have also had the opportunity to work closely with Professor Richard Wesel and

Dr. Xueting Liu. Their involvement in our research is greatly appreciated. I acknowl-

edge the remaining members of my doctoral committee, Professors Lieven Vanden-

berghe, Stanley Osher and Dr. Alan McCree.

Many of my SPAPL fellows helped my research through insightful discussions. I

particularly would like to acknowledge Brian and Mark.

To the friends made during my years at UCLA, Adina, Andreas, Cedric, Fred, Greg,

Iqbal, Jeet, Karen, Katherine, Ksenija, Lisa, Matthias, Markus, Max, Munish, Panchi,

Raman, Sebastien, and others whom I hope can forgive the oversight, you made my time

in Los Angeles the most enjoyable. To my good friends back in Belgium, Andrea, Regis,

Sandrine and many others, for whom the distance was not an obstacle either for their

friendship or their support. To Alyssa, who helped me with all her love and support

throughout my journey as a graduate student, I am forever grateful. Finally, I would

like to thank my parents and my brothers Frédéric and Nicolas for their immeasurable

love and support.

This work was supported in part by ST Microelectronics, Broadcom Corporation,

Hughes Research Laboratories (HRL) and Conexant through the UC Micro Program

and in part by the Belgian American Educational Foundation (BAEF) and the National

Science Foundation (NSF).

xx



Vita

1973 Born, Brussels, Belgium.

1996 B.S. in Electrical Engineering

B.A. in Philosophy
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This dissertation addresses the issue of designing source and channel coding

techniques for two types of speech processing applications: speech transmission

and remote speech recognition.

In the first part, adaptive multi-rate (AMR) speech transmission systems that

switch between operating modes depending on channel conditions are presented.

We address the design of such an adaptive scheme using variable bit rate em-

bedded source encoders and rate-compatible channel coders providing unequal

error protection. A novel technique, the rate-compatible punctured trellis code

(RCPT) for obtaining unequal error protection via progressive puncturing of

symbols in a trellis, is presented and compared with the rate-compatible punc-

tured convolutional code with and without bit-interleaved coded modulation.

The perceptually-based speech coder proposed displays a wide range of bit error

sensitivities, and is used in combination with rate-compatible punctured channel

codes providing adequate levels of protection. The resulting system operates over

a wide range of channel conditions with graceful performance degradation as the

channel signal-to-noise ratio decreases.
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In the second part, we present a framework for developing source coding,

channel coding, channel decoding, and frame erasure concealment techniques

adapted for remote speech recognition applications. It is shown that speech

recognition, as opposed to speech coding, is more sensitive to channel errors than

channel erasures. Appropriate channel coding design criteria are determined.

For channel decoding, we introduce a novel technique for combining soft decision

decoding with error detection. The technique outperforms the often used hard

decision strategy. In addition, frame erasure concealment techniques are used at

the decoder to deal with unreliable frames. At the recognition stage, we present a

technique to modify the recognition engine to take into account the time-varying

reliability of the decoded feature after channel transmission. The resulting engine,

referred to as weighted Viterbi recognition (WVR), further improves recognition

accuracy. Together, source coding, channel coding and the modified recognition

engine are shown to provide good recognition accuracy over a wide range of

communication channels at very low bit rates.
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CHAPTER 1

Introduction

Two inventions have played an important role in the development of the field

of speech signal processing. First, the invention of the telephone by Alexander

Graham Bell in 1876 permitted the transmission of speech, after transducing the

speech acoustic waveform into an electrical signal whose intensity varies with the

pressure of the waveform. Transduction of the speech signal into an electrical

signal allowed for analog processing of speech. Another landmark in the history

of speech processing was the passage from an analog to a digital representation of

bandwidth limited speech signals using Nyquist’s sampling theorem and ampli-

tude quantization. This paved the road for digital speech processing applications,

including speech coding to reduce the bit rate necessary for speech transmission,

speech recognition to allow machines to understand spoken speech, and speech

synthesis to enable machines to speak.

This dissertation focuses on two speech applications: coding and recognition.

For the former, we present source and channel coding techniques for the devel-

opment of adaptive multi-rate (AMR) speech communication systems. For the

latter, we develop source and channel coding solutions suitable for low bit rate

remote speech recognition over error-prone channels.

In adaptive multi-rate speech transmission, the idea is to design a commu-
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nication system, including adaptive source and channel coding techniques, that

allow for reliable speech transmission over a wide range of channel conditions. We

address the design of such an adaptive scheme using embedded source encoders

and rate-compatible channel coders providing adequate unequal error protection.

In remote speech recognition, speech recognition features are extracted from

the speech signal by the client and transmitted to the server for recognition.

We address the design of source coding, channel coding and channel decoding

techniques that improve performance of remote speech recognition over noisy

channels.

The remainder of this chapter is organized as follows. Sections 1.1 and 1.2

analyze important characteristics of human speech production and auditory per-

ception that have been exploited in speech processing applications. Speech coding

and recognition are introduced in Sections 1.3 and 1.4, respectively. Section 1.5

provides an overview of digital communication. Sections 1.6 and 1.7 introduce the

two applications considered in this dissertation, adaptive multi-rate speech trans-

mission and remote speech recognition. Finally, a road map of the dissertation

is presented in Section 1.8.

1.1 Speech production overview

1.1.1 Physiological mechanisms of speech production

A schematic diagram of the human vocal mechanism is shown in Figure 1.1. This

is a representation of the linear model of speech production, such as described

in [4, 5]. The model assumes that speech is produced by acoustically exciting a

time-varying cavity, the vocal tract. The speech spectrum S(ω) is the result of

the multiplication (convolution in the time domain) of the excitation spectrum
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Figure 1.1: Speech production overview (inspired by [1]).

U(ω) by the vocal tract transfer function H(ω),

S(ω) = U(ω) ·H(ω). (1.1)

The various speech sounds are produced by adjusting the type of excitation as

well as the shape of the vocal tract.

The vocal tract begins at the opening of the vocal cords, or glottis, and ends

at the lips. The shape and cross-sectional profile of the vocal tract is adjusted by

articulatory motion, which includes manipulating the tongue, lips, velum, mouth

and lower jaw. The shape of the vocal tract determines its frequency response.

Because the vocal tract is essentially a tube with varying cross-sectional areas,

the transfer function of energy from the excitation source to the output can

be described in terms of resonance frequencies of the tube. Such resonances

are called formant frequencies in speech production. Typically, there are three

formants below 3500 Hz for a human vocal tract [6]. For most speech sounds,

the envelope of the power spectrum is an important factor for determining their

linguistic interpretation.
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The excitation consists of air flow from the lungs which is forced through

the trachea and the vocal cords. Many speech signals can be classified as either

voiced or unvoiced. For voiced sounds, the vocal folds open and close with regular

periodicity, called pitch. Pitch periodicity can be changed by varying the tension

of the vocal cords. Voiced speech segments have a harmonic frequency-domain

structure and a nearly periodic time-domain signal. For unvoiced sounds, the

vocal cords are relaxed and the glottis is open. The air flow either passes through a

constriction in the vocal tract and thereby becomes turbulent (e.g. /s/ and /sh/),

or builds up pressure behind a point of total closure within the vocal tract, and

when the closure is opened, the pressure is suddenly released, causing a brief

transient sound (e.g. /p/ and /t/).

Typically, the excitation signal has a spectral tilt of -12 dB per octave, and

the radiation from the lips introduces spectral slope of +6 dB per octave.

Note that the linear speech production model forms a basis for some linear

prediction speech coders, as will be seen in Section 1.3.

1.1.2 Implications for speech coding and recognition

The speech production mechanism induces some characteristics on the resulting

speech signals which are exploited by speech processing applications.

Table 1.1, inspired by [1], illustrates from the speech production point of view

the different sources of information found in the speech signal depending on its

frequency range. In the range of 1-15 Hz, the phonetic articulation is found and

can be seen in a spectrogram by analyzing the formant and voicing transitions.

The pitch or voicing information is found in the interval 40-400 Hz, the typical

range for fundamental frequencies. Finally, the spectral range is found in the

interval 400-12000 Hz.
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Syllabic range Voicing range Spectral range

1 – 15 Hz 40 – 400 Hz 200 – 12000 Hz

Speech Production Articulatory Vocal fold Articulatory

motion vibration position

Speech Perception Formant Pitch Formant

motion frequency position

Speech Spectrum Time-varying Pitch Spectral

spectrum harmonics envelope

Speech Signal Time-varying Long-term Short-term

signal correlation correlation

Speech Coding Coder parameters Long-term Short-term

prediction prediction prediction

Speech Recognition Markov Removed in most Spectral

models applications estimates

Table 1.1: Classifying frequency ranges of speech.

In terms of the implications of the speech production model on the character-

istics of the speech signal, the harmonic structure of the spectrum corresponds

to “long-term” autocorrelation in the speech signal, while the power-spectral en-

velope corresponds to “short-term” autocorrelation [7]. Both redundancies can

be removed in speech coding, using short-term and long-term prediction (see

Section 1.3).

Significant phonetic information is thought to be carried by the spectral en-

velope governed by articulatory position. Spectral estimates of the speech signals

are captured by the speech recognizer front-end, while stochastic (Markov) mod-

els capture time variations in the speech spectrum. Pitch information is typically

not utilized in speech recognition systems (see Section 1.4).
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1.2 Auditory perception overview

In speech transmission, the receiver is the human ear. Insight into human au-

ditory perception can therefore lead to better design of speech coding [8] and

potentially of recognition systems [9]. The field of psychoacoustics has made sig-

nificant progress toward characterizing human auditory perception, particularly

the time-frequency capabilities of the human ear [10, 11, 12]. A brief review is in-

cluded here to motivate some of the techniques used both in speech transmission

(Part I) and speech recognition (Part II).

1.2.1 Physiological mechanisms of speech perception

Acoustic pressure waves pass through the nearly passive outer and middle ears to

excite the basilar membrane within the snail-shaped cochlea in the inner ear. The

stiffness of the membrane decreases along its length, from the beginning (base) at

the stapes to the end (apex). This non-uniform waveguide results in a frequency-

to-place transduction on the basilar membrane, which works as follows. As a

traveling horizontal acoustic wave moves inside the cochlea, its velocity dimin-

ishes (due to the reduced stiffness), decreasing the wavelength of the membrane

disturbance and concentrating the energy per unit length over an increasingly

smaller region [1]. This energy is then rapidly dissipated in the large amplitude

deformation of the basilar membrane at that location. The position i on the

basilar membrane where such large deformation occurs depends on the frequency

ωi of the acoustic wave. High frequency stimuli concentrate and dissipate energy

close to the base, while low frequency stimuli travel further toward the apex,

completing the frequency-to-place transduction.

Motion of the basilar membrane is then transduced by the bending of tiny hair
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cells implanted on the membrane. The base of each hair cell is innervated with

peripheral auditory nerves whose firing rate varies monotically but not linearly

with the amplitude of the hair cell bending. The relationship between hair cell

bending yi(t) at position i on the basilar membrane and the average rate of nerve

firing r(t, ωi) is often approximated by a power-law:

r(t, ωi) ≈ yi(t)
α. (1.2)

The average rate of nerve firing provides the impression of loudness, which can

be thought of as perceptual magnitude. The power-law relationship with α < 1

between hair cell bending and nerve firing enables humans to listen to a wide

range of sound intensities. Often, the power-law model of loudness for humans

assumes α = 0.33, so that if the intensity of the signal is increased by 9 dB, the

loudness is approximately doubled. This power-law relationship between loudness

and intensity, commonly referred to as Stevens’ law [13, 14], has been extensively

studied [15] and is sometimes included in the computation of Automatic Speech

Recognition (ASR) features (see Section 1.4).

1.2.2 Critical bands and masking phenomena

The human inner ear behaves as a bank of band pass filters with non-uniform

bandwidths. These filters, which perform frequency selectivity and spectral anal-

ysis, are referred to as critical bands and their bandwidths as critical bandwidths.

A distance of one critical band is often referred to as one bark. The bandwidth of

the critical bands is constant up to 500 Hz, after which it increases exponentially.

The division of the audibility frequency range in critical bands accounts for

the frequency domain phenomenon of masking. With simultaneous masking, a

low level signal (the maskee) can be made inaudible by a simultaneously occurring

stronger signal (the masker), if the masker and maskee are close enough to each
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other in frequency. A masking threshold below which any signal will not be audi-

ble can be measured. The masking threshold depends on the sound pressure level

(SPL) and the frequency of the masker. We distinguish between two types of si-

multaneous masking, tone-masking-noise and noise-masking-tone. In both cases,

the underlying reason for masking is the same. The presence of a strong noise

or a strong tone masker creates an excitation of sufficient strength on the basilar

membrane at the critical band location to effectively block the transmission of

the weaker signal [8]). The global masking threshold is the log sum of 1) the

hearing threshold (defined as the minimum amount of energy needed in a pure

tone signal to be detected by a listener in a quiet environment [16]), 2) the tone-

masking-noise threshold and 3) the noise-masking-tone threshold. The global

masking threshold is also referred to as the Noise Masking Curve (NMC) or the

level of Just Noticeable Distortion (JND). The signal is completely masked if the

Signal-to-Mask Ratio (SMR) is negative on a logarithmic scale.

Masking properties and critical bands theories are extensively used in speech

and audio coding, reducing the bit rate necessary to perform perceptually trans-

parent coding (see Chapter 2. The success of audio codecs such as the MPEG

standard [17, 18] can be attributed to the applications of the signal masking

theory. Conceptually, the masking property tells us that we can permit greater

amounts of noise in the vicinity of the formant regions.

Another perceptual frequency scale is the Mel frequency scale, which is char-

acterized as follows: 1) 1000 mels corresponds to 1000 Hz, and 2) a tone at x/2

mels is half as high as a tone at x mels for experimental subjects. The bark and

Mel scales are proportional to each other; 1 bark is approximately equal to 100

mels. The Mel scale is extensively used in speech recognition by taking a bank of

bandpass filters linearly spaced in the Mel frequency domain to perform spectral
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analysis (see Section 1.4.1).

Evaluation of the speech spectrum on a perceptual frequency scale (Mel or

bark) and evaluation of the auditory spectrum has led to the development of two

perceptually motivated ASR features (see Section 1.4).

1.3 Speech coding overview

The subject of speech coding [19, 20, 21] has been an area of research for several

decades. Speech coders are present in our everyday life and their use is often

taken for granted. For example, speech coding is present in most digital telephone

systems and in every cellular application.

1.3.1 Speech coding strategies

Speech coders, whose goal is to represent the analog speech signal in as few binary

digits as possible, can be described as belonging to one of three fundamentally

different coding classes: waveform coders, vocoders, and hybrid coders.

A waveform coder attempts to mimic the waveform as closely as possible

by transmitting actual time- or frequency-domain magnitudes. For example, in

Pulse Coded Modulation (PCM), the input speech itself is quantized. In differ-

ential PCM (DPCM) and adaptive DPCM (ADPCM), the prediction residual is

quantized. In addition, Subband Coders (SBC) are also waveform coders. Speech

quality produced by waveform coders is generally high, although at high bit rates.

Chapter 2 presents two embedded waveform speech coders, a perceptually-based

subband coder and an embedded ADPCM coder.

Vocoders, or parametric coders, analyze the waveform to extract parame-

ters that in some cases represent a speech production model. The waveform
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is synthetically reproduced at the receiver based on these quantized parameters.

Vocoder types include formant, homomorphic vocoders, as well as Linear Pre-

diction Coding (LPC) and Sinusoidal Transform Coding (STC). Vocoders can

generally achieve higher compression ratios than waveform coders; however, they

provide more artificial speech quality.

In hybrid coders, the high compression efficiency of vocoders and high-quality

speech reproduction capability of waveforms are combined to produce good qual-

ity speech at medium-to-low bit rates. The so-called analysis-by-synthesis coders,

such as the Coded Excited Linear Prediction (CELP), GSM, and Mixed Excita-

tion Linear Prediction (MELP) are all hybrid coders. These coders are used in

Chapter 5 to evaluate the effect of speech coding on speech recognition.

1.3.2 Linear predictive coding

As mentioned in Table 1.1, long-term and short-term correlations in the speech

signal imply redundancies that can be exploited by speech coders to achieve

compression. One solution for removing the redundancy in the speech signal is

to use signal prediction and to transmit only the residual signal. If the samples

of a digital speech signal are assumed to be Gaussian random variables, linear

prediction (LP) of a speech sample from earlier speech samples is optimal in the

least-square sense [7, 22]. Two types of linear predictors are typically used.

Long-term predictors (LTP): Long-term predictors are associated with

the harmonic structure of speech spectra, as dictated by the periodicity of the

vocal cord vibrations for voiced sounds. The purpose of the LTP filter is to

extract this pitch redundancy from the signal.

Short-term predictors (STP): Short-term predictors are associated with

the formant structure of speech spectra, as dictated by the vocal tract. Assuming

10



the linear production model (Eq. 1.1), the vocal tract can be modeled by an auto-

regressive (AR) all-pole model of order p such that the speech signal S(z) can

be synthesized as S(z) = U(z)H(z), where U(z) represents the excitation signal,

and the synthesis filter H(z) = 1
A(z)

is H(z) = 1
1−Pp

k=1 αkz−k .

The linear prediction coefficients {αi}p
i=1 are computed by minimizing the

mean-square error of the prediction error. Typically, p is chosen equal to 10 for

a 4 kHz signal, to represent three formants and a spectral tilt. For an 8 kHz

bandwidth signal, it is common to take p = 16.

STP filters can be viewed differently depending on whether we consider the

filter at the encoder or decoder. At the encoder, the filter can be regarded as

an analysis filter, used to remove redundancy from the speech signal. At the

decoder, the inverse filter can be thought of as the synthesis filter, which models

the vocal tract. Its transfer function describes the envelope of the speech signal.

Linear prediction coefficients αi must be quantized and transmitted to the

receiver, for signal reconstruction (waveform coders) or speech synthesis (para-

metric coders). However, direct quantization of αi coefficients may lead to in-

stability in the all-pole filtering operation and audible distortion. Quantization

is usually performed on transformed, yet mathematically equivalent, versions of

the linear prediction coefficients. Parameters typically used include the reflection

coefficients (RC), which also have a physical interpretation related to the loss-

less tube model for speech production [23], and the log area ratios (LAR) which

present better quantization properties. The most commonly used representation

is the line spectral frequencies (LSFs) introduced by Itakura [24, 25].

LSFs are obtained by decomposing the polynomial A(z) into two polynomials,

with even and odd symmetry. This is accomplished by taking a difference and

sum between A(z) and its conjugate function, P (z) = A(z) + z−(p+1)A(z−1) and
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Q(z) = A(z) − z−(p+1)A(z−1). Because of the symmetry, the roots of both P (z)

and Q(z) are on the unit circle and their angles correspond to the frequencies

ωpn and ωqn (1 ≤ n ≤ p/2), which are precisely the LSFs. In terms of speech

production, LSFs can be thought of as the zeros and poles of the impedance of

the lossless tube model of the vocal tract as seen from the glottis Zg(z) = Q(z)
P (z)

.

LSFs are the customary representation of LP coefficients due to the useful

characteristics they present such as: 1) the pole frequencies ωn are approximately

equal to the formant frequencies; 2) if A(z) is minimum-phase (roots inside the

unit circle), then ωpn and ωqn also fall onto the unit circle and are interlaced

(0 < ωp1 < ωq1 < ωp2 < ωq2 < . . . < 1); 3) LSFs are correlated with each

other, so intra-frame prediction and vector quantization are possible; 4) LSFs

vary smoothly over time, so inter-frame prediction is possible; and 5) LSFs can

effectively be interpolated.

For the converse, i.e. the reconstruction of the LPC filter from the LSFs, we

see that A(z) = 1
2
[P (z) + Q(z)]. Note that the LSFs will be used in Chapter 5

for quantizing the linear prediction estimate of perceptual spectra.

1.3.3 Evaluation of speech coders

Speech and audio coders can be evaluated in terms of five attributes: bit rate,

speech quality [26], delay, complexity, and robustness to acoustic noise and chan-

nel errors. Speech quality can be measured subjectively and objectively. Subjec-

tive measurements are obtained from listening tests, whereas objective measure-

ments are computed from the original and decoded speech signals.

The most widely reported subjective measure is the Mean Opinion Score

(MOS), which is obtained by averaging test results of listeners who are asked to

rate their impressions on a five point-scale. The typical MOS subjective qualities
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Figure 1.2: Quality comparison of speech coding schemes (after [2]).

versus coding bit rates are shown in Figure 1.2 for different coding strategies.

Widely used objective measures include mean squared error-based measures.

A popular measure is the signal-to-noise ratio (SNR), which is a long-term mea-

sure of the accuracy of reconstructed speech. Temporal variations can be better

detected and evaluated using a short-time SNR for each segment of speech. The

segmental SNR (SEGSNR) is then defined as the average of the short-time SNRs.

Modified versions of SEGSNR will be used to evaluate the quality of coders pre-

sented in Chapter 2. Other objective evaluations utilize knowledge about the hu-

man auditory system to derive perceptually motivated objective measures, such

as ITU P.861 EMBSD (Enhanced Modified Bark Spectral Distortion) [27] and

P.862 PESQ (Perceptual Evaluation of Speech Quality) [28].

1.4 Speech recognition overview

Figure 1.3 shows the structure of speech recognizers based on Hidden Markov

Models (HMM). During training, each element in the dictionary (word, sylla-

ble, phoneme) is modeled by a transition network (Markov model) with a small
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Figure 1.3: Structure of a speech recognizer based on HMM models.

number of states. Each state corresponds, in an indeterminable sense, to a set

of temporal events in the spoken word [29]. During recognition, the likelihood

that the observed sequence is generated from a state sequence for each vocabu-

lary word is computed, and the word with the highest accumulated probability is

selected. Typically, the sequence of observations consists of short-time spectral

estimates, also called features (O = o1,o2, . . . , oT ), which are computed by the

front-end component of the recognizer.

1.4.1 Front-end signal processing

Typical feature vectors for ASR include the Mel Frequency Cepstral Coefficients

(MFCC) and the Linear Prediction Cepstral Coefficients (LPCC). LPCCs can be

extracted from standard or perceptual linear prediction models.

Mel Frequency Cepstral Coefficients (MFCC)

The human ear resolves frequencies non-linearly across the audio spectrum. Em-

pirical evidence suggests that designing a front-end to operate in a similar non-

linear manner improves recognition performance.
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A simple filterbank designed to provide non-linear resolution on the Mel fre-

quency scale can be used. With MFCCs, the filters used are triangular, and they

are equally spaced along the Mel scale. To implement this filterbank, the window

of speech data is analyzed using a Fourier transform, and the magnitude coeffi-

cients are correlated with each triangular filter and accumulated. Each bin holds

a weighted sum representing the spectral magnitude in that filterbank channel.

The magnitudes of the power estimates from each channel are finally compressed

using a logarithmic function. The resulting spectral estimates reflect two of the

most studied aspects of auditory signal processing: frequency selectivity and

magnitude compression.

Because the spectral estimates are somewhat smooth across filter number and

highly correlated, each frame is roughly decorrelated using the Discrete Cosine

Transform (DCT) to obtain the Mel-Frequency Cepstral Coefficients (MFCCs)

ci calculated from the log filterbank amplitudes mj as follows,

ci =

√
2

N

M∑
j=1

mj cos

(
πi

N
(j − 0.5)

)
1 ≤ i ≤ N (1.3)

where M is the number of filterbank channels and N the number of cepstral co-

efficients. MFCCs are the acoustic features of choice for many speech recognition

applications.

Linear Prediction Cepstral Coefficients (LPCC)

As mentioned earlier, in linear prediction (LP) analysis, the vocal tract transfer

function is modeled by an all-pole filter with transfer function H(z) = 1
1−Pp

k=1 αkz−k ,

where p is the number of poles. The filter coefficients αk are chosen to minimize

the mean square filter prediction error summed over the analysis window.

Cepstral parameters can be obtained by taking the inverse Fourier transform
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of the log spectrum. In the case of linear prediction cepstra, the spectrum is the

linear prediction spectrum, which can be obtained from the Fourier transform

of the filter coefficients. However, it can be seen that the cepstra can be more

efficiently computed using a simple recursion [6]:

cn = αn +
n−1∑

k=1

k

n
ck αn−k. (1.4)

Perceptual Linear Prediction Cepstral Coefficients (P-LPCC)

Classic LP analysis techniques are used to obtain a smoothed spectral envelope

of the speech spectrum P (ω). However, a main disadvantage of the LP all-pole

model in speech analysis is that the LP computed spectrum H(ω) approximates

P (ω) equally well at all frequencies of the analysis band. This property is in-

consistent with human hearing (Section 1.2). Above about 500 Hz, the spectral

resolution of hearing decreases with frequency. Furthermore, hearing is highly

sensitive in the middle frequency range of the audible spectrum.

The perceptual linear predictive (PLP) speech analysis technique, introduced

in 1990 by Hermansky [30], models three properties of human audition to derive

an estimate of the auditory spectrum: 1) the critical-band resolution, 2) the

equal-loudness curve, and 3) the intensity-loudness power law (Eq. 1.2).

The auditory spectrum is then approximated by an all-pole autoregressive

linear prediction model. Typically, a low order prediction (p = 5–6) is effective in

suppressing speaker-dependent details of the auditory spectrum, which is much

less than the order of most other spectral representations.

The three types of ASR features presented above will be analyzed in Chapter 5

for their potential applications to remote speech recognition.
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Figure 1.4: A schematic representation of a hidden Markov model.

1.4.2 Hidden Markov Models

Hidden Markov models (HMM) are used to provide a characterization of the non-

stationary stochastic process represented by the sequences of feature vectors. In

HMM based speech recognition, it is assumed that the sequence of observed

speech vectors for each element of the dictionary (word, syllable or phone) is gen-

erated by a Markov model with a small number of states, as shown in Figure 1.4

for a four state HMM model of the digit ‘6’.

A Markov model is a finite state machine which changes state once every time

unit. The transition from state i to state j is governed by the discrete proba-

bility aij. For most continuous density HMM-based speech recognition systems,

statistics of each state for each model are represented using multivariate Gaus-
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sian mixture densities. The probability bj(ot) of observing the NF -dimensional

feature vector ot in the jth state is then

bj(ot) =

NM∑
m=1

wm
1√

(2π)NF |Σ|e
− 1

2
(ot−µ)′Σ−1

(ot−µ), (1.5)

where NM is the number of mixture components, wm is the mixture weight, and

the parameters of the multivariate Gaussian mixture are its mean vector µ and

covariance matrix Σ.

The model is hidden since only the observation sequence O is known during

the recognition stage and the underlying state sequences are hidden. Instead of

associating a state with every observation, the model state specifies the statistics

of the observed feature vectors for a specific temporal segment of the sound.

1.4.3 Three uses of an HMM

Three problems can be solved using the formalism of an HMM [31]: 1) recognition;

given a model λ for each word and an observation sequence O, what is the most

likely word spoken?, 2) segmentation; given O and λ, what is the state sequence

Q which maximizes P (O, Q|λ)?, and 3) training; given O and an initial estimate

of λ, how can λ be modified to increase P (O|λ)?

Segmentation: A significant complication in speech recognition is that speech

is non-stationary and statistics of the different speech segments change consider-

ably across the word. Within the word, there may be temporal segments where

the statistics are nearly stationary, but the durations of these segments will also

change with different speaking styles and rates. This motivates the alignment or

segmentation problem.

In general, there are two related approaches to solve the temporal align-

ment problem with HMM speech recognition. The first is an application of
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dynamic programming or Viterbi decoding, and the second is the more general

forward/backward algorithm. The Viterbi algorithm [32] (essentially the same

algorithm as the forward probability calculation except that the summation is

replaced by a maximum operation) is typically used for segmentation and recog-

nition and the forward/backward for training.

The Viterbi algorithm finds the state sequence Q that maximizes the proba-

bility

P ∗ = max
all Q

P (Q, O|λ). (1.6)

In order to calculate P ∗ for a given model λ, we define the metric φj(t), which

represents the maximum likelihood of observing the features (o1, . . . ot) given

that we are in state j at time t. Based on dynamic programming, this partial

likelihood can be computed efficiently using the following recursion

φj(t) = max
i
{φi(t− 1)aij} bj(ot). (1.7)

The maximum likelihood P ∗(O|λ) is then given by P ∗(O|λ) = maxj {φj(T )}.

The recursion (1.7) forms the basis of the Viterbi Algorithm (VA) whose idea

is that there is only one “best” path to state j at time t.

Recognition: Speech recognition (given that one has already somehow trained

the models λi) translates to the problem of which model maximizes the likelihood

P (O|λ). Probabilities P (O|λi) can be computed using the forward or the Viterbi

algorithm. The models can be either whole words for limited vocabulary speech

recognition or sub-words (syllables, phonemes, tri-phones) for large vocabulary

continuous speech recognition.

HMM Training: When training an HMM, a set of exemplars correspond-

ing to a particular model is used to provide iterative improvements for both

the estimates of the multi-variate distributions of the feature vectors, and the
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state-transition probabilities. There is no known way to analytically solve for

the model parameter set that maximizes the probability of the observation se-

quence. However, we can choose λ such that its likelihood, P (O|λ), is locally

maximized using an iterative procedure, such as the Baum-Welch (also known as

the expectation-maximization (EM) method).

New model parameters are obtained by averaging across the training set for

each model. The contribution of each state transition and each observed feature

are weighted by the probabilities of having been at that state during the time

of that feature. Given the set of re-estimated models, the algorithm iterates, re-

aligning the original data to the updated models. This iterative process converges

to a local maximum. Probabilities of state occupation are found using the for-

ward/backward algorithm. By summing all possible previous paths, the partial

forward probabilities of observing the first M frames of the exemplar and ending

at a specific state can be inductively computed from the M − 1 forward prob-

abilities. A similar iterative process is used to obtain backward probabilities of

observing the last L frames. Combining the forward and backward probabilities

provides an estimate for the probability of state occupation.

1.5 Digital communication overview

Figure 1.5 illustrates the basic elements of a digital communication system. This

model can be traced back to Shannon’s original paper on information theory [33,

34]. The source encoder removes redundancy from the representation of the signal

and is followed by a separate channel encoder that adds controlled redundancy

for channel error protection. Digital data at the output of the channel encoder is

passed to the modulator, which serves as an interface to the channel by mapping

digital information sequences to analog waveforms. The demodulator, channel
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Figure 1.5: Basic elements of a digital communication system.

decoder and source decoder at the receiver perform the inverse operations so a

reconstructed signal can be presented to the user.

The motivation for splitting source and channel coding is twofold. First,

for many types of channels, optimal performance can be achieved with separate

source and channel coders. This is usually referred to as the “source-channel

separation theorem” [33, 35] which is, however, only valid for stationary ergodic

sources, and provided that the source and channel encoders are allowed to op-

erate on blocks of arbitrarily large length. The second motivation is increased

flexibility. A channel code designed to minimize the influence of channel errors

can be used to protect any incoming data. This results in high flexibility since

data can be outputs from any source coder and the channel coder can be designed

independently.

However, the need for keeping the complexity of realistic systems reasonably

low implies that only small block lengths are feasible. Furthermore, speech is

not stationary ergodic. In such cases, the most favorable source and channel

encoding schemes might be the result of a jointly designed source and channel

encoder, minimizing the average distortion between the source signal and its

reproduction after source and channel decoding.
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1.5.1 Source coding

The task of the source coder is to code the source signal so that the receiver can

recover the signal with as little distortion as possible, under the constraint that

the source coding rate cannot exceed the channel capacity. Signal compression

can be done by removing two types of information from the original signal: the

redundant and perceptually irrelevant parts of the signal.

Speech coders examine properties of the human speech production model (Sec-

tion 1.1) to analyze redundancies in the speech signal, and the human auditory

system (Section 1.2) to determine inaudible parts in the signal (see Chapter 2).

1.5.2 Modulator and demodulator

The modulator serves as an interface to the communication channel. The modu-

lator may simply map each binary digit into one of two possible waveforms. Al-

ternatively, the modulator may transmit k-bit blocks at a time by using M = 2k

possible waveforms sm(t).

At the receiving end of the digital communication system, it is convenient to

subdivide the receiver into two parts: the signal demodulator and the detector.

The function of the signal demodulator is to process the received channel noise

corrupted waveform r(t) = sm(t) + n(t) and to reduce each waveform to a scalar

or a vector that represents an estimate of the transmitted data symbol (binary

or M -ary). The detector, which follows the demodulator, may decide on whether

the transmitted bit (for binary transmission) is a “0” or a “1”. In such case,

the detector has made a hard decision. Hard decision corresponds to binary

quantization of the demodulator output (Q = M). More generally, we may

consider a detector that quantizes the demodulator output to Q > M levels. In
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the extreme case where no quantization is performed (Q = ∞), we say that the

detector has made a soft decision.

Soft decision is superior by about 2–3 dB to hard decision for coded digital

modulation over the AWGN channel. Over multi-path fading channels, hard de-

cision decoding typically suffers a loss in diversity when compared to soft decision

decoding, which may result in significant performance degradation [36]. The dis-

tinction between hard and soft decision decoding for linear block codes will be

evaluated in Chapter 6.

1.5.3 Channel coding

The function of the channel encoder is to introduce some redundancy in the

information sequence, which can be used at the receiver to overcome the effects

of noise and interference encountered in the transmission of the signal through

the channel. The encoding process generally involves taking k information bits

and mapping each k-bit sequence into a unique n-bit sequence. The amount of

redundancy introduced is measured by the ratio k/n, also called the code rate.

The effectiveness of channel coding is given by the coding gain, the attainable

savings in energy per information bit required to achieve a given error probability

to uncoded transmission [37]. In chapters 3 and 6, we use three types of channel

codes: block coders, convolutional codes and trellis codes.

Block codes

The encoder for a block code divides the information sequence into message

blocks of k information symbols. The encoder maps each k-symbols message

independently into an n-symbols message called a codeword. If q is the size of the

symbol alphabet, there are qk different possible codewords at the encoder output

23



corresponding to the qk different possible messages. This set of qk codewords of

length n is called an (n,k) block code. For a code to be useful, one must have

k ≤ n. When k < n, n− k redundant symbols (bits if q = 2) are added to each

message to form a codeword, providing the code with the capability of combating

channel noise [38].

Besides the code rate parameter k/n, an important parameter of a block

code is the Hamming weight of each codeword, which is the number of nonzero

elements that it contains. By listing the various Hamming weights, w, of the

codewords, and the number of codewords, Aw, at each weight, we obtain the dis-

tance spectrum or equivalently the weight distribution of the code. Certainly, the

most important aspect of the distance structure of a block code is the minimum

Hamming distance between any two codewords, denoted dmin. The guaranteed

error-correcting capability of a block code is t = bdmin−1
2

c. If the code is used

strictly for error detection purposes, the guaranteed error detection capability

of the code is dmin − 1. Hybrid modes of operation employing concurrent error

correction and detection are also possible.

Block codes can be efficiently described if they are constructed with a certain

algebraic or geometric structure. Linear codes have an algebraic structure such

that the sum of two codewords is also a codeword. Linearity facilitates analysis

of the code’s error protection capabilities. Every codeword has similar distance

properties, so the error protection capability need only be evaluated for a single

codeword (e.g. dmin is the Hamming weight of the minimum weight non-zero

codeword).

Soft decision based error detection of block codes for remote speech recognition

applications will be studied in Chapter 6.
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Convolutional codes

Unlike block codes, convolutional codes are not restricted to transmitting code-

words in blocks. In a rate k/n convolutional code, k information bits enter at

the same time in a shift register structure with ν memory elements and generate

n output symbols. The number of previous symbols on which the present state

and output are dependent is the constraint length ν of the code. The number of

states in the convolutional code is qν , where q is the size of the symbol alphabet,

usually 2 (binary). There is a one-to-one correspondence between the information

sequence, the register state sequence in the shift register, and the code output

sequence.

The trellis of a convolutional encoder is a representation of all possible shift

register state transitions over time. Each path through the trellis corresponds to

one of the possible state sequences. The minimum Hamming weight between two

paths in the trellis is called the free distance of the trellis, dfree.

The convolutional decoder estimates the path through the trellis that was

followed by the encoder. There are a number of techniques for decoding con-

volutional codes. The most important is the Viterbi algorithm which performs

maximum-likelihood (ML) decoding. Given a received sequence of symbols, a

path length is associated to each branch in the trellis, which is the log-likelihood

of the branch transition given the observation of the symbols received from the

channel. ML decoding is then reduced to a shortest path search through the

trellis. The depth of the shortest path search in the trellis is called the traceback

depth.

Trellis coded modulation

Trellis Coded Modulation (TCM) was introduced in 1982 by Ungerboeck [39].
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It combines both coding and modulation to achieve significant coding gains with-

out compromising bandwidth efficiency. TCM schemes [40] employ redundant

non-binary or quaternary modulation in combination with a finite state encoder,

which decides the selection of the modulation signals to generate coded signal

sequences. TCM uses signal set expansion to provide redundancy, and to design

jointly coding and signal mapping functions so as to directly maximize the free

distance (minimum Euclidean distance) between coded signals. At the receiver,

the signals are decoded by a soft decision ML sequence decoder.

Rate-compatible, punctured, and bit-interleaved versions of trellis and convo-

lutional codes providing unequal error protection will be investigated in Chap-

ter 3.

1.6 Adaptive multi-rate speech transmission

In speech communication systems, a major challenge is to design a system that

provides good speech quality over a wide range of channel conditions. For rate-

constrained systems, one solution consists of allowing the transceivers to monitor

the state of the communication channel and to dynamically allocate the bitstream

between source and channel coders accordingly. For low SNR channels, the source

coder operates at low bit rates, thus allowing powerful forward error control.

For high SNR channels, the source coder uses its highest rate resulting in high

speech quality. An adaptive algorithm selects the best source-channel coding

combination out of a collection of available source and channel coders operating

at different rates based on estimates of channel quality.

Speech coders whose operating bit rate is allowed to vary, thereby adapting the

rate to channel conditions, are called adaptive multi-rate (AMR) speech coders
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(e.g. [41, 42, 43, 44, 45]). Embedded source coders, for which the bitstream of

the source encoder operating at low bit rates is embedded in the bitstream of the

coder operating at higher rates, form one class of AMR source encoders.

Multi-rate speech coding is not new. Techniques like voice activity detec-

tion (VAD) or entropy-matching coding are proposed to decrease average cod-

ing bit rates. However, few AMR systems describing both source and channel

coding have been presented. Some AMR systems that combine different types

of variable rate CELP coders for source coding with RCPC and cyclic redun-

dancy check (CRC) codes for channel coding were presented as candidates for

the European Telecommunications Standards Institute (ETSI) GSM AMR codec

standard. In [46], UEP is applied to perceptually-based audio coders (PAC).

The bitstream of the PAC is divided into two classes and punctured convolu-

tional codes are used to provide different levels of protection, assuming a BPSK

constellation.

Channel coders whose redundancy is allowed to vary, thereby adapting the

coding rate after the transmitter acquires information about channel conditions,

are called variable-rate channel coders. Rate-compatible coders, for which the

bit or symbol stream of the channel encoder operating at low redundancy is

embedded in the bit or symbol stream of the channel encoder operating at high

redundancy, form one class of variable-rate channel encoders.

Rate-compatible channel codes, such as Hagenauer’s rate-compatible punc-

tured convolutional codes (RCPC) [47], are a collection of codes providing a

family of channel coding rates. By puncturing bits in the bitstream, the chan-

nel coding rate of RCPC codes can be varied instantaneously, providing unequal

error protection (UEP) [48] by imparting on different segments different degrees

of protection. Cox et al. [49] illustrate how RCPC codes can be used to build a
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speech transmission scheme for mobile radio channels. Their approach is based on

a subband coder with dynamic bit allocation proportional to the average energy

of the bands. RCPC codes are then used to provide UEP. A scheme combining

multi-rate embedded source and channel coding to provide speech transmission

over an extended range of channel conditions was also described in [50, 51].

We combine in the first part of the dissertation embedded AMR source coding

and rate-compatible channel coding to design codecs which make maximum use

of the available channel bandwidth using bit-prioritized embedded source coders

and a new type of rate-compatible channel encoder [52].

1.7 Remote speech recognition over error-prone channels

In remote speech recognition applications (sometimes also referred to as dis-

tributed speech recognition or DSR), the server performs the complex task of

speech recognition and transmits the recognized information back to the client.

This enables low power/complexity devices to be speech recognition-enabled at

low cost. Applications for remote speech recognition include voice activated web

portals, menu browsing, voice-operated personal digital assistants (PDAs) or al-

ternatives to keyboards for the next generation of pocket PCs.

Figure 1.6 illustrates the general block diagram for remote speech recogni-

tion, with the client (top branch) separated from the server (lower branch) by

the communication channel, typically wireless or packet-based. The goal is to

provide high recognition accuracy over a wide range of channel conditions with

low bit rate, delay and complexity for the client. We investigate source coding,

channel coding, channel decoding, frame erasure concealment and speech recog-

nition techniques suitable for remote speech recognition systems over error prone
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Figure 1.6: Block diagram of a remote speech recognition system.

channels.

Wireless communications is a challenging environment for remote speech recog-

nition. The communication link is characterized by time-varying, and sometimes

low signal-to-noise ratio (SNR), channels. Previous studies have suggested allevi-

ating the effect of channel errors by adapting acoustic models [53] and automatic

speech recognition (ASR) front-ends [54] to different channel conditions, or by

modeling GSM noise and holes [55]. Other studies analyzed the effect of random

and burst errors in the GSM bitstream for remote speech recognition applica-

tions [56, 57]. Finally, [58] and [59] evaluate the reliability of the decoded feature

to provide robustness against channel errors.

Similarly, packet switched communication networks also constitute a difficult

environment for distributed speech recognition (DSR) applications. The commu-

nication link in IP based systems is characterized by packet losses, mainly due to

congestion at routers. Packet loss recovery techniques including silence substitu-

tion, noise substitution, repetition and interpolation are presented in [60, 61, 62].

To our knowledge, the effect of channel transmission on remote recognition

systems based on quantized ASR features is a topic not yet extensively covered

in the literature. Hence, our analysis and the proposed techniques present a

significant improvement toward gaining robustness against channel noise.
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1.8 Dissertation road map

Figure 1.7 is a road map of the dissertation, showing the inter-dependency of

the chapters, and suggests that this work can be conceptually divided into four

parts: source coding (left) and channel coding (right) for two types of applica-

tions, adaptive-multirate (AMR) speech transmission (top) and remote speech

recognition (bottom).

Chapter 1 provides the reader with the concepts of digital speech processing

and digital communications that will be used throughout this dissertation.

Chapters 2 and 3, respectively, present source and channel coding techniques

that will be used in the design of spectrum efficient AMR transmission systems,

presented in Chapter 4.

Chapters 5–7 are concerned with the development of source and channel cod-

ing solutions for low bit rate remote speech recognition systems. Chapter 5

presents solutions for quantizing ASR features. Chapter 6 analyzes the effect of

channel errors on recognition accuracy and presents channel coding and decod-

ing techniques adapted to remote recognition. Chapter 7 introduces techniques

alleviating the effect of channel erasures on recognition accuracy, and combines

source and channel coding to create channel-robust low bit rate systems. Readers

may go directly to Chapter 5 if the design of remote speech recognition systems

is of primary interest. Finally, Chapter 8 presents a summary of the dissertation,

recapitulates the contributions made and provides future directions for research.
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Part I

Speech transmission using

rate-compatible trellis codes and

embedded source coding

Part I of the dissertation is organized as follows. Chapter 2 describes a

perceptually-based embedded subband coder and the G.727 embedded ADPCM

coding standard, and analyzes their bit error sensitivities against transmission

errors. Chapter 3 introduces rate-compatible punctured trellis codes (RCPT)

as a new tool for providing efficient rate-compatible unequal error protection

with large constellation sizes. A code design strategy for RCPT is given and

its performance in comparison with RCPC and RCPC-BICM codes is presented.

Chapter 4 presents the design of an AMR source-channel coding scheme for the

embedded subband and G.727 ADPCM coders of Chapter 2.
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CHAPTER 2

Embedded speech coding

This chapter presents two types of speech coders whose properties (variable bit

rate and embedibility) are useful for implementing embedded adaptive multi-rate

speech transmission systems. The first coder is a perceptually based subband

coder (Section 2.2) and the second coder is the ITU embedded ADPCM G.727

standard (Section 2.3). Both coders are analyzed to illustrate how AMR systems

(Chapter 4) can be based on a variety of source coding schemes. Characteristics

displayed by these two coders are introduced in Section 2.1.

2.1 Desired properties for speech coding

Variable bit rate coding: In variable bit rate (VBR) coding [41], different

speech segments are encoded at different bit rates. Variable rate coding can

be effective for storage, packet voice, multiple access channel applications and

transmission over time varying channels. The two typical approaches to VBR

coding are in the variable update rates and the variable bit allocations for the

parameters of different speech segments. In VBR coding, a tradeoff is made

between speech quality and the coding bit rate.
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Embedibility: Embedded source coding allows for partial reconstruction of the

source at higher distortion, given that only a portion of the bitstream is available

at the decoder. It is advantageous since the source rate can be modified simply by

truncating the bitstream. The distinction between VBR and embedded source

coding is that embedded schemes have the capability of bit dropping outside

the encoder and decoder blocks. This allows for bit reductions at any point in

the network without the need of coordination between the transmitter and the

receiver.

Perceptually-based coding: Source compression (image, speech or audio)

employs two intrinsic properties of the original signal. On one hand, the signal

contains some redundancies; on the other hand, not all the signal is relevant to

the human ear or eye. Reduction of the redundancy or mutual correlation is the

purpose of, for instance, any linear predictor or vector quantizer [63]. Reduction

of the information content of the signal by dropping the “irrelevant” part of the

signal can only be made with the use of some human auditory or visual perception

model (Section 1.2).

In perceptually-based speech and audio coding [64], the human auditory per-

ception model is used and the irrelevant signal information is identified during

signal analysis by incorporating several psychoacoustic principles, such as abso-

lute hearing thresholds, masking and critical band frequency analysis.

Dynamic bit allocation: The concept of dynamic bit allocation was intro-

duced by Ramstad in 1982, in the context of a subband coder [65]. The bit

allocation scheme presented was based on the energy of different subbands, and

the number of bits allocated to each subband was directly proportional to the

energy of the given subband.
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Dynamic bit allocation for a perceptual coder is a two-tiered process. First,

an algorithm estimating the relative importance of each band is used. The metric

used for the perceptual importance of each band is the signal-to-mask ratio (SMR)

presented in Section 1.2. Then, the bit allocator determines the bit allocation

according to the different SMR values and overall total target bit rate.

If the number of bits required by the SMR values is larger than the number

of bits that can be allocated given the target bit rate, some sub-optimal bit

allocation is needed. Two strategies are the reverse water-filling bit allocation and

proportional bit allocation [66]. However, reverse water-filling may not guarantee

a minimal bit allocation for the bands with the lowest, yet significant, SMRs. The

proportional bit allocation scheme is chosen as the one minimizing the effect of

a non-sufficient bit allocation due to the overall bit rate constraint.

Dynamic perceptual bit prioritization: The dynamic bit allocation scheme

can be easily modified to provide perceptual bit prioritization. For every speech

frame, the bit allocator assigns different numbers of bits for the representation

of different parameters or subbands in such a way that the perceptually more

important parameters or subbands are quantized with more bits. Assume now

that we start with no bit being allocated and that the bit allocator can only

allocate one bit. If the bit allocator works properly, the first bit allocated is

likely to be the perceptually most relevant one and therefore the most sensitive

to channel errors. If one maintains the same progressive allocation, the order

with which the bits are allocated is assumed to be a good ordering of bits in the

bitstream with decreasing bit error sensitivities.

This ordering is dynamic since it is not always the case that the same bits

representing the same parameters or subbands remain the most important. This
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Figure 2.1: Block diagram of the perceptually-based subband speech codec.

prioritization is obviously perceptually-based.

2.2 Perceptually-based embedded subband speech coder

2.2.1 Description of the coder

The embedded subband coder shown in Figure 2.1 is a modified version of the

coder presented by Tang et al. in [66, 67]. The speech is first divided into 20

ms frames. An Infinite Impulse Response (IIR) Quadrature Mirror Filterbank

(QMF) [68] divides each frame into 8 equal subbands that are then individually

encoded [69]. For each frame, dynamic bit allocation according to the perceptual

importance of each subband is performed. The MPEG psycho-acoustic model [17]

estimates the signal to mask ratio (SMR) required in each band to mask the

quantization noise. The dynamic bit allocation (which is the side-information of

the coder and is transmitted with the coded bits) translates the SMR prescribed

by the model into a bit assignment to scalar quantize the subband samples.
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Dynamic bit allocation based on the perceptual characteristics of the signal

has two advantages: it minimizes audible distortion by shaping the quantiza-

tion noise with respect to the speech spectrum, and it allows the same coder to

operate at different bit rates. In the case of the subband coder, dynamic bit al-

location is progressive and allocates bits of high perceptual importance first and

the ones with the least perceptual importance last. This provides a tool for bit

prioritization, necessary for UEP.

Figure 2.2 shows an example of progressive bit allocation for the case of a coder

operating at 32 kbps for a 4 kHz wide speech signal. Each frame is composed

of 160 samples, divided into 8 subbands with 20 samples per subband. Each

block shown in Figure 2.2 represents the allocation of one bit to all 20 samples

in a subband (1 block=1 kbps). The first 3 blocks (3 kbps) are dedicated to

the transmission of the bit allocation (3 bits/band), the frame gain (4 bits) and

the bands’ gains (4 bits/band), for a total of 60 bits per frame. The allocated

bitstream is prioritized using 20-bit segments, selecting the blocks in Figure 2.2

from top to bottom and from left to right. The allocation order of each block

is indicated by the number in its center. The coder, robust against acoustic

noise, offers embedded variable bit rate source coding with reasonable to excellent

speech quality in the range of 8–32 kbps.

2.2.2 Bit error sensitivity analysis

In Chapter 3, we will show how rate-compatible punctured trellis codes can be

used in order to provide UEP. For this purpose, we derive the maximum BER

tolerable for each bit in the bitstream below which the effect of channel errors is

inaudible.

The notion of determining the relative importance of bits for further UEP
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Figure 2.2: Example of bit allocation and bit prioritization for the subband

coder operating at 32 kbps. Each block represents the allocation of one bit to

each subband sample (1 kbps). The first three blocks (3 kbps) are reserved for

the transmission of the side information (bit allocation and the different gains).

The priority of each block is indicated by the number in its center. Note that the

coder operating at m kbps would consist of the first m allocated blocks.
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was pioneered by Rydbeck and Sundberg [70, 71]. One can define the bit error

sensitivity (BES) of a given bit in the bitstream as the relative increase in speech

distortion due to transmission errors at that particular bit position. Typically,

BES is computed by measuring the segmental SNR after setting bits in errors [70].

In the perceptually-based subband coding scheme, the signal-to-mask ratio

(SMR) of each subband is computed. The SMR indicates the perceptual impor-

tance of each band. We refine the BES analysis by computing the increase in

speech distortion due to setting bits in error at different BERs using a distortion

metric that takes into account the masking properties of auditory perception.

We define the perceptual spectral distortion (SDP ) measure between the original

spectrum A(f) and the reconstructed spectrum Â(f) as follows:

SDp(Â(f), A(f)) =

√√√√
N∑

i=1

SMR(i)

∫ f=fu
i

f=f l
i

10 log
|Â(f)|2
|A(f)|2 df, (2.1)

where N is the number of bands and f l
i , fu

i , and SMR(i) represent the lower

frequency, the upper frequency, and the weighting function, respectively, for the

ith subband. SMR(i) is defined as SMR(i) = max
f∈[f l

i ,f
u
i ]

SMR(f).

Figure 2.3 illustrates the BES for the coder operating at its maximum rate,

i.e. 32 kbps. The sensitivity of each block against channel errors is computed by

averaging the BES of the 20 bits in that block. Individual BES are estimated

by systematically setting for each frame the particular bit position in error with

a probability of error equal to the BER of interest and keeping all other bit po-

sitions error-free. Speech material used consists of 8 English sentences (4 male

and 4 female talkers) from the TIMIT [72] database. The dotted horizontal line

represents the maximum tolerable distortion due to channel errors. At this dis-

tortion level, informal listening tests indicated that speech distortion introduced

by channel impairment is practically transparent to the listener, in the sense that
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an increment in distortion due to channel transmission is indistinguishable from

the distortion introduced by the source coder.

Figure 2.3 shows that the sensitivity to transmission errors of the first three

blocks is very high even for BER=10−3, and may be beyond scale for larger BERs.

Those blocks correspond to the side information (bit allocation and band gains)

and forward error correcting codes should assure that they are sufficiently pro-

tected. A second observation is that at this rate, the last bits in the bitstream

are relatively insensitive to channel errors. Even with a BER as high as 10−1,

distortion is below the sensitivity threshold. These bits barely need protection

against channel impairment. Finally, observe that the almost monotically de-

creasing nature of Figure 2.3 justifies a posteriori the perceptual and dynamic

bit allocation algorithm.

2.3 Embedded ADPCM G.727 speech coder

The ITU G.727 embedded ADPCM standard coder [73] is one of the few speech

coding standards that provides both variable bit rate and embedibility. It is

constructive to consider AMR system design using the ADPCM coder to verify

the applicability of the scheme to an existing standard and a non-perceptually-

based speech coder.

2.3.1 Description of the coder

Embedded ADPCM algorithms are a family of variable bit rate coding algorithms

operating on a sample-by-sample basis that allow for bit dropping after encod-

ing. As with the subband coder, the decision levels of the lower rate quantizers

are subsets of those of the quantizers at higher rates. This allows for bit reduc-
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Figure 2.3: Bit error sensitivity analysis of the perceptually-based subband coder

operating at 32 kbps. Note that sensitivities tend to reach plateaus of 8 blocks,

which typically correspond to the allocation of one block to each subband. Eight

English sentences are used to generate these plots.
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tion at any point in the network without the need for coordination between the

transmitter and the receiver.

Simplified block diagrams of the G.727 embedded ADPCM encoder [74] and

decoder are shown in Figure 2.4. Embedded ADPCM algorithms produce code

words that contain enhancement and core bits. The feed-forward (FF) path of the

codec utilizes both enhancement bits and core bits, while the feed-back (FB) path

uses core bits only. With this structure, enhancement bits can be discarded or

dropped during network congestion. Embedded ADPCM algorithms are referred

to by (n,m) pairs where n refers to the FF (enhancement and core) bits and m

refers to the FB (core) bits. For example, the (5,2) coder operates at 40 kbps (5

bits/sample) while the (4,2), (3,2) and (2,2) pairs represent the 32 kbps, 24 kbps

and 16 kbps algorithms, respectively, embedded in the 40 kbps coder.

2.3.2 Bit error sensitivity analysis

ADPCM coders do not provide any SMR information. In this case, we use the

spectral distortion metric (SD) introduced in [75],

SD(Â(f), A(f)) =

√√√√ 1

W0

∫
|WB(f)|210 log

∣∣∣Â(f)
∣∣∣
2

|A(f)|2 df, (2.2)

where A(f) and Â(f) are the original and quantized speech spectra, W0 is a

normalization constant and WB is a hearing sensitivity weighting function defined

by

WB(f) =
1

25 + 75(1 + 1.4(f/1000)2)0.69
. (2.3)

Figure 2.5 illustrates the effect of transmission errors on the 5 different bit

positions in a 5 bits/sample ADPCM encoder (5,2). Also represented in Fig-

ure 2.5 is the level of distortion for which the incremental distortion introduced

42



PCM
Input

ADPCM
Output

Adaptive

Quantizer

FB Bit

Masking

Inverse
Adaptive
Quantizer

Adaptive

Predictor

(a) Encoder

PCM
Output

FF Inverse
Adaptive
Quantizer

FB Inverse

Adaptive

Quantizer

Adaptive

Predictor

Bit
Masking

ADPCM
Input

(b) Decoder

Figure 2.4: Simplified diagrams of the embedded ADPCM G.727: (a) encoder

and (b) decoder.

by channel impairment is inaudible. This result is obtained by informal listen-

ing tests. In the (5,2) ADPCM encoding pair, the two first bits (FB bits) are

fed-back into the adaptive predictor, resulting in error propagation. Therefore,

their sensitivity to channel inaccuracy is high. The three last bits (FF bits) are

less sensitive to transmission errors, and tolerate transmission error rates up to

around 10−2 (in contrast with the perceptual SBC coder at 32 kbps which could

tolerate BERs up to 10−1).
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2.4 Summary

This chapter presented two types of speech coders whose properties (variable bit

rate and embedibility) are useful for implementing embedded adaptive multi-rate

speech transmission systems.

The first coder is a perceptually-based subband coder which incorporates

knowledge of the human auditory system to produce a bandwidth efficient bit-

stream with a very wide range of perceptual sensitivities to channel errors.

The subband coder is compared to an existing standard (the ITU G.727 em-

bedded ADPCM standard) to analyze how unequal error protection can also be

applied to non-perceptually based embedded speech coders.

The bit error sensitivities of both coders are evaluated. This information is

used in the design of bandwidth efficient AMR schemes in order to apply adequate

channel protection to each part of the bitstream (unequal error protection) by

means of rate-compatible channel encoders, which will be presented in Chapter 3.

Reliability of the overall scheme will be guaranteed over a wide range of chan-

nel conditions by dynamically allocating bits between source and channel coding

depending on channel conditions, as will be seen in Chapter 4.
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CHAPTER 3

Rate-compatible punctured

trellis codes

In this chapter, we present a novel unequal error protection channel encod-

ing scheme by analyzing how puncturing of symbols in a trellis and the rate-

compatibility constraint (progressive puncturing pattern) can be used to derive

rate-compatible punctured trellis codes (RCPT). While conceptually similar to

RCPC codes, RCPT codes are specifically designed to operate efficiently on large

constellations (for which Euclidean and Hamming distances are no longer equiv-

alent) by maximizing the residual Euclidean distance after symbol puncturing.

Large constellation sizes, in turn, lead to higher throughput and spectral effi-

ciency on high SNR channels.

3.1 RCPC, RCPT and RCPC-BICM codes

Punctured convolutional codes were introduced in 1974 by Cain, Clark and

Geist [76], mainly as a lower complexity alternative to high rate convolutional

coding. Punctured convolutional codes reduce the complexity of the decoder for

high rate codes [77].

Hagenauer added the rate-compatibility restriction to derive the concept of
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Rate Compatible Punctured Convolutional (RCPC) codes as a special case of

punctured convolutional codes [47, 78, 79]. Rate compatibility arises when more

severe puncturing can only be obtained by puncturing bits that were not punc-

tured at the lower rate code. This means that all the bits of the high rate code

are used by the low rate code, or equivalently, once a bit is punctured for a given

puncturing, it must also be punctured for a more severe puncturing level. For

convolutional codes, it was shown that rate-compatible codes can be as good as

the best known conventional codes of the same constraint length [47].

In RCPC (Figure 3.1(a)), the effect of periodic puncturing is to remove peri-

odic subsequences of bits before signal mapping and transmission. As the number

of punctured bits increases, the information rate per bit of the convolutional en-

coder increases and its performance degrades.

In the proposed rate-compatible punctured trellis codes (RCPT) (Figure 3.1(b)),

symbol -wise periodic puncturing of trellis codes, introduced in [80, 81], provides

an alternative to bit puncturing. If progressive symbol puncturing is required,

rate-compatible punctured trellis codes are obtained. The effect of periodically

puncturing bits or symbols is to remove periodic subsequences of bits (before

signal mapping) or constellation points, respectively, before transmission. As the

number of punctured bits or symbols increases, the information rate per trans-

mitted symbol increases and the BER performance of the code degrades.

With rate-compatible punctured codes, all codes, except the one with the low-

est rate, are derived by puncturing bits from the convolutional encoder (RCPC) or

symbols from the trellis encoder (RCPT) with the lowest rate. Rate-compatibility

also provides embedibility in the bit or symbol stream. One of the main advan-

tages of rate-compatible codes is that they allow the use of the same decoding

structure for multiple code rates, since the decoding trellis remains unchanged
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Figure 3.1: Schematic representation of the different rate-compatible punctured

encoding schemes: (a) RCPC, (b) RCPT and (c) RCPC-BICM.

through puncturing. Only the branch metrics in the Viterbi decoder need to be

updated depending on the puncturing pattern.

We also introduce a third class of rate-compatible punctured codes, based

on a bit-interleaved version of RCPC codes, which can operate on large con-

stellation size even when using RCPC codes. The scheme combines Hamming

distance based convolutional codes with large constellation sizes by introducing

bit-interleaved coded modulation (BICM) between the convolutional encoder and

the signal mapper to guarantee that successive bits in the bitstream (and mapped

into symbols) are independent from one another. However, since the scope of this

chapter is to design rate-compatible channel coders providing unequal error pro-

tection, we modify BICM in such a way as to make the coder rate-compatible
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using progressive puncturing of bits after convolutional encoding. The resulting

coder is a rate compatible punctured bit-interleaved convolutional code, referred

to as RCPC-BICM, and illustrated in Figure 3.1(c). Operating on any types of

constellation, the rates of RCPC-BICM and RCPT codes can be compared.

In [82] and [47], Lee and Hagenauer present convolutional codes and rate-

compatible puncturing patterns leading to good RCPC codes. In the next section,

we discuss the design of a trellis code and the selection of progressive puncturing

patterns defining efficient RCPT codes. These codes will be compared to RCPC

and RCPC-BICM.

3.2 RCPT code design

With RCPT, a puncturing pattern that removes q symbols out of every p symbols

(p is the puncturing period) is a p−q puncturing pattern. The average per-symbol

information rate R associated with a p− q puncturing pattern applied to a rate

k/n code and a 2n constellation size is given by

R =
pk

p− q
, (3.1)

where 0 ≤ q < p.

In a sequence of progressive puncturing patterns, let ãq, a vector of p binary

elements, be a pattern with q punctured symbols. A “1” in ãq indicates that the

symbol is transmitted, and a “0” indicates that the symbol is not transmitted

(punctured). To provide rate-compatibility, once a symbol is punctured at a

given rate, it must also be punctured at any higher rate; i.e. ãq+1 can only be

formed by replacing one remaining “1” of ãq with a “0”. Note that in order to

avoid negative redundancy (R > n), one must satisfy q ≤ bp(1− k/n)c.

The trellis used in the soft Viterbi decoding of the received symbols has the
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same structure throughout all of the puncturing patterns. Puncturing any sym-

bol before transmission can be represented in the receiver by setting all branch

metrics associated with the corresponding non-received symbol to zero. The

same decoder can be used with all coding rates, and the rate can change during

decoding, as with RCPC.

RCPT codes are a particular case of the symbol-punctured trellis codes for pe-

riodic erasures introduced in [80, 81]. For RCPT codes, the puncturing vector ãq

must also satisfy the condition for rate-compatibility, i.e. progressive puncturing.

The periodic distance vector for trellis codes is first defined. Let the nor-

malized symbol-wise squared Euclidean distance between the ith symbols of two

trellis events be d2
i (x → x̂) = (x̂i − xi)

2/εx, where xi and x̂i are the correct

and incorrect constellation points associated with the ith symbols of a trellis er-

ror event, respectively, and εx is the average constellation energy. The periodic

puncturing of symbols scales the distances with the same index modulo p by the

binary scale factor ãi. Define the periodic squared distance d̃2
i for any given index

i and puncturing period p as the sum of the square of the distances scaled by the

same factor ai,

d̃2
i (x → x̂) =

∑∞
m=0

d2
i+mp. (3.2)

The p values of d̃2 = [d̃2
1 · · · d̃2

p] form the periodic distance vector.

The usual criterion for minimizing the BER for trellis codes under AWGN

is a large free Euclidean distance. The minimum Euclidean distance remaining

after puncturing q symbols out of every p symbols (p − q puncturing) using the

puncturing pattern ãq is referred to as the residual Euclidean distance REDq, and

is computed as an inner product:

REDq(ã(q)) = min
d̃2

〈
ã(q)2, d̃2

〉
. (3.3)
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For a specified ã, the pairwise error probability for the trellis error event x → x̂

is

P (x → x̂) = Q




√
εx〈ã2, d̃2〉

2N0


 , (3.4)

where Q(t) = 1√
2π

∫∞
t

e−u2/2du and d̃2 is the periodic distance vector for x → x̂.

Note that if two output sequences after puncturing are identical, the RED is

zero. Note also that when designing a trellis code for periodic symbol puncturing,

the necessary condition for rate-compatibility limits the number of puncturing

families {ã} to consider, where {ã} is the set of all puncturing families.

In practice, finding the best code and puncturing patterns to minimize the

BER under different puncturing patterns would require extensive simulations, or

at least a union bounding. However, asymptotic coding gains for trellis codes

are linear in the minimum Euclidean distance of the code expressed in dB. Thus,

RED is a good (but not exact) indicator of BER under puncturing.

RCPT code design is a multi-criterion problem since we have to minimize the

BER (maximize RED) at all rates (puncturing patterns) simultaneously. The best

performance for a particular puncturing level will often be obtained at the expense

of suboptimal performance for another puncturing level. We refer to a trellis code

as undominated if no trellis codes of the same complexity performs better on

every channel in the family. Typically, there will be several undominated trellis

codes. Such undominated solutions are called Pareto optimal. To select among

the Pareto optimal codes, we choose equal weighting of asymptotic coding gains

as a sensible way to resolve the multi-criterion problem. The design criterion is

thus the maximization of JdB, the logarithmic sum of all RED values of interest,

JdB =

bp(1− k
n

)c∑
q=0

10 log 10(REDq). (3.5)
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The limits of the summation represent the puncturing patterns of interest,

which range from no puncturing, q = 0, to puncturing all redundancy added

by the channel encoder, q = p (1 − k/n). We emphasize that other reasonable

approaches exist to choose a final code from the set of Pareto optimal codes. This

objective function gives equal weight to the asymptotic SNR requirements of each

puncturing pattern. We ran an exhaustive search with this objective function to

find the best candidate over all Pareto optimal codes and progressive puncturing

families.

The Viterbi decoding complexity of a trellis code depends both on the num-

ber of memory elements ν (number of states is S = 2ν), and on the traceback

depth LD of the decoding process. For standard trellis or convolutional codes, LD

is computed as the trellis depth at which all unmerged error events have more

Euclidean distance than the minimum Euclidean distance of the trellis code [83].

The traceback depth for a specific puncturing pattern dropping q symbols, writ-

ten (LD)q, is the trellis depth at which all unmerged incorrect paths exceed the

residual Euclidean distance REDq.

Catastrophic behavior occurs when an infinite number of bit errors result

from a finite Euclidean distance vector event, i.e. the encoder state diagram has

a loop that has zero output Hamming weight and nonzero input Hamming weight.

Even if the original encoder is not catastrophic, periodic puncturing of symbols

may lead to catastrophic behavior. A technique for determining catastrophic

behavior under periodic symbol erasures is presented in [81, 84]. Our search used

this technique to rule out combinations of codes and puncturing families that

were catastrophic at any rate of interest. Recently, a more efficient technique for

identifying catastrophic behavior was presented in [85].

Whether or not codes generally exist using our design procedure depends on
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RCPT

Generator Matrix = [32 11 27]

ν = 4, p = 8 symbols, rate = 1/3

q Rate Puncturing RED2
q

0 1.000 11111111 12.60

1 1.142 01111111 8.34

2 1.333 01110111 6.34

3 1.600 01010111 4.58

4 2.000 01010101 4.58

5 2.667 00010101 1.17

Table 3.1: Characteristics of the 8-PSK, 16-states (ν = 4), rate-1/3 and period-8

RCPT codes.

whether codes exist that can be maximally punctured without becoming catas-

trophic. We do not have proof of the existence of such codes, but we have

examined several scenarios and never found a case where such codes did not ex-

ist. As an example, a rate-1/3 RCPT code designed for an 8-PSK constellation

with puncturing period p = 8 symbols and with 4 memory elements (ν = 4 or 16

states) was found using the JdB criterion and is presented in Table 3.1. The gener-

ator matrices are given in octal notation (e.g. 43 stands for 1+D+D5). Euclidean

distances throughout these results assume a two-dimensional constellation with

a unit average energy. As expected, RED typically decreases as more symbols

are punctured, increasing the information rate.

Another example of RCPT code, designed for a 16-QAM constellation, is

shown in Table 3.2. It is a rate-1/4, 64-state and period-8 code. For the curve

with information rate of 1 bit per symbol, [80] shows that there is a penalty of

about 1 dB at BER=10−5 between the RCPT code and the best known code

with information rate of 1 bit per symbol (the feedforward rate-1/2 maximum

53



RCPT

Generator Matrix = [43 175 155 103]

ν = 6, p = 8 symbols, rate = 1/4

q Rate Puncturing RED2
q

0 1.000 11111111 12.4

1 1.142 01111111 8

2 1.333 01110111 7.6

3 1.600 01010111 4.8

4 2.000 01010101 4.4

5 2.667 00010101 1.2

Table 3.2: Characteristics of the 16-QAM, 64-states (ν = 6), rate-1/4 and pe-

riod-8 RCPT codes.

Hamming distance convolutional code [G=133 171] used with Gray-labelled 4-

PSK). However, [81] shows another example of a 64-state, period-5, rate-1/3

RCPT code used on an 8-PSK constellation [G= 171 46 133] where for the same

information rate of one bit per symbol, there is no penalty associated with the

rate compatibility constraint.

In general, punctured trellis codes are competitive with stand-alone codes

for information rates of 1 and 2 bits per symbol while providing greater rate

flexibility. For relatively high target BER, appropriate for speech transmission,

the punctured codes are also competitive at 3 information bits per symbol.

As observed in [80] and more carefully examined in [81], the determining

factor for the loss imposed on trellis code performance by a rate-compatibility

constraint is constellation size. Specifically, for a rate of K bits per symbol,

if the constellation is significantly larger than 2K+1 points, as with a 16-QAM

constellation for K = 1, the rate-compatible code will have some performance loss
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as compared to a single-rate code using a 2K+1-point constellation and a standard

set-partitioning code. Note that the larger constellation is required for the rate-

compatible code to support higher information rates. An 8-PSK constellation

represents a good tradeoff, giving a relatively wide range of rates with negligible

performance loss from a set-partitioning code at K = 1.

For any periodic puncturing vector and channel noise variance, periodic trans-

fer function bounds producing asymptotically tight bounds on BER can also be

computed [81]. However, we used simulation results to obtain the low-SNR BER

performance necessary for our system design.

3.3 Comparison of rate-compatible codes

Tables 3.3 through 3.5 compare 64-state RCPT, RCPC-BICM and RCPC codes

by providing the information rate per symbol R, the puncturing vector ãq, the

residual squared Euclidean distances RED2, the traceback depth (LD), and the

number of nearest neighbors (N) for different puncturing levels. The number of

nearest neighbors is computed as the sum of minimum Euclidean distance error

events starting at each phase normalized by the number of phases (i.e. the period

p). Table 3.3 presents a 64-state, rate-1/3, 8-PSK RCPT code with period p = 9,

describing performance and decoding complexity at each puncturing pattern in its

family. Note that RCPT codes are able to operate after all redundancy has been

removed (case g) with the same free Euclidean distance as uncoded transmission,

but it does not perform as well as uncoded 8-PSK modulation in simulation. This

means that if there are no channel errors, the decoder is capable of recovering

exactly the original bit sequence since the non-zero RED after extreme puncturing

is sufficient to distinguish different trellis events.
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RCPT

Rate = 1/3

8-PSK constellation

G = [165 142 127]

p = 9 symbols

ID Rate Puncturing RED2 LD N

Vector

a 1.00 111111111 16 24 1

b 1.12 111111110 11.2 25 0.22

c 1.29 111101110 9.17 26 0.44

d 1.50 110101110 6.93 31 0.33

e 1.80 110101100 4.34 31 0.66

f 2.25 100101100 1.76 27 0.22

g 3.00 100101000 0.59 36 1

8 3.00 Uncoded 0.59 0 2

8-PSK

Table 3.3: Characteristics of the 8-PSK, 64-states (ν = 6), rate-1/3 RCPT codes.
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RCPC-BICM

Rate = 1/3

8-PSK constellation

G = [155 127 117]

p = 3 × 9 bits

ID Rate Puncturing RED2 LD N

Matrix

A 1.00 111111111 8.79 21 3

111111111

111111111

B 1.12 111111111 7.03 22 0.22

111101111

111101101

C 1.29 111101101 5.86 21 0.33

111101101

111101101

D 1.50 101101101 5.86 28 11.1

101101101

101101101

E 1.80 101101001 4.10 34 2.33

101101001

101101001

F 2.25 101001001 2.34 45 0.22

001101001

101001001

– 3.00 Catastr.

8 3.00 Uncoded 0.59 0 2

8-PSK

Table 3.4: Characteristics of the 8-PSK, 64-states (ν = 6), rate-1/3 RCPC-BICM

codes.
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RCPC

Rate = 1/2

4-PSK constellation

G = [133 171]

p = 2 × 8 bits

ID Rate Puncturing RED2 LD N

Matrix

A 1.00 11111111 20 27 11

11111111

B 1.14 11111111 14 27 0.5

11101110

C 1.33 11111111 12 34 0.5

10101010

D 1.60 11111111 8 48 0.75

10001000

E 1.78 11110111 6 92 0.5

10001000

– 2.00 Catastr.

4 2.00 Uncoded 1 0 2

4-PSK

Table 3.5: Characteristics of the 4-PSK, 64-states (ν = 6), rate-1/2 RCPC codes.
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Figure 3.2: Bit error rate curves for the (a) RCPT, (b) RCPC-BICM and (c)

RCPC encoding schemes presented in Tables 3.3–3.5 over an AWGN channel.

Traceback depth used is 41.
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For comparison, Table 3.5 also summarizes the performance of two 64-state

RCPC codes [47]. Since RCPC codes are designed especially for Hamming dis-

tances, we use the 4-PSK constellation and consider rate-1/2 convolutional codes.

The RCPC system consistently provides a slightly better Euclidean distance at a

slightly higher information rate as compared to RCPT for its rate family. How-

ever, this Euclidean distance advantage appears negligible in simulations at the

BERs of interest, apparently because the RCPT code has a smaller number of

nearest neighbors. Furthermore, the Euclidean distance advantage of RCPC is

small compared to the disadvantage of the rate limitation at high SNR imposed by

the 4-PSK constellation as compared to the 8-PSK constellation used for RCPT.

We also consider bit-interleaved coded modulation (BICM) codes [86, 87] that

can use Hamming-distance-based convolutional codes with any constellation. In

order to use RCPC with an 8-PSK constellation, we modify BICM to make the

coder rate-compatible using progressive puncturing of bits after convolutional

encoding. The resulting coder is a rate compatible punctured bit-interleaved

convolutional coder, referred to as RCPC-BICM. Table 3.4 shows performance

of a 64-state RCPC-BICM with a rate-1/3 convolutional encoder, a puncturing

period of p = 3 × 9 bits and an 8-PSK constellation. The information rates

are the same as for those for the RCPT codes. RCPT generally provides a

better Euclidean distance than RCPC-BICM. The residual Euclidean distance

for RCPC-BICM is computed from the residual Hamming distance (RHD) of the

convolutional encoder after puncturing as follows:

RED2
q = RHDq · (2 sin(π/8))2. (3.6)

Raw BER versus SNR curves of the RCPT, RCPC-BICM and RCPC codes

with six memory elements for a standard AWGN channel are presented in Fig-

ure 3.2. However, in the design of AMR transmission systems, we are concerned
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Figure 3.3: For a required BER level of 10−3 and an AWGN channel, the figure

illustrates the achievable information rates (in source bits/transmitted symbols)

for RCPT, RCPC-BICM and RCPC as a function of the channel SNR. The

information rates and SNRs can also be found in Figure 3.2.
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with how much source coding information can be transmitted using the dif-

ferent coding schemes depending on the BER requirements and the channel

SNR. Figure 3.3 illustrates the different achievable information rates (source

bits/transmitted symbols) as a function of the AWGN channel SNR, assum-

ing that a BER of 10−3 is required. Note that the curves with rates equal to 2

and 3 are obtained using uncoded 4- and 8-PSK, respectively. Two observations

are made: 1) RCPT and RCPC-BICM operate at the same rates, but RCPT

outperforms since transitions to larger information rates occur at lower SNRs;

2) despite RCPC’s better free Euclidean distances, RCPT and RCPC behave

similarly at low SNRs. RCPT benefits at high SNR from its larger constellation

size and exhibits larger information rates. Although Figure 3.3 considers only

BER=10−3, similar behavior is observed at different BERs. In summary, RCPT

offers a wider efficient operating range than RCPC since it is specifically designed

for a larger constellation, permitting larger throughput. In addition, RCPT com-

bines coding and modulation, allowing for improved performance with respect to

RCPC-BICM.

3.4 RCPT codes for fading channels

Since Ungerboeck introduced trellis coded-modulation [39], it is generally ac-

cepted that modulation and coding should be combined for improved perfor-

mance. This fact is a basis for the design of RCPT codes. However, the authors

of [86] showed that with bit-interleaved coded modulation, the code diversity, and

hence the reliability of coded modulation over a Rayleigh fading channel, can be

further improved by achieving bit-wise interleaving at the encoder output (and

using an appropriate soft-decision bit metric as input to the Viterbi decoder),

as opposed to doing symbol-wise interleaving. This has the effect of making the
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code diversity equal to the smallest number of distinct bits rather than of distinct

channel symbols along any error event.

In summary, for Rayleigh fading channels, RCPC-BICM codes would be su-

perior since the residual diversity after puncturing would be equal to the RHD.

However, this assumes ideal interleaving, which in turn requires interleaver depths

of at least the coherence time of the channel. This might not be tolerable for

speech coding applications where the overall transmission delay must be kept at

a minimum.

The design of good RCPT codes for fading channels with no interleaver can be

based on periodic versions of the fading channel design metrics of Effective Code

Length (ECL) and Code Product Distance (CPD) [88], respectively called the

Periodic Effective Code Length (PECL) and the Code Periodic Product Distance

(CPPD) defined in terms of the periodic distance vector. These metrics first

appeared in [89]. The PECL is essentially a measure of the diversity provided by

the code. The CPPD measures how evenly Euclidean distances are distributed to

the branches of the code [90]. The marginal pairwise sequence error probability

(probability of error event) in a trellis with soft decision is bounded for high SNR

by the Chernoff bound

P (b → b̂) ≤ (
γ2εx

4σ2
n

)
−PECL

· 1

CPPD
(3.7)

where εx = E[x2] is the average power of the transmitted symbol, γ2 is the time-

average power of the received signal before envelope detection and σ2
n is the noise

variance. This probability decreases exponentially with PECL and is inversely

proportional to CPPD. The reader shall refer to [90] for the computation of PECL

and CPPD. As for AWGN, we again have a multi-criterion optimization problem

and we refer to Section 3.2 for techniques solving the multi-criterion problem.

Tables 3.6 and 3.7 present the performance of RCPT and RCPC codes with

63



RCPT

Generator Matrix = [32 11 27]

ν = 4, p = 8 symbols, rate = 1/3

q Rate Puncturing RED2 LD N PECL CPPD

0 1.000 11111111 12.58 21 1.000 5 37.40

1 1.142 01111111 8.34 23 0.125 4 0.94

2 1.333 01110111 6.34 23 0.250 3 0.47

3 1.600 01010111 4.58 22 0.125 2 2.32

4 2.000 01010101 4.58 24 1.500 2 2.32

5 2.667 00010101 1.17 24 1.750 1 0.33

Table 3.6: Characteristics of the 8-PSK, 16-states (ν = 4), rate-1/3 RCPT codes

for Rayleigh fading channels.

RCPC

Generator Matrix = [23 35]

ν = 4, p = 2× 8 bits, rate = 1/2

q Rate Puncturing RED2 LD N PECL CPPD

0 1.000 11111111 14 2.000 15 5 128

11111111

2 1.125 11111111 10 0.250 15 4 32

11101110

4 1.286 11111111 8 0.500 17 4 16

10101010

6 1.500 11111111 6 2.000 39 3 8

10001000

7 1.800 11110111 4 0.125 48 2 4

10001000

Table 3.7: Characteristics of the 4-QAM, 16-states (ν = 4), rate-1/2 RCPC codes

for Rayleigh fading channels.
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Figure 3.4: Bit error rate curves for the RCPC and RCPT encoding schemes

with 4 memory elements (Tables 3.6 and 3.7) under independent Rayleigh fading

channels. Traceback depth used is 128.
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4-memory (16 states) at comparable information rates. Figure 3.4 shows the

performance of these codes under Rayleigh fading channels with different channel

SNRs.

3.5 Traceback depth and frame size

It is interesting to study the effect of frame size on the transition between RCPT

code rates within a frame. Figure 3.5(a) illustrates the three levels of protection

offered by the c, d, and e curves of the RCPT code of Table 3.1 operating on an

AWGN channel at 7 dB and their corresponding information rates per symbol R.

Figure 3.5(b) illustrates the three levels of protection offered by the C, D, and E

curves of the RCPC code of Table 3.7 operating on an AWGN channel at 6 dB

and their corresponding information rates per symbol R. Each code rate is used

for 96 bits, which corresponds to twice the longest traceback depth.

Note that the effect of the traceback depth in the trellis is visible at transition

zones. When transitioning from a p− q puncturing to a p− (q + 1) puncturing,

branch metrics degrade and performance starts degrading (LD)q bits before the

transition (i.e. as soon as the Viterbi decoder must trace back through symbols

with increased puncturing). State metrics (or path metrics) explain the behavior

of the BER versus bit position curve after switching. The superior quality of the

state metrics at the end of the p− q puncturing pattern enhances performance at

the beginning of the p− (q + 1) puncturing pattern, and it takes approximately

another (LD)q+1 symbols for the quality of these path metrics to fully degrade to

the steady quality of the p− (q + 1) pattern. The transition zone length is then

approximately (LD)q+(LD)q+1 symbols.

In Table 3.3, we see that RCPT codes have smaller traceback depths than
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RCPC and RCPC-BICM for the most severe puncturings. This means that RCPT

codes can usually operate with smaller frame sizes and buffering delays.

3.6 Summary

We presented in this chapter three different types of rate-compatible channel

coding techniques (RCPC, RCPT and RCPC-BICM) allowing for unequal error

protection, which can be used in conjunction with embedded speech coders to

provide bandwidth efficient rate-compatible source-channel coding.

We have introduced the novel concept of rate-compatible punctured trellis

(RCPT) codes whereby unequal error protection is provided by puncturing sym-

bols in the symbolstream. Rate-compatibility was obtained by performing pro-

gressive puncturing of symbols.

We showed that in general, punctured trellis codes remain competitive with

stand-alone codes for information rates of 1 and 2 bits per symbol while providing

greater rate flexibility.

RCPT codes were designed in order to maximize the Euclidean distance be-

tween trellis error events at each puncturing level, whereas RCPC codes maximize

Hamming distance at each puncturing level. This allows for the RCPT codes to

operate (without bit interleaving) on larger constellation sizes. At high channel

SNRs, the larger information throughput offered by the increased constellation

sizes can provide higher speech quality.

Compared to RCPC codes with bit-interleaved coded modulation (RCPC-

BICM) which also operate on large constellations, it was shown that RCPT codes,

which combine modulation and coding, have a better performance.
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CHAPTER 4

AMR system design and

performance

This chapter presents the design procedure for embedded adaptive multi-rate

speech communication systems combining variable bit rate embedded source cod-

ing and rate-compatible channel coding. Sections 4.1 and 4.2 present the AMR

scheme for the perceptually-based embedded source coder of Section 2.2 and the

embedded ADPCM coder of Section 2.3, respectively.

4.1 AMR system design for the subband speech coder

We design a source-channel coding system that leads to high speech quality over

a wide range of channel conditions in three steps. First, for each part of the

bitstream and for every SNR, rates of protection needed to obtain BERs that

have corresponding inaudible distortions are determined. Second, we determine

the maximum source coding bit rate that can satisfy these BER conditions given

the average redundancy inferred by the rates of protection required. Finally,

the puncturing architecture of the coded bitstream is derived so that the final

source-channel coded bitstream equals 20 kbps for a 4-PSK RCPC scheme or

30 kbps for both 8-PSK RCPT and RCPC-BICM schemes (i.e. 10 kbaud/s for
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Rate bits/ RCPT RCPC- RCPC

[kbps] frame BICM

10 200 a200 A200 A200

12 240 a60b40c140 A60B40C 140 A60B40C140

14 280 b60c804140 B60C 804140 B60C80D140

16 320 b20c60d1404100 B20C 60D1404100 C80D140E40460

18 360 c60d1204120860 C 60D1204120860 D80E1604120

20 400 d80e3408200 D80E 3408200 4400

22 440 e3208120 E 3208120

24 480 e200f1608120 E 200F 1608120

26 520 e120f1608240 E 120F 1608240

28 560 f3208240 F 3208240

30 600 8600 8600

Table 4.1: Unequal error protection puncturing architecture for RCPT,

RCPC-BICM, and RCPC codes of Tables 3.3–3.5 applied to the subband coder.

The notation xn indicates that n bits are protected using the x curve.

the three schemes). Table 4.1 summarizes the puncturing architecture for the

channel encoders and for different source coding bit rates, assuming we use the

subband coder of Chapter 2 and the RCPT, RCPC-BICM and RCPC codes given

in Tables 3.3–3.5. In addition to the various puncturing patterns, we make use

of both uncoded 4-PSK and 8-PSK curves. In Table 4.1, the notation am, bn,

cp, indicates that the first m bits in the prioritized bitstream are protected using

the puncturing pattern a, the following n bits with the puncturing pattern b,

and the last p bits with the puncturing pattern c. Note also that the number of

bits protected with any given level of protection is generally at least twice the

traceback depth of the level of protection considered.

Figure 4.1 shows the quality of the different source-coder/RCPT-channel-
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Figure 4.1: Perceptual spectral distortion (SDP) for the subband coder with

RCPT at different bit rates over an AWGN channel. Speech material used is 8

English sentences (4 males and 4 females) from the TIMIT database.

coder pairs simulated with LD = 32 on independent AWGN channels (for clarity,

only a few of the source coding bit rates are shown). As expected, no single

source coding rate systematically outperforms the others. At low SNR, the 10

kbps source coder with maximum channel protection performs best, while at

high SNR, the coders with large source coding bit rates provide the least speech

distortion.

For good performance over a wide range of channel conditions, we select for
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every SNR the source-channel system that provides the best speech quality. The

overall distortion-SNR curve is simply the minimum of all the curves at each

SNR. This is an operational rate-distortion [91] curve for this system [92, 93].

Figure 4.2 compares the minimum perceptual distortions obtained for every

SNR using the subband coder with RCPC, RCPT and RCPC-BICM codes over an

AWGN channel. For each channel SNR and for each channel coding scheme, the

smallest spectral distortions obtained by running the system for all the possible

source and channel rates are selected. Perceptual speech distortion decreases

with increasing SNR and is kept limited even at very low SNR; this would not

be true for a scheme with fixed source bit rate and no rate-compatible channel

encoder. Furthermore, each rate-distortion curve in Figure 4.2 is lower than

if equal error protection were used. Both results illustrate how AMR speech

transmission systems are able to provide good speech quality over a wide range

of channel conditions.

Note that RCPT and RCPC provide comparable speech quality at interme-

diate SNRs. However, RCPT produces slightly less distortion at high SNRs,

due to its higher per-symbol information rate. Indeed, with a 4-PSK constel-

lation, RCPC only allows up to 20 kbps joint source-channel bit rates, while

the 8-PSK constellation of RCPT and RCPC-BICM permits 30 kbps overall bit

rates. This effect is noticeable only at high SNRs, where the mutual informa-

tion of an 8-PSK constellation exceeds the maximum mutual information of a 4

PSK constellation. At intermediate SNRs the per-symbol information rates ob-

tained from both coders are similar. Note also that at low SNRs, RCPT results

in less distortion when compared to RCPC-BICM. In summary, RCPT allows

for both larger bit rates at high SNRs by using large constellations, and good

code performance at low SNRs by combining coding and modulation. It should
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Figure 4.2: Comparison of the operational rate-distortion curves for the complete

AMR systems using RCPC, RCPT and RCPC-BICM over an AWGN channel.

Speech material used is 8 English sentences (4 males and 4 females) from the

TIMIT database.

also be stated that the source-channel coding rate combination that minimizes

speech distortion for any channel SNR is exactly the one that was specifically

designed for that SNR. This justifies a posteriori our AMR system design proce-

dure whose criterion, in the tradeoff between source and channel distortions, was

to keep channel distortions just below the audibility threshold.

AMR communication systems work under the assumption that slow channel

tracking permits switching to the best AMR operating mode for each channel

condition. When channel quality is underestimated, speech quality can be im-
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Figure 4.3: Effect of channel mismatch on the subband source coder-RCPT chan-

nel coder AMR system performance.

proved by switching to a source coding rate appropriate to the true channel

characteristics. When channel quality is overestimated, channel coding protec-

tion is not sufficient to protect the bitstream against channel errors, resulting in

degraded speech quality. Figure 4.3 shows the effect of channel mismatch on the

AMR system performance. It can be seen that overestimating channel quality

leads to an erroneous bitstream whose corresponding speech distortion is higher

than when using an underperforming source coder as a result of channel quality

underestimation.

Note that the means by which the switch between rates is conveyed from

the transmitter to the receiver and the related issues such as signaling, channel
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estimation error, feedback delay, and channel coherence time are important but

are considered beyond the scope of this dissertation.

4.2 AMR system design for the G.727 ADPCM coder

In the previous sections, we showed how an embedded and perceptual coder

can be coupled with rate-compatible channel coders in order to build a channel-

adaptive speech transmission system with UEP. This section shows that rate-

compatible channel coding techniques providing UEP are not specific to percep-

tual coders and can also be applied to other embedded source coding schemes

such as the ITU standard G.727 codec [74].

In order to define the puncturing architecture that provides different levels

of protection for bits in the bitstream, we follow the same three steps used for

designing an AMR system for the subband coder.

However, a major difference between the two coders is that for the subband

coder, bits are grouped in frames, while the G.727 coder operates on a sample

by sample basis. As we have seen in Figure 3.3, the traceback depth requirement

of the Viterbi decoder requires that we apply the same level of protection to at

least twice as many bits as the maximum traceback depth of the code. Therefore,

we cannot change the protection requirement on a sample by sample basis. For

an (n,m) embedded ADPCM encoder, one needs to frame at least 2 · max(LD)

samples together and group them into maximum n groups requiring different

sensitivities. The disadvantage of this procedure is the introduction of a buffering

delay in the communication link proportional to the traceback depth of the code.

For instance, using the RCPT code presented in Table 3.3 and taking 2·max(LD)

as the minimum group size, 72 samples must form a frame, which corresponds
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ADPCM Bits/ Rate RCPT RCPC- RCPC

pair Sample [kbps] BICM

(2,2) 2 16 a1 b1 A1 B1 A1 B1

(3,2) 3 24 c1d1e1 C 1D1E 1 C1E2

(4,2) 4 32 d1e1 f181 D1E 1 F 181 84

(5,2) 5 40 e1 f183 E 1 F 183

Table 4.2: Unequal error protection puncturing for RCPT, RCPC-BICM and

RCPC codes of Tables 3.3–3.5 applied on the embedded ADPCM G.727 coder.

The notation xn indicates that n bits are protected using the x curve.

to a minimum buffering delay of 9 ms. If the RCPC code of Table 3.5 had been

used, at least 184 samples should be grouped, which corresponds to a buffering

delay of 23 ms. Note that the buffering delay increases with the mother code

complexity and that RCPT codes provide smaller traceback depth requirements

than RCPC.

With G.727, the source bit rate varies from 16 kbps to 40 kbps in steps of

8 kbps. For the combined source-channel coding scheme, we limit the source-

channel bit rate to 45 kbps, i.e. the baudrate is 15 ksymbols/s with an 8-PSK

constellation, for RCPT and RCPC-BICM. For RCPC and its 4-PSK constella-

tion, in order to keep approximately the same baudrate, one limits the overall bit

rate to 32 kbps.

Table 4.2 illustrates the puncturing architecture for the (n,2) ADPCM en-

coders with 2 ≤ n ≤ 5. The subscripts represent the number of bits per sample

protected with the corresponding puncturing level. This number has to be mul-

tiplied by the frame size in samples/frame in order to compute the number of

successive bits being similarly protected.

Simulations combining RCPT, RCPC-BICM and RCPC codes with embed-
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Figure 4.4: Operating distortion curves using RCPC, RCPT and RCPC-BICM

with the embedded ADPCM coder.

ded ADPCM at different source coding rates and AWGN channel SNR are per-

formed. Again, according to channel conditions, one can select the mode with

the least distortion. The operational distortion-SNR curves of the AMR-UEP

systems operating on an AWGN channel are shown in Figure 4.4. The opera-

tional distortion-SNR curves are monotically decreasing and operate on a wide

range of channel conditions. Higher transmission rates allow RCPT and RCPC-

BICM to outperform RCPC at high SNRs. At low SNRs, RCPT outperforms

RCPC-BICM due to its superior residual Euclidean distance profile.
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4.3 Summary

In this chapter, we presented a solution for designing bandwidth efficient adap-

tive multi-rate speech transmission systems using embedded speech coders and

unequal error protection provided by rate-compatible channel coders.

Two AMR systems were designed: one based on the perceptually-based sub-

band coder and the other based on the embedded ADPCM G.727 speech coding

standard. In both cases, the AMR system displayed graceful degradation with

decreasing channel SNR over a wide range of channel conditions. The mismatch

between channel estimation and the true channel condition has also been studied

for the case of the subband coder.

This chapter concludes our analysis on the design of source and channel coding

techniques for speech transmission applications. In the next part, we analyze

source and channel coding solutions for remote speech recognition applications.
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Part II

Source and channel coding for

low-bit rate remote speech

recognition over error prone

channels

This part of the dissertation is organized as follows. Chapter 5 presents effi-

cient quantization techniques for PLP and MFCC features. Chapter 6 analyzes

the effect of channel errors and erasures on speech recognition accuracy, and pro-

vides a description of channel encoders one can use to efficiently protect speech

features against transmission errors. Chapter 6 also presents different channel

decoding techniques that maximize recognition accuracy. Chapter 7 presents

frame-erasure concealment techniques and frame reliability techniques combined

with weighted Viterbi recognition (WVR). Chapter 7 also evaluates the perfor-

mance of the PLP and MFCC based overall remote speech recognition system,

including source coding, channel coding, and frame erasure concealment.
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CHAPTER 5

Source coding for remote speech

recognition

There are three possible approaches to source coding for remote speech recogni-

tion applications, as illustrated in Figure 5.1. The first approach (Figure 5.1(a))

bases recognition on the decoded speech signal. This method suffers from sig-

nificant recognition degradation at low bit rates [94, 95, 96]. A second ap-

proach (Figure 5.1(b)) builds a recognition engine based on coding parame-

ters of commonly used speech codecs, without re-synthesizing the speech sig-

nal [97, 98, 99, 100, 101, 102]. The third approach (Figure 5.1(c)) performs

recognition on quantized ASR features [103, 104, 105, 106, 107].

Depending on the approach taken, the information transmitted to the server

is either the speech coding bitstream or a sequence of spectral observations. In

the former case, the client compresses speech, the server decodes it and performs

feature extraction before running the recognition engine (Figure 5.1(a)). Alterna-

tively, the recognition engine may utilize directly as input the compressed speech

coding features (or a transformation thereof), bypassing the speech synthesis

stage (Figure 5.1(b)). In the latter case, the front-end processing for feature ex-

traction, which is not expensive computationally, is done at the client and the

server decompresses the features for recognition (Figure 5.1(c)).
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Figure 5.1: Block diagram of the different approaches for remote speech recog-

nition: a) ASR features extracted from decoded speech, b) transformation of

speech coding parameters to ASR features, c) ASR feature quantization.

5.1 Recognition based on decoded speech signals

In this section, we report on recognition results based on two low bit rate speech

coding standards, the Federal Standard FS-1016 Code Excited Linear Predic-

tion (CELP) coder [108] operating at 4.8 kbps and the Department of Defense

Mixed Excitation Linear Prediction (MELP) standard [109] operating at 2.4 kbps.

Recognition accuracies obtained with these two low bit rate speech coders are

compared with those of two GSM speech coding standards without channel er-

rors.

Hidden Markov Model (HMM) based isolated digit recognition experiments

(with HTK 2.1 [3]) using the TI-46 speaker independent database are performed.

Since the speech database contains signals sampled at 16 kHz and the speech

coders studied are narrowband, speech files are first downsampled by a factor of

two. Linear prediction cepstral coefficients (LPCCs), with their first and second

order time-derivatives, are extracted from the decoded speech signal. Training is

always performed on the original speech signal.
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RATE CODER BER

[kbps] 0% 2% 5% 10%

4.8 CELP 93.88 89.38 79.06 64.19

2.4 MELP 98.15 96.13 89.14 70.82

Table 5.1: Isolated digit recognition accuracy based on LPCCs extracted from

MELP and CELP decoded speech signals at different BERs using the TI-46

database.

Table 5.1 summarizes speech recognition results for the MELP and CELP

coders operating over binary symmetric channels (BSC) characterized by different

bit error rates (BER).

Note that the MELP coder, while operating at a lower bit rate than the CELP

coder, performs significantly better. We have analyzed this question further

and concluded that the main problem of CELP coding for speech recognition is

the mismatch between the CELP coded test set and the uncoded training set.

CELP coding introduces distortions in the speech signal whose effect is that ASR

features extracted from CELP coded speech signals are no longer well represented

by HMM models trained on uncoded speech. This was verified by performing

both training and testing on CELP coded speech, and observing that recognition

improved from 93.88% to 97.45%. For the MELP and GSM coders, on the other

hand, little was gained by performing both training and testing on coded speech,

avoiding the mismatch problem.

Several features of the MELP coder may also explain the performance dif-

ferences. First, while the MELP coder is also based on the traditional LPC

parametric model, it includes five additional features [109, 75]: mixed excitation,

aperiodic pulses, adaptive spectral enhancement, pulse dispersion and Fourier

magnitude modeling. For the purpose of speech recognition, we believe that
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CODER MELP CELP GSM-HR GSM-EFR

RATE (kbps) 2.4 4.8 5.6 12.2

Recognition 98.15 93.88 98.51 98.78

Table 5.2: Illustration of speech recognition accuracy using different speech cod-

ing standards, using the TI-46 database.

three of these features help improve recognition accuracy: 1) the mixed excita-

tion, implemented using a multi-band mixing model, which simulates frequency

dependent voicing strength; 2) adaptive spectral enhancement filter, based on

the poles of the LPC filter, which enhances the formant structure of the syn-

thetic speech; and 3) Fourier magnitude modeling, obtained by picking peaks

in the Fourier transform of the residual signal, which improves accuracy of the

speech production model at lower frequencies. Second, MELP coders update the

synthesis parameters every pitch period using parameter interpolation. Third,

for unvoiced speech frames, MELP includes a frame erasure detection mecha-

nism and 13 bits of additional channel protection, which may explain its relative

robustness to channel errors.

For a better comprehension of the merits of CELP and MELP coding for

remote recognition, their recognition performance is compared to that of widely

used speech coding standards in wireless applications. In particular, the same

recognition experiments are carried out using the Enhanced Full-Rate (EFR) and

Half-Rate (HR) GSM codecs operating at 12.2 kbps and 5.6 kbps, respectively.

Table 5.2 illustrates the merits of the different coders with respect to their

bit rates in error-free transmission. Note the particularly attractive behavior of

the MELP coder, whose performance approaches that of GSM at a significantly

lower bit rate.
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These levels of recognition accuracy for the specific task and database confirm

those presented in [94, 95, 96] on the effect of speech coding and reconstruction

on speech recognition accuracy. In particular, [94] confirms the poor performance

of LPCCs and MFCCs extracted from CELP decoded speech signals.

5.2 Recognition based on speech coding parameters

A main advantage of performing speech coding bitstream-based feature extraction

is the ability to use a speech coding standard at the client, which eliminates

the need for defining an ASR quantization standard solely for remote speech

recognition applications. For instance, [100] uses the IS-641 coding standard as

a basis for performing speech coding bitstream-based ASR feature extraction.

We have seen that MELP coding results in good recognition accuracy with

bit rates that are significantly less than the GSM speech coding standards. A

remaining question is to see whether 1) better results could be obtained without

re-synthesizing speech by performing ASR based on speech coding parameters (or

a transformation thereof), and hence whether 2) one could further reduce the bit

rates for remote recognition without significant loss in accuracy by transmitting

only a portion of the MELP bitstream.

MELP, like many of the standard low bit rate speech coders, uses a 10th order

auto-correlation based linear predictive coding (LPC). LPCCs can be extracted

from the transmitted LPC coefficients, allowing the recognition engine to utilize

speech coding parameters directly.

Typically, for low bit rate LP coders, about half the bitstream is dedicated

to encoding parameters representing the spectrum-shaping vocal tract impulse

response, while the rest is used to characterize the excitation signal. Since removal
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Figure 5.2: Block diagram of possible MELP-based recognition experiments.

of excitation information is usually desirable in speech recognition, only about

half the bitstream is useful for recognition. Also, in speech coding, naturalness

and intelligibility require precision in the rendering of the speech spectrum after

quantization. On the other hand, speech recognition characteristics suggest that

coarser spectrum representations should still provide good recognition results.

This implies that lower bit rates may be sufficient to provide reliable recognition.

As explained in Section 1.3, a resourceful method for quantizing LPC param-

eters involves the use of line spectrum frequencies (LSFs) to represent the LPC

spectrum. LSFs improve coding efficiency, are real, vary smoothly and guarantee

stable minimum-phase filters, even after quantization. LSFs can also be linearly

interpolated, allowing them to be updated faster than they are quantized.

The following experiment, illustrated in Figure 5.2, evaluates the merits of

remote recognition based on speech coding by comparing recognition perfor-

mance obtained using five different scenarios: 1) LPCCs iteratively computed

from unquantized LSFs (LSF-LPCC), 2) LPCCs computed from MELP quan-

tized LSFs (QLSF-LPCC), 3) LPCCs iteratively computed from MELP quantized

and MELP processed LSFs using pitch and gain information (MLSF-LPCC), 4)

LPCCs extracted from reconstructed speech (LPCC), and 5) MFCCs extracted

from reconstructed speech (MFCC).
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Implementation details of the experiments are as follows. In the first two

scenarios (LSF-LPCC and QLSF-LPCC), LSFs are linearly interpolated by a

fixed factor of two, from every 22.5 ms to every 11.25 ms. In the third scenario

(MLSF-LPCC), LSFs are linearly interpolated every pitch period (6-15 ms) and

the interpolation factor is a function of the neighboring frame gains. In the last

two scenarios (LPCC and MFCC), LSFs are extracted every 10 ms, as in most

speech recognition systems. Training is always performed on the original speech

signal.

While the main purpose of this experiment is to analyze recognition based

on the speech coding bitstream, the last two scenarios are included in order to

analyze the potential degradation in recognition accuracy implied by the absence

of speech synthesis at the decoder. The first scenario is introduced to analyze

the effect of LSF quantization on recognition.

In MELP coding, LSFs are quantized using a multi-stage vector quantizer

(MSVQ) [110]. The MSVQ codebook contains four stages of 7, 6, 6 and 6 bits,

respectively. The search procedure is an M-best approximation to a full search,

in which the M=8 best codevectors from each stage search are used by the next

stage search. The two experiments based on quantized LSFs (QLSF-LPCC and

MLSF-LPCC) are carried out with different precision in LSF quantization (from

one to four MSVQ stages) and hence in bit rates.

Table 5.3 shows recognition results for each of the five possible scenarios over

BSC channels with different cross-over probabilities. For the ASR features based

on quantized LSFs (QLSF and MLSF), performances are subdivided depending

on how many stages (MSVQi, 1 ≤ i ≤ 4) of the MSVQ search are included in

the quantization.

The results indicate that 1) MLSF does not perform as well as QLSF, mainly
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Feature Bitrate Quant. BER=0% BER=2% BER=5% BER=10%

LPCC 2.40 kb/s MELP 98.15 96.13 89.14 70.82

MFCC 2.40 kb/s MELP 98.63 97.71 90.18 71.11

MLSF 0.31 kb/s MSVQ1 43.67 44.94 43.67 39.87

0.58 kb/s MSVQ2 88.61 82.28 67.72 50.00

0.84 kb/s MSVQ3 94.30 89.24 79.11 61.39

1.11 kb/s MSVQ4 94.94 91.14 81.65 66.46

QLSF 0.31 kb/s MSVQ1 72.78 70.25 65.19 44.30

0.58 kb/s MSVQ2 94.30 93.31 85.44 72.15

0.84 kb/s MSVQ3 97.47 93.67 91.77 72.78

1.11 kb/s MSVQ4 97.91 94.94 91.14 75.95

LSF — — 98.10 — — —

Table 5.3: Recognition performance using different MELP coding based ASR

features.

because the timing of the observation sequence has been modified by the MELP

decoder and no longer matches the training set which uses uniform 10 ms frame

shifts; 2) LSFs quantized with 4 stages perform almost as well as unquantized

LSFs (at least with no channel errors); 3) QLSF performance is similar to that of

LPCC or MFCC, with a great reduction in bit rates and complexity for the server

(no reconstruction of speech); and 4) unquantized LSF performance approaches

but does not match that of MFCCs extracted from the decoded speech signal,

which suggests that there is room for accuracy improvement, and perhaps also

bit rate reduction, by quantizing ASR features directly.

Note that our analysis only used the short-term prediction approximation

of the vocal tract spectrum for the purpose of recognition. However, some re-

search results have shown improved performance by using voiced/unvoiced in-

formation [111]. This feature is used in [100], in which the adaptive and fixed
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codebook gains are used as a representation of the voiced/unvoiced information

for improved recognition performance.

5.3 Quantization of ASR features: PLP

Linear prediction based cepstral coefficients can be extracted from a standard

linear prediction model or from a perceptual linear prediction model [30] (PLP)

which models human auditory perception. One advantage of PLP is that its

spectra can be represented using a low order all-pole model. This yields a low

dimensional representation [112], which is advantageous for quantization. Typi-

cally, p=5–6 is sufficient to represent two formants and a spectral tilt.

In this section, we study the quantization of one particular type of ASR

feature, the PLP cepstral coefficients (P-LPCCs). Quantization of LPCCs is not

studied here since it can be based on the transmission of the LP coefficients αi

(or a similar representation of it such as LAR, RC or LSF), which has already

been extensively studied in the literature [7, 113, 114, 115, 116, 117, 118, 119].

Quantization of MFCC features is covered in Section 5.4.

5.3.1 Quantizing P-LSFs or P-LPCCs

The transfer function of the PLP filter can be written as A(z) = 1−∑p
k=1 αkz

−k.

From the αi prediction coefficients, one can compute the PLP cepstral coefficients

(P-LPCC) (cn) using the following recursive formula,

cn = αn +
n−1∑

k=1

k

n
ck αn−k, (5.1)

or alternatively the perceptual line spectral frequencies P-LSFs (ωn),

ωn = roots [A(z) ± z−(p+1) A(z−1)]. (5.2)
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Coefficient 1 2 3 4 5 6

P-LSF 0.87 0.88 0.88 0.91 0.92 0.90

P-LPCC 0.88 0.93 0.91 0.91 0.86 0.86

Table 5.4: Average (across all digits) inter-frame correlations between the six

P-LSFs and P-LPCCs extracted from PLP6 of adjacent frames, using 25 ms

Hamming windows shifted every 20 ms for 5 minutes of speech.

For visualization of both sets of data, Figure 5.3 illustrates the spectrogram, the

PLP cepstral coefficients and the PLP line spectral frequencies for the digit string

“9 6 0” pronounced by a male speaker.

While speech recognition is performed using the P-LPCCs, we analyze next

whether quantizing the P-LSFs might lead to better compression ratios, knowing

that P-LPCCs can also be re-computed from the P-LSFs. On one hand, quantiz-

ing P-LPCCs guarantees minimizing the Euclidean distance between quantized

and unquantized P-LPCCs, assuring a close match between coded and uncoded

feature vectors. On the other hand, P-LSFs typically improve coding efficiency,

and can be linearly interpolated between transmitted P-LSF values, allowing the

P-LSFs to be updated more often than they are quantized.

In order to determine which information should be transmitted, we analyze

three properties for both P-LPCCs and P-LSFs.

Inter-frame correlation

Time correlation can be exploited with predictive coding to reduce the dynamic

range of the information to quantize. Five minutes of the speaker dependent TI-

46 digit database are used to compute time-correlations between P-LSFs and

P-LPCCs of neighboring frames (20 ms apart). Results are shown in Table 5.4
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Figure 5.3: Illustration of the (a) spectrogram, (b) P-LPCCs and (c) P-LSFs of

the digit string “9 6 0” pronounced by a male speaker.
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for a 6th order PLP spectrum. We present here analysis for p = 6. Note that

both P-LPCCs and P-LSFs display high inter-frame correlation. An encoder

can exploit this time redundancy by transmitting only the residual error after

prediction.

Intra-frame correlation

Statistical correlation between elements of a feature vector can be exploited by

vector quantization. Tables 5.5(a) and 5.5(b) indicate the intra-frame correlations

of the residual P-LPCCs and P-LSFs after first-order prediction. Large intra-

frame correlations are observed for the P-LSFs, which can be efficiently exploited

using vector quantization (VQ). P-LPCCs, however, are almost uncorrelated.

This is a property often sought for ASR features, since it allows for the features

to be treated independently without significant loss in performance or generality.

Sensitivity to quantization noise

The third factor to consider when developing quantization schemes for speech

recognition applications is the sensitivity of recognition accuracy with respect

to quantization error. Figure 5.4 illustrates the sensitivity of continuous digit

recognition results with respect to quantization errors when separately scalar

quantizing the P-LSF and P-LPCC residuals after first-order prediction. The

recognition experiment consisted of performing continuous digit recognition using

HTK 3.0 and the Aurora-2 database [104] with 16 states and 6 mixtures per word

model. More than 3300 tokens were tested.

The results of Figure 5.4 may vary slightly from those presented in [105],

where the recognition task was independent digit recognition using the TI-46

digit database (1180 male and female tokens for training, 480 for testing) and

HTK 2.1 with 5 states and 3 mixtures per word model, indicating dependency
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Figure 5.4: Quantization error sensitivity analysis of the (a) P-LSFs and (b)

P-LPCCs extracted from PLP6.
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ρ(i, j) 1 2 3 4 5 6

1 1.00 0.79 0.60 0.27 0.05 0.17

2 0.79 1.00 0.84 0.35 0.11 0.20

3 0.60 0.84 1.00 0.58 0.16 0.29

4 0.27 0.35 0.58 1.00 0.63 0.38

5 0.05 0.11 0.16 0.63 1.00 0.69

6 0.17 0.20 0.29 0.38 0.69 1.00

(a) Intra-frame correlation for P-LSFs

ρ(i, j) 1 2 3 4 5 6

1 1.00 -0.70 -0.11 -0.15 -0.16 -0.44

2 -0.70 1.00 -0.19 -0.48 -0.03 -0.29

3 -0.11 -0.19 1.00 -0.15 -0.37 0.26

4 -0.15 -0.48 -0.15 1.00 -0.10 -0.01

5 -0.16 -0.03 -0.37 -0.10 1.00 -0.04

6 -0.44 -0.29 0.26 -0.01 -0.04 1.00

(b) Intra-frame correlation for P-LPCCs

Table 5.5: Intra-frame correlation of the residual (a) P-LSFs and (b) P-LPCCs

after first-order prediction.

on the database and task.

Note that the P-LPCCs are significantly more sensitive to quantization errors

than P-LSFs. Sensitivities also vary with the order of the P-LSF or P-LPCC fea-

ture. The individual sensitivities will be taken into account in the training and

search of the vector quantizers. For instance, one can see in Figure 5.4 that error

in the quantization of the first P-LSF only marginally reduces recognition accu-

racy. This means that the cepstral coefficients, based on which speech recognition

is performed, did not change much with a somewhat significant modification of

ω1, or that the change was not important.
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SNR (dB) ω1 ω2 ω3 ω4 ω5 ω6 Mean

c1 18.98 13.55 10.02 9.80 12.71 20.81 14.29

c2 10.08 11.40 11.73 9.91 7.01 11.12 9.71

c3 5.22 10.84 4.56 3.13 7.53 5.43 6.73

c4 5.71 2.86 4.19 2.03 6.74 3.67 4.32

c5 7.81 -3.30 0.29 1.81 -1.17 2.12 1.31

c6 6.32 -0.32 -2.72 -3.83 -2.19 5.17 1.13

Mean 9.19 5.91 4.80 3.75 5.04 8.01

Table 5.6: Analysis of the partial sensitivities ∂ci

∂ωj
by studying the effect on the ith

cepstral coefficient of quantizing the jth perceptual line spectral frequency. Each

P-LSF is individually quantized at 0 dB.

To confirm these results, the following experiment evaluating ∂ci

∂ωj
is carried

out. Each P-LSF is individually disturbed (quantized) with a given SNR, and the

resulting SNRs of the cepstral coefficients computed from the disturbed P-LSFs

are evaluated. Table 5.6 illustrates the SNRs of the P-LPCCs obtained after

individual and successive scalar quantization of the P-LSFs at 0 dB SNR.

Two major conclusions are drawn from the results shown in Table 5.6. First,

as already suggested in Figure 5.4, P-LSFs with low and high order (ω1 and ω6)

have less impact on the SNRs. Second, note that low-order cepstral coefficients

are better represented than the higher-order coefficients.

Results of Table 5.6, when successively quantizing each of the P-LSFs with

0 dB, are confirmed when quantizing the P-LSFs with different resolution levels,

as shown in Figure 5.5. Only the horizontal means (for the effect of P-LSF

quantization on cepstral precision) and vertical means (for the effect of quantizing

each individual P-LSF) are reported.
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Figure 5.5: Sensitivity analysis of the cepstral coefficients after P-LSF quantiza-

tion at different SNRs: (a) mean output SNR for each cepstral coefficient; (b)

mean SNR of all cepstra depending on the quantized P-LSF.

95



5.3.2 Mathematical sensitivity analysis to P-LSF quantization

The goal of this section is to mathematically analyze the sensitivity of the cep-

stral coefficients to explain the two trends observed in Figure 5.5, i.e. smaller

sensitivity of the low and high order P-LSFs and better representation of the low

order cepstral coefficients.

The Jacobian matrix J = ∂ci

∂ωj
provides partial answers for both questions since

it analyzes the effect of a small disturbance of a given line spectral frequency ωj

on the cepstral coefficients ci. Computation of the cepstral coefficients from the

P-LSFs includes 1) the transformation from the P-LSFs into LP coefficients, and

2) the computation of the cepstral coefficients from the LP coefficients. The

Jacobian matrix ∂ci

∂ωj
can therefore be computed as follows:

∂ci

∂ωj

=

p∑

k=1

∂ci

∂αk

· ∂αk

∂ωj

. (5.3)

In matrix notation, this corresponds to a matrix multiplication

J = JC · JA, (5.4)

where the matrix J is defined as

J(i, j) =
∂ci

∂ωj

(5.5)

=




∂c1
∂ω1

· · · ∂c1
∂ωp

...
. . .

...

∂cp

∂ω1
· · · ∂cp

∂ωp


 , (5.6)

JC as

JC(i, k) =
∂ci

∂αk

(5.7)

=




∂c1
∂α1

· · · ∂c1
∂αp

...
. . .

...

∂cp

∂α1
· · · ∂cp

∂αp


 , (5.8)
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and JA as

JA(k, j) =
∂αk

∂ωj

(5.9)

=




∂α1

∂ω1
· · · ∂α1

∂ωp

...
. . .

...

∂αp

∂ω1
· · · ∂αp

∂ωp


 . (5.10)

We first evaluate the matrix JC = @c
@� .

From Eq. 5.1, it can be seen that the vector representing the cepstral coeffi-

cients cn can be written as a function of the linear prediction coefficients αi as

follows (for a 6th order predictive system),

C =




α1

α2 + 1
2
α2

1

α3 + α1α2 + 1
3
α3

1

α4 + α1α3 + 1
2
α2

2 + α2α
2
1 + 1

3
α3

1 + 1
4
α4

1

α5 + α1α4 + α3α2 + α3α
2
1 + α1α

2
2 + α2α

3
1 + 1

5
α5

1

α6 + α1α5 + α4α2 + α4α
2
1 + 1

2
α2

3 + 2α3α1 + α2α3α
3
1+

1
3
α3

2 + 3
2
α2

1α
2
2 + α2α

4
1 + 1

6
α6

1




. (5.11)

From Eq. 5.11, one can easily compute the Jacobian matrix JC by taking the

derivative of C with respect to the prediction coefficients αk:

JC(i, k) =




JC0 0 0 0 0 0

JC1 JC0 0 0 0 0

JC2 JC1 JC0 0 0 0

JC3 JC2 JC1 JC0 0 0

JC4 JC3 JC2 JC1 JC0 0

JC5 JC4 JC3 JC2 JC1 JC0




, (5.12)

97



where JC(i, k) = JCi−k
(i ≥ k) and

JC0 = 1 (5.13)

JC1 = α1 (5.14)

JC2 = α2 + α2
1 (5.15)

JC3 = α3 + α2α1 + α3
1 (5.16)

JC4 = α4 + 2α1α3 + α2
2 + 3α2

1α2 + α4
1 (5.17)

JC5 = α5 + 2α1α4 + 2α3α2 + 3α3α
2
1 + 3α1α

2
2 + 4α2α

3
1 + α5

1. (5.18)

The fact that the Jacobian matrix JC(i, k) is lower-triangular and Toeplitz,

with increased complexity in the elements further away from the diagonal, ex-

plains the better representation of the lower-order cepstral coefficients. The in-

creased sensitivity with the cepstral coefficient order is a direct consequence of

the recursive formula in Eq. 5.1. Indeed, since the value of cn−1 is used to com-

pute cn, errors tend to propagate into the computation of the high order cepstra;

hence, the quantization quality decreases as the cepstral order increases.

For the second part of the sensitivity computation, we need to evaluate the

Jacobian matrix JA = @�
@! .

The P-LSF set is determined from the LP coefficients by first forming the

polynomials

P (z) = A(z) + z−(p+1) A(z−1) (5.19)

and

Q(z) = A(z) − z−(p+1) A(z−1). (5.20)

The line spectral frequencies are defined as the angular frequencies ωi of the

roots of P (z) and Q(z), which can be shown to be interlaced. Let the P-LSFs

be denoted by ω1, ω2, · · · , ωp, so the roots of P (z) correspond to the odd indices,

and the roots of Q(z) correspond to the even indices [120].
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Since we try to find the sensitivity of time domain parameters (the coefficients

of the linear prediction filter αn) with respect to frequency domain parameters

(the angular frequencies of the roots of P (z) and Q(z)), we first need to express

the impulse response of the linear prediction filter A(z) = 1−∑p
k=1 αkz

−k in terms

of the P-LSF frequencies. This is done by analyzing the transfer function A(z)

along the unit-circle to obtain the Fourier transform A(ω) of the time-domain

impulse response a(n) of the linear prediction filter,

A(ω) =
1

2
(P (ω) + Q(ω)). (5.21)

Given the symmetry of the polynomials, the roots of P (z) and Q(z) are complex

conjugate and can be combined to yield

P (w) = (1 + e−jw)
∏

i odd

(1− 2 cos ωie
−jw + e−2jw) (5.22)

and

Q(w) = (1− e−jw)
∏

i even

(1− 2 cos ωie
−jw + e−2jw) . (5.23)

To simplify the notation and to keep the time-frequency domain interpreta-

tion, the following Fourier transforms (shown with the symbol ⇔) are defined

p̃0(n) = δ(n) + δ(n− 1) ⇔ P̃0(ω) = 1 + e−jw, (5.24)

q̃0(n) = δ(n)− δ(n− 1) ⇔ Q̃0(ω) = 1− e−jw, (5.25)

for the terms independent of the P-LSFs, and

p̃i(n) = δ(n)− 2 cos ω2i−1δ(n− 1) + δ(n− 2) ⇔
P̃i(ω) = 1− 2 cos ω2i−1e

−jw + e−2jw,
(5.26)

together with

q̃i(n) = δ(n)− 2 cos ω2iδ(n− 1) + δ(n− 2) ⇔
Q̃i(ω) = 1− 2 cos ω2ie

−jw + e−2jw ,
(5.27)
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for the terms depending on ωi.

One can then re-write P (z) and Q(z) as

p(n) =

p/2∧

k=0

p̃k(n) ⇔ P (ω) =

p/2∏

k=0

P̃k(ω), (5.28)

and

q(n) =

p/2∧

k=0

p̃k(n) ⇔ Q(ω) =

p/2∏

k=0

Q̃k(ω), (5.29)

where the symbol
∧

stands for a series of convolutions

L∧

k=0

vk(n) = v0(n) ∗ v1(n) ∗ · · · ∗ vL(n), (5.30)

which is the time-domain correspondence of a product in the frequency domain.

Together, Eqs. 5.24 through 5.30 create the link between the P-LSFs and the

prediction filter, such that the partial derivatives can be obtained using

∂αn

∂ωi
=





1
2

∂p(n)
∂ωi

; i odd

1
2

∂q(n)
∂ωi

; i even
⇔ ∂A(ω)

∂ωi
=





1
2

∂P (ω)
∂ωi

; i odd

1
2

∂Q(ω)
∂ωi

; i even
.

(5.31)

The elements of the Jacobian matrix are then computed in the time and frequency

domain using the following formulae:

ji(n) = ∂αn

∂ωi

=





[sin(ωi)δ(n− 1)] ∗
[∧p/2

k=0, k 6= i+1
2

p̃k(n)
]
; i odd

[sin(ωi)δ(n− 1)] ∗
[∧p/2

k=0, k 6= i
2

q̃k(n)
]
; i even

m
Ji(ω) = ∂A(ω)

∂ωi

=





sin(ωi)e
−jw

∏p/2

k=0, k 6= i+1
2

P̃k(ω); i odd

sin(ωi)e
−jw

∏p/2

k=0, k 6= i
2

Q̃k(ω); i even .

(5.32)

100



Note that since
p/2∧

k=0, k 6= i+1
2

p̃k(n) =
p(n)

p̃i(n)
(5.33)

for odd i, and
p/2∧

k=0, k 6= i
2

q̃k(n) =
q(n)

q̃i(n)
(5.34)

for even i, the values of ji(n) can be found by simple polynomial division. Further-

more, the computation can be simplified further if we notice that the symmetry

in the coefficients of p(n) and q(n) imply that

∂αn

∂ωi

=
∂αp+1−n

∂ωi

(5.35)

for odd i, and
∂αn

∂ωi

= −∂αp+1−n

∂ωi

(5.36)

for even i.

The important factor in Eq. 5.32 is the term sin(ωi), which indicates the

trend observed when analyzing the effect of quantizing the individual P-LSFs on

recognition accuracy. Indeed, the term sin(ωi), which is smaller for the P-LSFs

with low and high order and larger for the intermediate P-LSF frequencies, shows

that there may be less sensitivity of the prediction coefficients with respect to

the low and high order frequencies than with the middle P-LSF frequencies.

Numerical example

Figures 5.6 through 5.8 illustrate the three Jacobian matrices, JC , JA and J ,

respectively, computed by taking the mean of these matrices over 150 speech

frames. Figure 5.6 plots only the first column of the Jacobian matrix JC , since it

is sufficient to fully determine the lower-triangular Toeplitz matrix JC . Note the

following:
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Figure 5.6: Illustration of the first column ( ∂ci
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) of the Jacobian matrix JC .
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.
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Figure 5.8: Illustration of the Jacobian matrix J = ∂ci

∂ωj
.

1. The Jacobian matrix JC is predominantly diagonal with the element of the

first diagonal equal to one. This means that the Jacobian matrix JC is

almost equal to the identity matrix (JC ≈ I) and therefore J ≈ JA.

2. Observe the symmetry for the even columns of JA and the anti-symmetry

for the odd columns of JA.

3. The illustration of the Jacobian matrix JA seems to be displaying sinu-

soids whose frequencies are equal to the line spectral frequency ωi in ques-

tion. This phenomenon can be explained if we analyze the situation in

the frequency domain. We have seen that the ith column JA is JAi
(ω) =

sin(ωi) · P
P̃i(ω)

, which can be thought of as a spectrum that contains all the

zeros of P (ω) at the even LSFs, except the one at frequency ω2i which has

been divided out. As a result, the spectrum JAi
(ω) displays a large peak at

the position of the missing zero (ω2i) and resembles a dirac impulse. The
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Figure 5.9: Spectra of the different columns of JA = ∂αk

∂ωj
.

time domain counterpart of this spectrum is a sinusoid whose frequency is

proportional to the LSF studied. For confirmation of this claim, Figure 5.9

illustrates the spectra for each column of the Jacobian matrix JA. These

results (JC ≈ I and the sinusoidal behavior of JA) are confirmed by ana-

lyzing the first six columns of the time-domain Jacobian matrix J of a high

order (p=40) linear prediction system (Figure 5.10).

4. Figure 5.8 shows that the sensitivity of the first cepstral coefficients c1

(which is assumed to be the most important for recognition) is about twice

as high for ω3 and ω4 ( ∂c1
∂ω3

≈ 1) than for ω1 and ω6 ( ∂c1
∂ω6

≈ 0.5). This could

help explain the behavior of Figure 5.4, which show higher sensitivity for

mid-frequency range P-LSFs.
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Figure 5.10: Spectra of the first six columns of JA = ∂αk

∂ωj
when using high order

linear prediction.
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5. Finally, observe that typically | ∂ci

∂ωj
| ≤ 1. This explains the results of Fig-

ure 5.4, which shows that the cepstral coefficients are less sensitive to quan-

tization in the P-LSF domain than in the cepstral domain.

5.3.3 Quantization using perceptual line spectral frequencies

In the previous section, we showed that an efficient representation of the PLP

spectrum for quantization could exploit the high inter- and intra-frame correla-

tion of the line spectral frequencies of the perceptual linear prediction system.

Furthermore, it was shown that quantizing P-LSFs typically yields a better rep-

resentation of the low-order cepstral coefficients, which are more important for

speech recognition. Finally, it was shown that error sensitivity of the P-LSFs

to quantization noise is uneven for the different P-LSFs and more significant

for the P-LSFs in the mid-frequency range. Appropriate weighting can then be

performed when designing the vector quantizer and during the search procedure.

In this section, we design two types of quantization for coding the P-LSFs of

the PLP spectrum, depending on the targeted application.

In the first application, we assume an error-free transmission. Since there

is no risk for error propagation with error-free communication, predictive vector

quantization (PVQ) can be used. We suggest the following quantization scheme

for the P-LSFs of the 6th order PLP spectrum: 1) remove the mean (DC compo-

nent); 2) compute the residual P-LSFs after a first order moving average predic-

tion whose coefficient is chosen to minimize the signal variance after prediction;

3) vector quantize the residual vector using different one stage vector quantizers

operating at 3, 4, 5 and 6 bits depending on channel conditions. The search cost

function to be minimized is weighted depending on the error sensitivity of each

P-LSF. The P-LSFs are transmitted every 20 ms and interpolated every 10 ms.
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Bits/frame 3 4 5 6 7

Source bit rate (bps) 150 200 250 300 350

Recognition accuracy (%) 81.07 97.15 98.33 98.61 98.74

Table 5.7: Continuous digit recognition accuracy using the Aurora-2 database

after quantization of the P-LSFs of PLP6 using first order predictive weighted

VQ.

This results in a total bit rate of only 150 to 300 bits/second. Table 5.7 shows

recognition results for continuous digit strings using the Aurora-2 database at

different bit rates.

In order to appreciate the reduction in bit rate and the recognition improve-

ment of P-LSF quantization with respect to speech coding based recognition,

Figure 5.11 summarizes the results obtained in Tables 5.2, 5.3, and 5.7.

In the second application, we assume that we have to deal with error-prone

communication channels, where errors may occur even after forward error correc-

tion (FEC). In such situations, it seems preferable to use a source coding scheme

that does not use prediction to avoid memory mismatch between the encoder and

the decoder. For the same reason, interpolation is avoided. Given the constraint

that no prediction should be used, the dynamic range of the vector to quantize

is larger, which in turn calls for more bits per vector. On the other hand, if one

wants to keep the bit rate and simplicity of the full VQ scheme with one stage,

it is necessary to lower the dimension of the feature vector. For this reason, we

use for this application a 5th order PLP spectrum (PLP5), and the quantization

scheme operates as follows. The five P-LSFs are computed and quantized every

10 ms using vector quantizers operating at 7 to 10 bits per frame. The receiver

decodes the P-LSFs and computes the PLP coefficients (αn) from the P-LSFs,
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Figure 5.11: Illustration of speech recognition accuracy using different speech

coding standards (squares), MELP based remote recognition using MSVQ quan-

tization of the line spectral frequencies (stars), and quantized P-LSFs (circles),

using the Aurora-2 database.
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Bits/frame 7 8 9 10

Source bit rate (bps) 700 800 900 1000

Recognition accuracy(%) 97.07 98.05 98.31 98.81

Table 5.8: Continuous digit recognition accuracy using the Aurora-2 database

after non-predictive vector quantization of the P-LSFs of PLP5.

and the cepstral coefficients (cn) from αn according to Eq. 5.1. Table 5.8 reports

continuous digit recognition results at different bit rates for this quantization

scheme.

5.4 Quantization of ASR features: MFCC

Several recent papers addressed the issue of quantizing MFCC features. In [103,

104, 121], split vector quantization of MFCCs is shown to provide good recogni-

tion accuracy at about 2-4 kbps. A similar technique is used in [106] to provide

recognition at 4 kbps. In the ETSI standard [104], MFCCs are also split vec-

tor quantized and transmitted at 4.8 kbps. Finally, [122] exploits redundancy of

MFCC parameters using a 2-D Discrete Cosine Transform (DCT).

Before describing our own techniques for quantizing the MFCC feature vec-

tors, we first suggest an alternative strategy for transmitting MFCCs to the client

by quantizing a mathematically equivalent set of values, in the same way we quan-

tized in the previous section the P-LSFs instead of the P-LPCCs. This time, the

mathematically equivalent feature is the inverse DCT of the MFCCs,

m̃i =
N∑

j=1

cj cos

(
πi

N
(j − 0.5)

)
1 ≤ i ≤ N. (5.37)

The resulting N coefficients will be referred to as inverted cepstra (ICP).

Since MFCCs are obtained in the first place by taking the DCT of the log Mel
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Coeff. 0 1 2 3 4 5 6 7 8 9 10 11 12

ICP 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.92 0.90 0.90

MFCC 0.93 0.88 0.83 0.81 0.77 0.75 0.70 0.67 0.65 0.65 0.64 0.61 0.65

Table 5.9: Average (across all digits) inter-frame correlations between the 13

MFCCs and ICPs, using 25 ms Hamming windows shifted every 10 ms.

filter outputs (Eq. 1.3), ICPs conceptually represent again a log Mel spectrum,

but with less coefficients than the original Mel filterbank outputs (N < M).

Typically, for a narrowband speech signal, N = 13 MFCCs (including the energy

term c0) are computed from a set of M = 23 Mel filter outputs.

Figure 5.12 illustrates the log Mel filterbank outputs, the MFCC and the

inverted cepstra for the digit string “9 6 0” pronounced by a male speaker. Fig-

ure 5.12(c) hints that inverted cepstra display interesting properties that can be

exploited when compressing the signal, such as large inter- and intra-frame corre-

lation. Quantitative results are shown in Table 5.9 for the inter-frame correlation

and in Table 5.10 for the intra-frame correlation.

Table 5.9 indicates that ICPs are more time correlated than MFCCs since

they are directly related to the amount of energy in each Mel frequency band;

energy variations are dictated by the relatively slow process of articulation. Since

the time-correlation is significant, efficient source compression will be obtained

by performing predictive coding. Each parameter can be individually predicted

using a first order linear prediction scheme.

Table 5.10 reports the mean of the N diagonals of the intra-frame correla-

tion matrix instead of the full intra-vector correlation matrix after first-order

prediction given its size.

Note that the large intra-frame correlation of the inverted cepstra is a di-
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(a) Log Mel filter output
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(b) Mel Frequency cepstral coefficients
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(c) Inverted cepstra (ICP)

Figure 5.12: Illustration of the (a) log energy outputs of the Mel filterbank

(M=23); (b) Mel frequency cepstral coefficients (N=13); and (c) inverted cep-

stra (N=13) for the digit string “9 6 0” pronounced by a male speaker.
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Diag. # 0 1 2 3 4 5 6 7 8 9 10 11 12

ICP 1.00 0.86 0.77 0.73 0.68 0.65 0.62 0.59 0.55 0.52 0.45 0.38 0.32

MFCC 1.00 0.07 0.04 0.05 0.03 0.06 0.03 0.03 0.04 0.08 0.09 0.08 0.06

Table 5.10: Mean of the elements of the ith diagonal of the average (across all

digits) intra-frame correlation matrix ρ(i, j) for the 13 ICPs and MFCCs obtained

after first order prediction.

rect consequence of the fact that neighboring Mel frequency bands are bound

to display analogous behavior. On the other hand, the small intra-vector corre-

lation displayed by the MFCCs is the result of taking the DCT of the log-Mel

filterbank output in the first place, which is done to guarantee statistical inde-

pendence. This has the dual advantage of 1) feeding the HMM recognizer with

non-redundant information and 2) permitting the use of diagonal covariance in-

stead of full covariance matrices for multivariate Gaussian modeling.

In the section on PLP quantization, we have seen that correlations displayed

by P-LSFs could be converted into coding gains when compared to quantizing

the actual P-LPCC recognition features. Such analysis is repeated in the next

section for MFCCs. We investigate whether correlations displayed by ICPs can

yield to high recognition accuracy at reduced bit rates.

5.4.1 MFCC quantization

Typically, an MFCC speech recognition feature vector consists of 12 MFCCs

(c1,. . . ,c12), to which might be added a log-energy component (log(E)). MFCCs

are computed every 10 ms using a 25 ms analysis window. This overlap results

in a high correlation between adjacent frames, as illustrated in Table 5.9. This

correlation can be exploited in speech recognition systems. Specifically, the client
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SNR E c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

-5 dB 7.4 19.1 33.9 26.1 43.8 60.5 72.5 55.9 59.9 72.1 75.4 88.8 86.5

0 dB 10.3 61.1 72.1 88.4 89.1 93.6 95.9 96.0 96.5 96.9 97.2 97.6 97.6

Table 5.11: Recognition accuracy after quantization noise is added to each indi-

vidual feature, one at a time. Quantization SNRs are expressed in dB.

can compute and transmit features every 20 ms, while the server interpolates

the features by a factor of 2 for recognition. This results in lower bit rate and

complexity at the client.

Furthermore, due to the nature of the speech signal itself, there is evidence

of a remaining correlation between adjacent frames even if MFCCs are computed

every 20 ms. This is captured in our coding scheme using first order predictive

coding, which provides on average 4 dB of coding gain. The MFCCs can then be

efficiently quantized as follows: 1) remove the mean of each feature; 2) compute

the residual feature after first order linear prediction whose coefficient is chosen to

minimize the signal variance after prediction; 3) split the residual vector into two

subvectors and vector quantize them using different rates depending on channel

conditions. Note that the cost function to be minimized during VQ training

and VQ search is weighted to take into account quantization sensitivities of each

individual feature. Degradations in recognition as a function of quantization noise

SNRs are shown in Table 5.11 for each feature.

Table 5.12 reports continuous digit recognition accuracy when quantizing

MFCCs (with and without energy) at different bit rates for each VQ split. When

using MFCCs without energy, the feature vector is split [c1-c6] and [c7-c12]. If

energy is added (MFCC E), the feature vector is split [log(E),c1-c5] and [c6-

c12]. Two different cases are analyzed: 1) when training and testing are done on

quantized features (MFCC EQ and MFCCQ) and 2) when training is done using
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bits/sec. bits/frame MFCC EQ MFCCQ MFCC E MFCC

Unquantized — 99.20 98.86 99.20 98.86

900 9+9 98.73 98.09 97.96 96.51

800 8+8 98.61 98.18 97.87 96.91

700 7+7 98.13 97.56 97.56 95.71

600 6+6 97.12 96.98 97.22 94.94

500 5+5 96.35 95.93 96.48 93.49

400 4+4 94.75 93.16 93.27 91.45

Table 5.12: Continuous digit recognition accuracy using the Aurora-2 database

after quantizing the MFCCs using first order predictive weighted split VQ. No-

tation 8+8 means 8 bits for the first split and 8 bits for the second. Subscripts

Q indicate that the HMM models have been trained on quantized features.

unquantized data and testing using quantized data (MFCC E and MFCC).

Note that one can get reasonable recognition accuracies with rates as low as

700 bps. Below this, however, prediction starts degrading and recognition drops

significantly. Note also that despite the additional vector dimension to quantize,

MFCC E always outperforms MFCC.

5.4.2 Inverted cepstra quantization

A similar quantization procedure (weighted split VQ after first order prediction)

is used to quantize the inverted cepstra. Table 5.13 reports continuous digit

recognition accuracy when quantizing ICPs (with and without energy) at different

bit rates for each VQ split. The same scenarios are analyzed, with and without

energy, as well as training on quantized or unquantized data.

One can see from Tables 5.12 and 5.13 that recognition accuracies are com-

parable at high bit rates when quantizing ICPs and CEPs, and worse for ICPs at

low bit rates. The lack of superior behavior of ICPs over CEPs despite its more
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bits/sec. bits/frame ICP EQ ICPQ ICP E ICP

Unquantized — 99.20 98.86 99.20 98.86

900 9+9 98.86 98.40 98.33 96.95

800 8+8 98.67 98.43 97.99 96.88

700 7+7 98.55 97.99 97.90 96.58

600 6+6 97.10 97.75 95.62 95.10

500 5+5 96.08 95.43 93.89 90.71

400 5+5 91.21 92.19 86.86 83.79

Table 5.13: Continuous digit recognition using the Aurora-2 database after quan-

tizing the inverted cepstra (ICP) using first order predictive weighted split VQ.

Notation 8+8 means 8 bits for the first split and 8 bits for the second. Subscripts

Q indicate that the HMM models have been trained on quantized features.

attractive correlation properties can be explained by analyzing the figure of merit

of each quantization scheme for each cepstral coefficient. Figure 5.13 illustrates

the signal-to-noise ratio for each individual cepstral coefficient resulting from the

quantization of ICPs and CEPs at different bit rates.

When quantizing the cepstral coefficients (CEP), one can see that the first

energy term (c0) and the spectrum tilt term (c1) display higher quantization

accuracy and that the remaining coefficients show about the same level of pre-

cision. Given the increased sensitivity for recognition of the low-order cepstral

coefficients, this fact is actually beneficial for recognition.

While this trend holds true for inverted cepstra, one can see that the high-

order cepstra, while less important for recognition accuracy, are too coarsely

reconstructed to provide good recognition. Furthermore, the level of precision

in the reconstruction of the low-order cepstra goes beyond what is necessary for

recognition purposes. In fact, one can see that reconstruction accuracy almost

monotically decreases with the cepstrum order. This can be easily interpreted if
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Figure 5.13: Quantization SNRs for each cepstral coefficient after predictive split

vector quantization of the cepstral coefficients (o) and the inverted cepstra (.)

using 9, 6 and 4 bits per split.

we recall that in this case the resulting cepstra are obtained after taking the DCT

of the quantized ICPs. While c0 averages out the noise introduced by quantizing

ICPs, higher order cepstra suffer from quantization error.

5.5 Summary

We analyzed in this chapter three source coding approaches on which remote

recognition can be based: 1) using features obtained from the decoded speech

signal; 2) using transformed speech coding parameters; 3) using specifically quan-
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tized ASR features.

Second, we presented different solutions for quantizing two types of ASR

features: PLP and MFCC.

For the quantization of PLP features, transmission of the perceptual line

spectral frequencies instead of the PLP cepstral coefficients constituted a sensi-

ble choice both in terms of coding gain and recognition accuracy. A mathematical

and experimental analysis of the Jacobian matrices of the two non-linear opera-

tions permitting the transformation from the P-LSFs to cepstral coefficients were

presented.

For the quantization of the MFCC coefficients, quantization of the cepstral

coefficients and the inverted cepstra were shown to offer similar recognition per-

formance, with a slight edge for quantization of the cepstral coefficients.
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CHAPTER 6

Channel coding and decoding for

remote speech recognition

This chapter is divided into four sections. Section 6.1 analyzes the effect of

channel errors and erasures on speech recognition accuracy, and derives chan-

nel coding requirements specific to remote recognition applications. Section 6.2

presents channel encoders that meet these requirements. Section 6.3 presents dif-

ferent channel decoding techniques and illustrates the advantage of performing

soft decision based error detection channel decoding. Finally, Section 6.4 dis-

cusses the performance of different channel coding and decoding systems over a

wide range of channel conditions.

6.1 The effect of channel errors and erasures on remote

speech recognition

In this section, we study how channel errors and erasures affect the Viterbi speech

recognizer. The following two sections analyze how channel coding and decoding

can be performed to deal with such errors and erasures.
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6.1.1 The effect of channel errors and erasures

The emphasis in remote ASR is typically recognition accuracy and not playback.

The nature of this task implies different criteria for designing channel encoders

and decoders than those used in speech coding applications.

Recognition is achieved by accumulating feature vectors over time, and by

selecting the element in the dictionary that most likely produced that sequence

of observations. The likelihood of observing a given sequence of features given a

hidden Markov model (HMM) is computed by searching through a trellis for the

most probable state sequence. The Viterbi algorithm (VA) presents a dynamic

programming solution to find the most likely path through a trellis (Figure 6.1).

For each state j, at time t, the likelihood of each path is computed by multiplying

the transition probabilities aij between states and the output probabilities bj(ot)

along that path. The partial likelihood, denoted as φj,t, is computed efficiently

using the following recursion:

φj,t = max
i

[φi,t−1 aij] bj(ot−1). (6.1)

The probability of observing the NF -dimensional feature ot is:

bj(ot) =
∑NM

m=1 cm
1√

(2π)NF |Σ|
e−

1
2
(ot−µ)′Σ−1

(ot−µ), (6.2)

where NM is the number of mixture components, cm is the mixture weight, and

the parameters of the multivariate Gaussian mixture are its mean vector µ and

covariance matrix Σ.

Figure 6.2(a) analyzes the effect of a channel error in the VA. Assume first a

transmission without channel errors or erasures; the best path through the trellis

is given by the solid line. Assume now that a channel error occurs at time t.

The decoded feature is then ôt, as opposed to ot, and the associated probabilities

119



1

2

3

4

5

6

State

Speech
Frame
(Time)1 2 3 4 5 6

b3 o 4( )

a35

Figure 6.1: Illustration of the Viterbi speech recognition algorithm (after [3]).

for each state j may differ considerably (bj(ôt) 6= bj(ot)), which will disturb the

state metrics φj,t. A large discrepancy between bj(ôt) and bj(ot) can disturb the

information accumulated thus far for each state metric. Furthermore, note that

the observation probability ôt may force the best path in the trellis to branch out

(dotted path) from the error-free best path. Consequently, some features may

be accounted for in the overall likelihood computation using the state model ̂

instead of the correct state model j, which again will modify the probability of

observation since b̂(ot′) 6= bj(ot′).

On the other hand, it can be seen that channel erasures may have little

effect on recognition performance. Figure 6.2(b) illustrates the same sequence of

observations as in Figure 6.2(a), but with a channel erasure. State metrics are not

disturbed with a channel erasure since the probability of the missing observation

cannot be computed. Not updating the state metrics (φj,t = φj,t−1) is not as likely

to create a path split between the best paths (with and without an erasure) as

a channel error, whether or not the erasure occurs at a state transition. Hence,

channel erasures typically do not propagate through the trellis.

120



-

6

Speech Frame

State [j]
Frame

in Error

t

(a) Channel error at time t

-

6

Speech Frame

State [j]
Frame
Erased

t

(b) Channel erasure at time t

Figure 6.2: Illustration of the effect of (a) a frame error and (b) a frame erasure

on Viterbi speech recognition.

6.1.2 Recognition experiment with channel errors and erasures

In this section, we simulate the effects of channel erasures and channel errors in

a speech recognition task. Speech recognition experiments consist of continuous

digit recognition based on 4 kHz bandwidth speech signals. Training is done using

speech from 110 males and females from the Aurora-2 database [104] for a total

of 2200 digit strings. The feature vector consists of 5 PLP cepstral coefficients.

Word HMM models contain 16 states with 6 mixtures each, and are trained using

the Baum-Welch algorithm assuming a diagonal covariance matrix. Recognition

tests contain 1000 digit strings spoken by 100 different speakers (male and female)

for a total of 3241 digits. Recognition results reported are in word accuracy, which
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is computed in percent as:

ACC = 100 · REC− INS−DEL

N
, (6.3)

where ACC is the recognition accuracy, REC is the number of tokens correctly

recognized, INS is the number of insertions made, DEL is the number of digits

deleted, and N is the number of tokens tested.

The first experiment analyzes in detail the effect of a channel erasure or error

on three aspects of the Viterbi recognition algorithm: 1) dynamic search for the

most likely trellis paths, 2) computation of the average probability of observing

the features while in those given states, and 3) computation of the overall accu-

mulated likelihood of observing the token given the trellis paths. These aspects

are analyzed in Figure 6.3 for the trellis paths, in Figure 6.4 for the average

probability of observing the features in a given state, and in Figure 6.5 for the

accumulated likelihood. For each figure, three cases are analyzed: 1) no error

or erasure, 2) one channel erasure and 3) one channel error. For the last two

cases, the erasure or error takes place at the 17th frame. The task consisted of

the likelihood computation of an observation sequence (60 frames) given its word

HMM model.

Figure 6.3 shows that the erasure did not create a significant path disturbance,

except for being shifted in time by one frame. The consequence of the channel

error was to significantly disturb the most likely path, both before and after the

error took place.

The resulting effect on the average probabilities of observing the feature se-

quence in any given frame is considerable in the case of a channel error, as shown

in Figure 6.4. The consequence on the overall likelihood computation, shown in

Figure 6.5, is that while the channel erasure only moderately changes the overall

likelihood of observing the token, the channel error occurring at the same time
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Figure 6.3: Illustration of the consequence of a channel erasure and error on the

most likely paths taken in the trellis by the received sequence of observations,

given a 16-state word digit model. The erasure and error occur at frame number

17.

frame modifies the likelihood results considerably, hence increasing the chance of

a recognition error.

The second experiment performs a complete recognition task when the obser-

vations are impaired by channel noise. Figure 6.6 illustrates the effect of randomly

inserted channel erasures and errors in the communication link between the client

and the server. The feature vector transmitted consists of 5 PLP cepstral coeffi-

cients (P-LPCC), and is computed every 10 ms. Recognition is performed with

the time-derivative and acceleration of the PLP coefficients. Computation of the

temporal features at the receiver accentuates error propagation. Figure 6.6 shows

that channel errors, which propagate through the trellis, have a disastrous effect

on recognition accuracy, even at less than 1%, while the recognizer is able to
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Figure 6.4: Illustration of the consequence of a channel erasure and error on the

average probability of observing the features in each state of the trellis, given a

16-state word digit model. The erasure and error occur at frame number 17.

operate with almost no loss in accuracy with up to 10% of channel erasures. This

confirms our results presented in [105] for isolated digit recognition based on PLP

coefficients and in [58] for MFCCs.

These results indicate that when designing channel coders for remote recogni-

tion applications, the emphasis should be on error detection more than on error

correction. The remainder of this chapter will investigate innovative techniques

that maximize error detection capabilities of linear block codes suitable for remote

speech recognition applications.
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Figure 6.5: Illustration of the consequence of a channel erasure and error on the

accumulated probability of observation, given a 16-state word digit model. The

final accumulated likelihoods represent the probability of observing the complete

sequence of observations given the model.

6.1.3 Channel erasure models

Two types of erasure models are analyzed. In the first type, channel erasures

occur independently, with a given probability of erasures. In the second type,

channel erasures occur in bursts. This is typically the case for wireless or IP

based communication systems, where correlated fading or network congestion

may cause the loss of consecutive frames.

A classic model for bursty channels is the Gilbert-Elliot model [123] in which

the transmission is modeled to be a Markov system where the channel is assigned

to be in either one of two states: “0” for good and“1” for bad. Figure 6.7 illustrates

a Gilbert channel model. With such a model, there is a probability PG = PBG

PBG+PGB
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Figure 6.6: Simulation of the effect of channel erasures and errors on continuous

digit recognition performance using the Aurora-2 database and PLP features.

Recognition accuracies are represented in percent on a gray scale.
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Figure 6.7: State diagram for the Gilbert-Elliot bursty channel.

(PGB , PBG) (2.5,20) (2.5,15) (5,20) (2.5,10) (1.25,5) (5,15) (10,20) (5,10)

PB 11.1 14.3 20.0 20.0 20.0 25.0 33.3 33.3

PG 88.9 85.7 80.0 80.0 80.0 75.0 66.7 66.7

PE 17.8 20.0 24.3 24.3 24.3 27.5 33.3 33.3

Lb 5.0 6.6 5.0 10.0 20.0 6.6 5.0 10.0

Table 6.1: Characteristics of the Gilbert-Elliot channels of interest. Probabilities

are given in percent.

to be in state “0” and a probability PB = PGB

PGB+PBG
to be in state “1”. If the

probabilities of channel erasures are assigned to be PEG
for the good state and

PEB
for the bad state, the overall average probability of erasure is: PE = PGPEG

+

PBPEB
.

Throughout the experiments, PEG
is considered to be equal to 10% and PEB

is set to 80%. Different types of bursty channels are analyzed, depending on

the state transition probabilities PGB and PBG, which in turn determine how

bursty the channel is. Table 6.1 summarizes the properties of the bursty channels

studied, including the probability (in percent) of being in the bad state (PB) or

in the good state (PG), the overall probability of erasure (PE), and the average

length (in frames) of a burst of erasures (Lb).
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6.2 Channel coding for remote speech recognition

applications

Section 6.1 indicated that an important requirement for a channel coding scheme

for remote ASR is low probability of undetected error (PUE << 1%) and large

enough probability of correct decoding (PCD > 90%). The next two sections

present channel coding and decoding strategies that meet these requirements

under a variety of channel conditions.

For packet based transmission, frames are typically either received or lost but

not in error. If a packet order number was assigned before transmission, frame

erasures can be detected by analyzing the ordering of the received packet. There-

fore, for IP systems, there may not be a need for sophisticated error detection

techniques.

With wireless communications systems, however, the transmitted bits x can

be altered during transmission. Based on the values of the received bits y, the

receiver can either correctly decode the message (CD for correct decoding), detect

a transmission error (ED for error decoding) or fail to detect such an error (UE

for undetected error).

Since the number of source information bits necessary to code each frame

can be as low as 6-40 bits/frame for efficient speech recognition feature coding

schemes [105], linear block codes are favored over convolutional or trellis codes

for delay and complexity considerations, as well as for their ability to provide

error detection for each frame independently.
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6.2.1 Description of error detecting linear block codes

An (N,K) linear block code maps K information bits into N bits (N ≥ K) in

such a way as to maximize the minimum distance between valid codewords in the

N -dimensional space. The larger the number of redundancy bits (N −K), the

larger the minimum distance (dmin) between any two of the 2K valid codewords.

In order to guarantee the best possible recognition rate over a wide range

of channel conditions, a combination of different block codes is used. More in-

formation bits (K) are used for high SNR channels while more redundancy bits

(N − K) are used for low SNR channels. With such adaptive schemes, grace-

ful degradation in recognition performance is provided with decreasing channel

quality.

In the proposed design, we want to minimize the probability of undetected

errors since it significantly reduces recognition accuracy. Therefore, one would

like to find codes that maximize the probability of error detection while still

guaranteeing a large enough probability of correct decoding.

For good channel conditions, Single Error Decoding (SED) codes, which detect

any one bit error event, are sufficient. A minimum Hamming distance of dmin = 2

is necessary and sufficient to form an SED code. SED codes can be obtained

using simple Cyclic Redundancy Check (CRC) codes. For instance, when a single

parity bit is added to the information codeword (N-K=1), the minimum Hamming

distance between any two valid codewords is always dmin = 2.

However, when there are 2 errors among the N received bits, SED codes may

fail to detect the error. To increase channel protection, Double Error Detection

(DED) codes are utilized. Any linear block code with dmin = 3 can be used

to correct single error events (Single Error Correcting (SEC) code), or to detect
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all one- and two-bit error events (Double Error Detection (DED) code). For

our application, since residual channel errors degrade recognition accuracy more

significantly than channel erasures, all codes with dmin = 3 will be used as DED

codes. Finally, codes with dmin = 4, which can also be used as SEC/DED codes,

will be utilized as Triple Error Detecting (TED) codes.

6.2.2 The search for “good” codes

Let C be an (N,K) linear block code. Let Ai be the number of codevectors

of Hamming weight i in C. The numbers A0, A1, . . . , AN are referred to as the

distance spectrum of the code C. By linearity of the block code, dmin corresponds

to the smallest non-zero index i such that Ai 6= 0.

Exhaustive searches over all possible linear block codes were run for all di-

mensions of interest, i.e. 7 ≤ K ≤ 10 and 8 ≤ N ≤ 12, in order to find the codes

with the best distance spectrum.

For the particular case of N-K=1, i.e. a (K+1, K) code, the parity matrix P

of dimension 1×K of the code is given by P = [1, 1, · · · , 1, 1] and the distance

spectrum by Ai =
(

N
i

)
for i even and Ai = 0 for i odd.

The parity matrices P, the minimum Hamming distance dmin and the distance

spectra Ai of all other codes of interest are given in Table 6.2. Parity matrices

(dimensions (N-K)×K) are given in hexadecimal notation. The generator matrix

can be obtained from the parity matrix.

Note that a subset of these codes can be obtained from some special codes.

For instance, the (10,8) and (10,7) codes can be obtained by expurgating and

shortening the extended (15,11) Hamming code.
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(N,K) N-K P dmin Type A0, A1, A2, · · · , AN

(12,10) 2 1,1,1,2,2,2,3,3,3,3 2 SED 1,0,18,64,111,192,252,192,111,64,18,0,1

(12,9) 3 1,2,3,3,4,5,5,6,7 2 SED 1,0,5,34,66,88,114,108,61,24,9,2,0

(11,9) 2 1,1,1,2,2,2,3,3,3 2 SED 1,0,15,48,74,112,126,80,37,16,3,0

(12,8) 4 3,5,6,9,A,D,E,F 3 DED 1,0,0,16,39,48,48,48,39,16,0,0,1

(11,8) 3 1,2,3,4,5,6,7,7 2 SED 1,0,4,25,46,52,52,46,25,4,0,1

(10,8) 2 1,1,1,2,2,3,3,3 2 SED 1,0,12,36,46,60,60,28,9,4,0

(12,7) 5 07,0B,0D,0E,13,15,19 4 TED 1,0,0,0,38,0,52,0,33,0,4,0,0

(11,7) 4 3,5,6,9,A,D,E 3 DED 1,0,0,12,26,28,24,20,13,4,0,0

(10,7) 3 1,2,3,4,5,6,7 2 SED 1,0,3,19,29,27,25,17,6,1,0

(9,7) 2 1,1,2,2,3,3,3 2 SED 1,0,9,27,27,27,27,9,0,1

(11,6) 5 07,0B,0D,13,15,19 4 TED 1,0,0,0,25,0,27,0,10,0,1,0

(10,6) 4 3,5,6,9,E,F 3 DED 1,0,0,8,18,16,8,8,5,0,0

(9,6) 3 2,3,4,5,6,7 2 SED 1,0,2,14,18,12,10,6,1,0

(8,6) 2 1,1,2,2,3,3 2 SED 1,0,7,18,15,12,9,2,0

(10,5) 5 07,0B,13,1D,1E 4 TED 1,0,0,0,10,16,0,0,5,0,0

(9,5) 4 3,5,9,E,F 3 DED 1,0,0,4,14,8,0,4,1,0

(8,5) 3 1,3,5,6,7 2 SED 1,0,1,10,11,4,3,2,0

(7,5) 2 1,1,2,3,3 2 SED 1,0,5,12,7,4,3,0

(10,4) 6 07,1B,2B,35 4 TED 1,0,0,0,2,8,4,0,1,0,0

(9,4) 5 07,0B,13,1D 4 TED 1,0,0,0,6,8,0,0,1,0

(8,4) 4 7,B,D,E 4 TED 1,0,0,0,14,0,0,0,1

(7,4) 3 3,5,6,7 3 DED 1,0,0,7,7,0,0,1

(6,4) 2 1,2,3,3 2 SED 1,0,3,8,3,0,1

Table 6.2: Characteristics of the linear block codes that can be used for channel

coding of ASR features. Acronyms SED, DED and TED stand for Single, Double

and Triple Error Detection, respectively.
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6.3 Channel decoding for remote speech recognition

applications

In the previous section, we defined good linear block codes for error detection. In

this section, we will analyze different channel decoding techniques that maximize

the error detection capability of such codes.

For wireless communications, the information symbol xi is transmitted and

distorted by the channel, and the received symbol yi is yi = α(t) ·xi +n(t), where

α(t) is the complex channel gain and n(t) is the additive white Gaussian noise

(AWGN) component. For Rayleigh fading channels, α is Rayleigh distributed.

For AWGN channels, α(t) = 1. Depending on whether the continuous real values

of the received bits or only their signs are used for channel decoding, the decoder

is said to perform soft or hard decision decoding, respectively.

For a discrete memoryless channel (DMC), the probability of receiving the

vector y (N bits) given that the codeword xm was transmitted is given by

p(y|xm) =
N∏

j=1

p(yj|xmj) (0 ≤ m ≤ 2K − 1). (6.4)

A decoder maximizing Eq. 6.4 without regard to the a priori probabilities of

the messages is called a maximum likelihood decoder. This decoding rule is

applicable to all discrete memoryless channels, including both hard- and soft-

decision channels.

6.3.1 Hard decision decoding

Additive white Gaussian noise and Rayleigh fading channels followed by hard

decision thresholding act like a binary symmetric channel (BSC). For AWGN
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and Rayleigh fading channels, the cross probability of the equivalent BSC is

p = Q

(√
α2

2Eb

N0

)
, (6.5)

where Eb denotes the average energy per bit, N0 is the average noise energy

and Q(x) =
∫∞

x
1√
2π

e−
z2

2 dz is the tail integral of the standard (µ = 0, σ = 1)

Gaussian density function. For Rayleigh channels, α is the Rayleigh distributed

random variable, and for AWGN channels, α = 1. If channel noise statistics

are stationary over the transmission of a given codeword (N bits), the cross

probability is a constant and the likelihood equation becomes

p(y|xm) = pdH (1− p)N−dH , (6.6)

where dH is the Hamming distance between y and xm. Maximizing p(y|xm) is

equivalent to minimizing the Hamming distance dH between y and xm.

If an (N,K) linear code is only used for error detection over a BSC channel,

the probability of correct decoding, undetected errors, and error detection are

given by

PCD = (1− p)N , (6.7)

PUE =
N∑

w=dmin

Aw pw (1− p)N−w and (6.8)

PED = 1− PCD − PUE, (6.9)

where p is the transition probability of the BSC.

Example: Hard decision decoding of a (2,1) block code. Figure 6.8

shows a 2-dimensional example for decoding a (2,1) linear block with hard decision

decoding. The distance spectrum of this simple CRC code is Aw = [1, 0, 1]. The

valid codevectors are shown in dark circles. Assume the (+1,+1) codevector was

transmitted.

133



(+1,+1)(−1,+1)

(+1,−1)(−1,−1)

Figure 6.8: Illustration of hard decision decoding for the (2,1) block code. Color

code is white for correct decoding (CD), light gray for error detection (ED), and

dark gray for incorrect decoding or undetected error (UE).

If the soft received bits end up in the second or fourth quadrant, the resulting

received codevector after bit thresholding is equally distant, in terms of Hamming

distance, from two different valid codewords. No decision can be made and an

erasure is declared (PED). If the received symbol is in the first or third quadrant,

the codeword is correctly (PCD) or incorrectly decoded (PUE), respectively.

Mathematically, Eqs. 6.7 through 6.9 hold for the particular case of the (2,1)

linear block code and provide the following relations:

PCD = (1− p)2 (6.10)

PUE = p2 (6.11)

PED = 2p (1− p). (6.12)
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6.3.2 Soft decision decoding

As mentioned in Section 1.5, soft decision decoding always outperforms hard

decision decoding, both for AWGN and multi-path communication channels. This

is a consequence of the data signal processing inequality which states that a loss

of information is always associated with any processing of data [124]. This is

easily verified when the processing operation for hard decision decoding is the

non-invertible thresholding operation.

Consider then a soft decision memoryless channel where the channel input is

±1 and the channel output is a real number with Gaussian statistics. Specifically,

the stationary DMC is specified by

p(y|xm) =
1

(
√

πN0)N
e
−PN

j=1

(yj−xmj)2

N0 . (6.13)

Maximizing p(y|xm) is equivalent to minimizing the squared Euclidean distance

dE
2 =

∑N
j=1(yj − xmj)

2 between y and xm.

The maximum likelihood (ML) decoder chooses its output to be the codeword

for which the Euclidean distance between the received N -tuple y and the N -tuple

codeword xm is minimal. With soft decision decoding, as opposed to hard decision

decoding which operates with Hamming distance, it is virtually impossible to

be equidistant in Euclidean distances from two valid codewords. Consequently,

PED = 0, allowing only for correct or erroneous decoding. There is no closed

form formula for the values of PCD and PUE.

Example: Soft decision decoding of a (2,1) block code. Figure 6.9 il-

lustrates soft decision decoding for the (2,1) CRC code. Based on minimum

Euclidean distance decoding, the decision boundary for soft decision decoding

is the median between two valid codewords. Both PCD and PUE increase since

135



(+1,+1)

(−1,−1)

Figure 6.9: Illustration of soft decision decoding for the (2,1) block code. Color

code is white for correct decoding (CD) and dark gray for incorrect decoding or

undetected error (UE).

error detection is absent and redistributed equally between PCD and PUE. This

ultimately decreases recognition performance.

For the particular case of the (2,1) linear block code, one can see that we have

the following probabilities:

PCD = Q

(√
α2

4Eb

N0

)
(6.14)

PUE = Q

(√
α2
−4Eb

N0

)
(6.15)

PED = 0. (6.16)

Soft decision decoding creates a paradox: while soft decision decoding typ-

ically improves transmission reliability in communication systems, it does not
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help distributed speech recognition applications that are governed by different

channel coding criteria, i.e. low PUE, while it can tolerate large PED. In the next

two sections, we investigate how to combine error detection with soft decision

decoding.

6.3.3 Soft decision decoding using maximum a posteriori

probabilities (β-soft)

In order to accept a decision provided by the soft decoder, one would like to eval-

uate the probability that the decoded codevector was indeed the one transmitted.

Such an a posteriori probability is given by

p(x̂ = xm|y) =
p(y|xm) · p(xm)

P (y)
(6.17)

=
p(y|xm) · p(xm)∑2K−1

m′=0 p(y|xm′) · p(xm′)
(6.18)

which, if the assumption of equiprobable symbols is made, can be rewritten as

p(x̂ = xm|y) =
p(y|xm)∑2K−1

m′=0 p(y|xm′)
(6.19)

=

∏N
j=1 e

− (yj−xmj )2

N0

∑2K−1
m′=0

∏N
j=1 e

−
(yj−x

m′
j
)2

N0

(6.20)

=
e
−
PN

j=1(yj−xmj )2

N0

∑2K−1
m′=0 e

−
PN

j=1
(yj−x

m′
j
)2

N0

(6.21)

=
e−d2

E(y,xm)/N0

∑2K−1
m′=0 e−d2

E(y,x′
m)/N0

. (6.22)

Eq. 6.22 is complex and requires the knowledge of N0 that is difficult to probe.

However, if we limit ourselves to the two closest valid codevectors x1 and x2 from

the received codeword y and ignore the other distances, Eq. 6.22 becomes for the
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closest vector x1

p(x̂ = x1|y) ≈ e−d2
E(y,x1)/N0

e−d2
E(y,x1)/N0 + e−d2

E(y,x2)/N0
(6.23)

=
1

1 + e−(d2
E2
−d2

E1
)/N0

, (6.24)

where dEi
= dE(y, xi) and xi is the ith closest valid codevector from the received

symbol y. For instance, if dE2 = dE1 , Eq. 6.24 gives p(x̂ = x1|y) ≈ 1
2
.

While Eq. 6.24 still depends on the value of the channel noise N0, it is clear

that the reliability of the decoding operation can be evaluated from the values

of dE1 and dE2 . Since the noise level may be unknown, we present a solution

for estimating the confidence in the decoding of the feature based on the relative

difference between the Euclidean distances (dE1 and dE2) of the two closest valid

codevectors (x1 and x2) from the received bit sequence y,

β =
dE2 − dE1

dE1

, (6.25)

which is independent of the channel noise N0.

If the received vector y lies exactly between two valid codewords (β = 0), the

decoder’s best decision is a guess between both codewords. On the other hand,

if there is no noise in the channel, dE1 = 0 and β = ∞. This shows that β can

be used as a confidence measure of the decoding operation.

For future reference, this soft decision based error detection channel decoding

scheme based on the value of β computed in Eq. 6.25 will be referred to as β-soft

decoding.

Example: β-soft decision decoding of a (2,1) block code. Figure 6.10

illustrates an example of decoding the (2,1) linear block code using the a posteri-

ori probability criterion. Error detection based on soft decision decoding can be
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declared when β is smaller than a given threshold. As one can see, the decision

region around the correct and incorrect codewords are circles. These circles rep-

resent the set of points in a 2-dimensional system whose ratio of distances with

respect to two fixed points are a constant. The ratio ρ =
dE2

dE1
can be immediately

found from Eq. 6.25 as being equal to ρ = 1 + β.

If we assume the transmitted symbol was the point (+1, +1), the area where

correct decoding is made, in accordance with Eq. 6.25, is the Appolonius1 circle

whose center is located at (ρ2+1
ρ2−1

, ρ2+1
ρ2−1

) and whose radius is
√

2 2ρ
ρ2−1

. Note that if

β = 0, which corresponds to dE1 = dE2 , we have a circle whose center is located at

the coordinates (∞,∞) and whose radius is infinitely large. This is geometrically

equivalent to the median between both codewords, as in soft decision decoding.

However, if β increases, the center of the circle approaches the transmitted symbol

and its radius decreases.

6.3.4 Soft decision decoding using log likelihood ratios (λ-soft)

Since maximum likelihood is the optimal decision rule, it might be desirable to

perform error detection based on the ratio of the likelihoods of the two most

probable codevectors. Using Bayes rule and assuming that all codewords are

equiprobable, the ratio of the likelihoods of the two most probable vectors x1

and x2 (which are also the two closest codevectors from the received vector y at

Euclidean distances dE1 and dE1 from y) is given by

P (y|x = x1)

P (y|x = x2)
=

e−
d2
E1

2σ2

e−
d2
E2

2σ2

(6.26)

= e
1
2

(d2
E2
−d2

E1
)

σ2 . (6.27)

1In geometry, the Appolonius circle is defined as the set of points whose ratio of Euclidean
distances with respect to two fixed points is a constant. If the ratio is 1, the circle becomes the
median line between both points.
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Figure 6.10: Illustration of a posteriori β-soft decision decoding for the (2,1)

block code. Color code is white for correct decoding (CD), light gray for error

detection (ED), and dark gray for incorrect decoding or undetected error (UE).
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If one determines the projection of the received codevector y onto the line seg-

ment joining x1 and x2 as defining the distance d1 and d2 on the inter-segment,

geometry tells us that (d2
E2
− d2

E1
) = (d2

2 − d2
1) and Eq. 6.30 can be rewritten as

P (y|x = x1)

P (y|x = x2)
= e

1
2

(d2
2−d2

1)

σ2 (6.28)

= e
1
2

(d2−d1)(d2+d1)

σ2 (6.29)

= e
1
2
(D

σ
)2(

d2−d1
D

) (6.30)

where the variance σ2 is equal to N0/2, D is the Euclidean distance between

the two codevectors closest to the received codeword y, and d1 and d2 are the

distances from the projection of the received codevector to the line joining the

two closest codevectors. The important factor in Eq. 6.30 is

λ =
d2 − d1

D
, (6.31)

which is independent of the channel noise N0.

If λ = 0, both codevectors are equally probable and the decision of the maxi-

mum likelihood decoder should be rejected. If λ = 1 (d1 = 0 and d2 = D), correct

decision is almost guaranteed since the block codes used are chosen according to

channel conditions so that the minimum Euclidean distance between any two

codevectors is at least several times as large as the expected noise (D2/N0 À 1).

Note that λ > 1 would occur if the received vector y does not lie somewhere in

the space between the two closest codevectors but away from x1 in the opposite

direction from x2, in which case d1 < 0.

For general cases, simulations are necessary to evaluate the performance of the

new decoding scheme. This soft decision based error detection channel decoding

scheme based on the value of λ computed in Eq. 6.31 will be referred to as λ-soft

decoding.
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Figure 6.11: Illustration of a posteriori λ-soft decision decoding for the (2,1)

block code. Color code is white for correct decoding (CD), light gray for error

detection (ED), and dark gray for incorrect decoding or undetected error (UE).

Example: λ-soft decision decoding of a (2,1) block code. Figure 6.11

illustrates the decoding operation when the likelihood ratio of the two most likely

codewords is used as criterion. Error detection based on soft decision decoding

can be declared when λ is smaller than a given threshold. Note that the larger

λ is, the larger the area of error detection. The gray area which represents the

area of erasure declaration grows linearly with λ. Classic soft decision decoding

is a particular case with λ = 0.

With such a soft decision scheme adapted for error detection based on the

ratio of the likelihood, PUE and PCD can be expressed for the specific case of the
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(2,1) linear block code as follows:

PUE = Q

(√
(1 +

λ

2
) α2

4Eb

N0

)
(6.32)

PCD = Q

(
−

√
(1− λ

2
) α2

4Eb

N0

)
(6.33)

PED = 1− PUE − PCD. (6.34)

6.3.5 Comparison between β- and λ-soft decision decoding

In order to compare both soft decision based schemes allowing error detection, one

would like to pursue the example of the (2,1) linear block code and analyze the

merits of both β- and λ-soft decision decoding procedures presented. Figure 6.12

shows the merits of both channel decoding algorithms using the simple (2,1)

linear block code for different values of β (for a posteriori based soft decision

decoding) and λ (for maximum-likelihood based soft decision decoding) when

operating on an AWGN channel at -2 dB SNR. Note that maximum likelihood

based soft decision decoding always outperforms maximum a posteriori based

soft decision decoding at least as far as PUE is concerned, which is the most

important probability for remote speech recognition applications.

This observation can intuitively be verified if one observes in Figure 6.11 that

the boundaries between error detection and correct or incorrect decoding is a

set of points of equal likelihood given the channel conditions. This means that

the subspace that is set aside for error detection only contains vectors whose

likelihoods are smaller than a certain threshold. In other words, λ-soft decision

decoding separates the reliable feature from the unreliable ones in a manner that

is consistent with their likelihoods. This is not the case with β-soft decision

decoding.
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Figure 6.12: Comparison of the probability of correct detection (PCD), error

detection (PED) and undetected error (PUE) depending on the channel decoding

system used (β-soft or λ-soft) for the (2,1) linear block codes over an independent

Rayleigh fading channel at -2 dB SNR.
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This result is an intrinsic property of λ-soft decoding and can be verified with

different types of linear block codes or channel conditions. For this reason, λ-soft

decision decoding is our choice for soft decision channel decoding in the design

of complete remote speech recognition systems.

6.4 Performance of the different channel decoding

schemes

As an example, consider the (10,7) SED block code of Table 6.2 over an indepen-

dent Rayleigh fading channel at 5 dB SNR. Hard decoding yields PUE = 0.3%,

PED = 30.2% and PCD = 69.5%. These numbers are insufficient to provide good

recognition results. Soft decision decoding, on the other hand, does not perform

much better since the probability of undetected errors is too large (PUE = 2.6%).

Figure 6.13 illustrates the performance of the λ-soft decision decoding schemes

for the same code over the same channel for different values of λ. Note first that

λ-soft decision decoding with λ = 0 corresponds to classic soft decision decoding.

With increasing λ, however, one can rapidly reduce PUE to the desired values,

while still keeping PCD large enough and usually above that of hard decision

decoding. For instance, with λ = 0.16, we have PUE = 0.5%, PED = 7.7% and

PCD = 91.8%, which results in good recognition accuracy. Note that when PUE

decreases, PCD decreases as well, which indicates that a tradeoff must be found.

Figure 6.14 illustrates the different probabilities (correct detection, erasure

detection and undetected errors) for a family of block codes with increasing re-

dundancy over a wide range of Rayleigh fading channel conditions. The figure

motivates the design of different channel coding schemes for different channel

conditions. Once the signal-to-noise ratio of the independent Rayleigh fading
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pendent Rayleigh fading channel at 5 dB SNR.
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channel no longer guarantees a low enough probability of undetected errors, even

with soft decision decoding, it is time to switch to a higher rate channel encoder,

which is often done at the expense of source coding resolution.

The probabilities (correct decoding, undetected error and error detection) for

the block codes designed for different independent Rayleigh fading channel SNRs

are listed in Table 6.3. The codes presented can be used for transmission of

PLP cepstral coefficients quantized with 5 to 7 bits per split (see Section 5.3.3).

The value λ = 0.16 is experimentally found appropriate to keep the number of

undetected errors small while the probability of correct decoding remains high.

Note that soft decoding is made at the cost of additional complexity of com-

puting Euclidean distances for all 2K codewords. However, channel decoding is

done at the server, where the complexity of the recognizer prevails.

Similar results are obtained for the additive white Gaussian noise channel and

are presented in Table 6.4. The codes presented can be used for transmission of

MFCC coefficients quantized with 7 to 10 bits per split (see Section 5.4.1).

In both cases, hard decoding typically keeps PUE small enough, but at the

cost of too many frames being erased, and there are not enough frames correctly

decoded to attain high recognition accuracy. Classic soft decision decoding, on

the other hand, suffers from the fact that it cannot detect errors, which results

in a large proportion of erroneously decoded frames. λ-soft decision decoding,

however, always meets the channel coding requirements for remote speech recog-

nition, PUE << 1% and PCD > 90%.
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Code SNR PCD (%) PED (%) PUE (%)

(N,K) (dB) Hard Soft λ-soft Hard λ-soft Hard Soft λ-soft

(8,7) 10 90.5 98.6 93.0 9.1 6.9 0.4 1.4 0.1

(8,7) 9 88.7 97.9 91.3 10.7 8.5 0.6 2.1 0.2

(8,6) 8 86.2 99.0 95.3 13.6 4.6 0.2 1.0 0.1

(8,6) 7 82.9 98.4 94.0 16.7 5.7 0.3 1.6 0.3

(10,7) 6 74.7 98.5 94.0 25.0 5.7 0.3 1.5 0.2

(10,7) 5 69.5 97.4 91.8 30.2 7.7 0.3 2.6 0.5

(10,6) 4 64.3 98.7 95.3 35.7 4.4 0.1 1.3 0.2

(10,6) 3 58.1 97.9 93.3 41.8 6.3 0.1 2.1 0.4

(10,5) 2 51.6 98.9 96.1 48.4 3.7 0.0 1.1 0.2

(10,5) 1 45.0 97.8 93.6 55.0 6.0 0.0 2.2 0.5

Table 6.3: Probability of correct detection (PCD), error detection (PED) and

undetected error (PUE) using hard, soft and λ-soft (λ = 0.16) decision decoding

for the proposed linear block codes over different independent Rayleigh fading

channel SNRs. PED = 0 for soft decision decoding.

6.5 Summary

In this chapter, we analyzed and simulated the effect of channel errors and chan-

nel erasures on recognition accuracy. As opposed to speech coding, it was shown

that remote speech recognition systems are significantly more sensitive to chan-

nel errors than channel erasures. In the first case, the ML path might diverge

for the error free case, which may considerably modify the resulting likelihood

computation. In the second case, redundancy in the speech signal indicates that

a recognizer can cope with a large percentage of channel erasures. Note that

this analysis does not take into account the impact that channel errors may also

have on the predictive source coding scheme, in which case channel errors can
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Code SNR BER PCD (%) PED (%) PUE (%)

(N,K) (dB) (%) Hard Soft λ-soft Hard λ-soft Hard Soft λ-soft

(10,10) 5.97 0.25 97.4 97.4 91.2 0.0 8.2 2.6 2.6 0.6

(10,9) 4.33 1.00 90.4 98.3 92.1 9.2 7.8 0.4 1.7 0.1

(10,8) 3.24 2.00 81.4 97.8 91.2 18.2 8.5 0.4 2.2 0.3

(11,8) 2.48 3.00 71.8 97.3 90.8 27.8 8.7 0.4 2.7 0.5

(12,8) 1.31 5.00 54.5 96.1 86.8 45.3 12.7 0.2 3.9 0.5

(12,7) 0.37 7.00 42.2 95.8 86.7 57.7 12.6 0.1 4.2 0.7

Table 6.4: Probability of correct detection (PCD), error detection (PED) and

undetected error (PUE) using hard, soft and λ-soft (λ = 0.16) decision decoding

for the proposed linear block codes over different AWGN channel SNRs. PED = 0

for soft decision decoding.

propagate through signal prediction.

Based on this observation, we presented channel coding techniques utilizing

linear block codes which would maximize the error detection capability of the

code and be adapted to the low source coding rate for ASR feature quantization.

Finally, we presented several channel decoding techniques, including two tech-

niques which allowed for soft-decision based error detection. In particular, error

detection using the likelihood ratios outperformed error detection using the a

posteriori probabilities. In both cases, the channel decoder, which can probe the

channel using the soft outputs of the channel, returned a soft channel decoding

reliability metric which can be used in a weighted Viterbi recognizer, as will be

seen in the next chapter.
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CHAPTER 7

Remote recognition system

design and performance

This chapter presents different techniques that can be applied at the server (re-

ceiver) in order to improve recognition accuracy over a wide range of channel

conditions. Section 7.1 presents several techniques aimed at alleviating the ef-

fect of channel transmission. The results of the different solutions proposed in

Section 7.1 are compared in Section 7.2. Section 7.3 presents a method for incor-

porating the effect of channel transmission in the training of the HMM models.

Finally, Section 7.4 presents recognition results for complete DSR systems, in-

cluding source coding, channel coding and decoding, as well as frame erasure

concealment.

7.1 Alleviating the effect of channel transmission and

erasures

This section presents different techniques specifically designed for coping with

channel transmission and erasures, regardless of whether the erasures are the re-

sult of a detected channel error or an actual channel erasure (i.e. packet loss).

The different techniques proposed include: 1) dropping the frames that are de-
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clared missing or in error; 2) keeping the doubtful frames, but weighting down

their importance in the Viterbi likelihood computation; 3) applying frame erasure

concealment; and 4) combining weighted Viterbi recognition with frame erasure

concealment. Recognition results using these different techniques are compared

in Section 7.2.

7.1.1 Frame dropping

The first technique reduces the effect of channel transmission on recognition ac-

curacy by detecting channel errors, and consequently removes the “suspicious”

feature vectors from the sequence of observations. The motivation behind this

technique is that, as suggested in Section 6.1, channel errors rapidly degrade

recognition accuracy, while recognizers can cope with missing segments in the

sequence of observations given the redundancy of the speech signal.

The question regarding detection of errors occurring during transmission was

studied in Chapter 6. For now, we assume that such a detection scheme exists,

and study ways of alleviating the effect of missing frames.

The drawback of removing altogether the unreliable frames from the stream

of feature vectors is that the timing information associated with it is lost. This

can significantly impact recognition accuracy.

7.1.2 Weighted Viterbi recognition (WVR)

With remote recognition, reliability of the decoded features is a function of chan-

nel characteristics. When channel characteristics degrade, one can no longer

guarantee the confidence in the decoded feature. If the Viterbi algorithm (VA)

operates without taking into account the decreased feature reliability, this can
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have a dramatic effect on recognition accuracy since errors in feature decoding

can propagate through the trellis (see Section 6.1.1).

In this section, we present a solution for modifying the recursive step (Eq. 6.1)

of the VA to take into account the effect of channel transmission. Ideally, one

would like to weigh the probability of observing the decoded feature given the

HMM state model bj(ot) with the probability of decoding the feature vector ot.

The time-varying weighting coefficient γt can be inserted into Eq. 6.1 by raising

the probability bj(ot) to the power γt to obtain

φj,t = max
i

[φi,t−1 aij] [bj(ot)]
γt . (7.1)

If one is certain about the received feature (no channel noise), γt = 1 and

Eq. 7.1 is equivalent to Eq. 6.1. If, on the other hand, the decoded feature is

unreliable, γt = 0 and the probability of observing the feature given the HMM

state model bj(ot) is discarded in the VA recursive step.

Note that, under the hypothesis of a diagonal covariance matrix Σ, the overall

probability bj(ot) can be computed as the product of the probabilities of observing

each individual feature. If the features are quantized and transmitted separately,

the channel-matched recursive formula (Eq. 7.1) is improved to include individual

weighting factors γk,t for each of the NF features:

φj,t = max
i

[φi,t−1 aij]

NF∏

k=1

[bj(ok,t)]
γ

k,t . (7.2)

7.1.2.1 Binary weighting

With binary weighting, the weighting coefficients γt can either be zero (if the

frame is lost or declared in erasure) or one (if the frame is received). The advan-

tage of this technique over frame dropping, where state metrics are not updated

(φj,t = φj,t−1), is that the timing information of the observation sequence is con-
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served. State metrics are continuously updated, even when γt = 0, by virtue of

the state transition probability matrix using

φj,t = max
i

[φi,t−1 aij]. (7.3)

7.1.2.2 Continuous weighting

Note that the system can be refined if a time-varying continuous estimate γt ∈
[0, 1] of the feature vector reliability is made available to the recognition engine.

We introduced the WVR technique in [58] to match the recognizer with the

confidence in the decoded feature after channel transmission. Such weighting is

a function of the channel decoder. The weighting coefficients would be binary if

hard decision decoding is used, and continuous between 0 and 1 if soft decision

decoding is used. We will return to channel decoding based continuous weighting

for WVR in Section 7.4, which includes channel coding and decoding in a com-

plete DSR system. For the moment, we use WVR to take into account frame

erasures (binary weighting) only.

There exists another way to characterize a continuous weighting coefficient

for WVR through the use of frame erasure concealment, where missing frames

are concealed with an estimate. Quality of the substitutions can be evaluated

and used as continuous weighting coefficients for the WVR scheme.

7.1.3 Frame erasure concealment

The problem when a large number of frames is not received at the decoder is

that the synchronization of the Viterbi recognizer may be disturbed, even if

state metrics are continuously updated using only the transition matrix. Hence,

subsequent received features might be analyzed using an inappropriate state.
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This problem becomes more significant when erasures occur in bursts, almost

forcing the best path in the trellis to remain in the same state for a long period

of time.

Feature concealment methods not only preserve the timing information, but

also attempt to recreate the missing feature vector by replacing it with an esti-

mate. Repetition-based schemes replace missing frames with copies of previously-

received frames, while interpolation-based schemes use some form of pattern

matching and interpolation from the neighboring frames to derive a replacement

frame [60, 61, 62]. Both techniques are justified by the high correlation between

consecutive frames of speech signals. Interpolation techniques require reception

of the next valid feature vector, which adds significant delay when errors occur

in bursts. For this reason, only repetition-based techniques will be analyzed.

7.1.4 Erasure concealment combined with WVR

Performance of repetition or interpolation techniques degrades rapidly as the

number of consecutive lost frames increases, since the quality of the replacement

features decreases with regards to its similarity with the missing features. For

instance, when packet losses approach or exceed the length of a phoneme (10-100

ms or 1-10 frames), the speech signal may already have evolved to another sound,

which no longer justifies repetition of the last correctly received feature vector.

This section presents an extension to the repetition-based concealment tech-

nique, whereby the confidence in the frame erasure concealment is fed into the

Viterbi recognizer for improved recognition performance. Indeed, it is beneficial

to decrease the weighting factor γ
k,t

when the number of consecutively repeated
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CHANNEL STATE GOOD BAD GOOD

Frames status
√ √ √ − − − − √ − − − − √ √ √ √ √ − √ √

Temporal Features
√ √ √ Ã Ã Ã Ã √ Ã Ã Ã Ã √ √ √ √ √ Ã √ √

Derivatives
√ √

x × × × × × × × × × y
√ √ √

x
√
y
√

Accelerations
√ √

x × × × × × × × × × y
√ √ √ √ √ √ √

Table 7.1: Example of computation of temporal and dynamic features in the

presence of frame erasures.

frames increases. For the weighting coefficients, we propose

γ
k,t

=
√

ρ
k
(t− tc), (7.4)

where ρ
k

is the time auto-correlation of the kth feature and tc is the time instant

of the last correctly received frame. Note that if there is no erasure, t = tc and

γ
k,t

= 1.

7.1.4.1 Computation and weighting of dynamic features

Erasures also propagate through the computation of feature derivatives and ac-

celerations. For this reason, only immediate left and right neighboring frames

are used for the computation of dynamic features. While this might result in a

slight loss of performance in erasure-free conditions, it provides robustness against

erasures.

The case of PLP D A features is analyzed where recognition is performed

including the temporal features (PLP) and the dynamic features (derivative ‘D’

and acceleration ‘A’). The dynamic features are computed at the receiver as

follows. First, the receiver determines what the status of the channel is. If

two consecutive frames are lost/received, then the receiver determines that the

channel is bad/good.
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Gilbert Channel State Good Bad

Temporal features γ
k,t

=
√

ρ
k
(t− tc)

Dynamic features γ
k,t

= 1 γ
k,t

= 0

Table 7.2: Determination of the frame erasure concealment based weighting co-

efficients for WVR.

Table 7.1 explains in detail how to compute and weigh the features depending

on whether the frame was received (shown as
√

) or lost (shown as −). Table 7.1

includes transitions from a good state to a bad state in the Gilbert channel model

and vice versa, as well as erasures within a good state and correct transmission

within a bad state. For the temporal features, missing frames are replaced with

a copy of the temporal features in the previous frame (shown as Ã). Weighting

coefficients follow the square root of the time-correlation of each feature (Eq. 7.4).

For the dynamic features, if only one of the two features necessary for the com-

putation of a derivative is missing, a one-sided derivative is computed (x or y).

If both are missing, the dynamic feature is not computed and is discarded in the

Viterbi search (shown as ×) by assigning zero weighting.

In the bad channel state, temporal features are repeated and the weighting

coefficients of the dynamic features are set to zero. If the channel state is good,

the dynamic features are computed and the weighting coefficients of the dynamic

features are set to one. A one-sided derivative is used if a neighboring frame is

lost on either side while still in a good channel state. Table 7.2 summarizes the

WVR weighting coefficients as a function of the channel status.

This option is chosen over repeating the entire previous frame (temporal and

dynamic features) for the following reason. While time-correlation between suc-

cessive temporal features allows for repetition, time-correlation of the dynamic
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features is significantly smaller than for the temporal features. Hence, repetition

of dynamic features does not necessarily lead to a good estimate of the missing

features and should be avoided.

7.2 Recognition results for the different techniques

alleviating the effect of channel erasures

This section compares recognition results for the different techniques aimed at

alleviating the effect of channel erasures. The recognition experiment is based on

continuous digit recognition using unquantized PLP6 features and the Aurora-2

database [104] and configuration (word models, 16 states and 6 mixtures/states).

Table 7.3(a) illustrates recognition accuracy for the different frame erasure

concealment techniques applied to the independent erasure channel. Baseline

recognition accuracy for erasure-free channels is 98.52%. Several observations

can be made.

1. After about 10-20% of independent frame erasures, recognition accuracy

degrades rapidly with an increased percentage of erasures.

2. Transmission of the binary frame erasure reliability measurement to the

weighted Viterbi recognizer preserves synchronization of the VA and signif-

icantly reduces the word error rate.

3. Repetition-based frame erasure concealment, which in addition to preserv-

ing the timing also provides an approximation for the missing feature, typ-

ically outperforms binary WVR for the channel with independent erasures.

4. Addition of the continuous weighting coefficients γ
k,t

representing the qual-

ity of the feature concealment technique (Eq. 7.4) in the Viterbi search
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Independent Erasures 0% 10% 20% 30% 40% 50% 60%

Frame dropping 98.52 97.19 93.51 85.49 71.23 56.33 38.76

Binary WVR 98.52 98.31 98.11 97.19 96.87 94.31 93.19

Repetition 98.52 98.47 98.31 98.19 97.67 96.35 94.31

Repetition + Cont. WVR 98.52 98.52 98.47 98.39 98.11 97.61 96.01

(a) Independent erasure channels.

Gilbert Channels (2.5,20) (2.5,15) (5,20) (2.5,10) (1.25,5) (5,15) (10,20) (5,10)

Frames dropping 90.68 87.04 85.79 81.67 80.07 79.33 74.70 69.85

Binary WVR 97.35 96.27 96.20 94.53 93.69 95.06 94.85 92.82

Repetition 97.41 96.41 96.77 94.42 93.27 94.35 93.83 92.11

Repetition + Cont. WVR 98.07 97.55 97.84 97.37 97.03 97.15 96.87 96.09

(b) Bursty (Gilbert) erasure channels.

Table 7.3: Recognition accuracy with the Aurora-2 database and PLP D A fea-

tures using two types of channel erasures: (a) independent and (b) bursty. Differ-

ent techniques for the effect of channel erasures are compared: frame dropping;

frame dropping with binary WVR (γt = 0 if frame is dropped); frame erasure con-

cealment (repetition); and repetition with continuous WVR (γ
k,t

=
√

ρ
k
(t− tc)).
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further improves recognition performance.

These results are confirmed in Table 7.3(b) for the bursty Gilbert channels of

Table 6.1 for which we can make additional observations:

1. Binary WVR may outperform repetition-based erasure concealment when

the average burst lengths are large.

2. Again, frame erasure concealment combined with WVR provides the best

recognition results. For instance, for the Gilbert channel with (PGB, PBG) =

(1.25, 5), recognition accuracy improves from 93.27% to 97.03%, a 71% rela-

tive word error rate (WER) reduction compared to the baseline recognition

performance of 98.52%.

3. Despite average overall probability of frame erasures between 18% and 33%

and average length of erasure bursts between 5 and 20 frames (see Ta-

ble 6.1), recognition accuracy is kept within 2% of the baseline erasure-free

performance.

7.3 Note on channel multi-conditional training

A typical solution for speech recognition applications to gain robustness against

acoustic noise is to train the acoustic models on a training data set that includes

both clean and noisy signals. If the training is done with a variety of background

acoustic noises, the resulting HMM models are hybrid enough to provide high

recognition accuracy both for clean and noisy speech. This technique is called

multi-conditional training.

One would like to use the same technique to combat channel noise. Unfor-

tunately, multi-conditional training can be used for acoustic noise because the
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feature representing the speech signal impaired by noise will be correlated to

the original feature, to a certain degree that may vary with noise levels. For

instance, evaluations on the Aurora-2 database with MFCCs showed that recog-

nition accuracy for clean speech signals based on clean and multi-conditionally

trained HMM models was 98.4% and 98.2%, respectively. This indicates that

the multi-conditionally trained HMM models should be comparable to the clean

HMM models.

This would not be the case for channel noise, where after channel and source

decoding, the decoded features may look very different from the original feature

and the resulting HMM models may fail to represent scattered distributions of

features. This will notably reduce recognition accuracies in clean channel situa-

tions and fall short from representing all possible channel noises.

The solution to the problem of channel multi-conditional training lies in find-

ing a way to cope at the statistical level (not at the feature level) with the ran-

domness of feature distributions in the presence of channel noise. The answer to

the problem is to prevent erroneous features from destroying the acoustic models

by filtering them out after channel decoding. This is also the goal successfully

pursued by the weighted Viterbi recognition algorithm. One could imagine that

a similar technique could be used for channel multi-conditional training.

The novelty of the WVR algorithm is to modify the probability of observing

a feature vector from P (ot) to P (ot)
γt to incorporate the effect of the channel

transmission. The effect of channel noise is mapped into a single parameter, γt,

which represents the channel decoding reliability.

For the purpose of channel multi-conditional training, imagine further that

the new value P (ot)
γt can represent, with proper normalization, a new probability

taking into account the effect of channel transmission. Acoustic models estimated
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using these probabilities should be more robust to channel transmission if the

same weighting is applied during both training and testing.

The appropriate normalization of the probability must be equal to the integral

from −∞ to +∞ of the new probability distribution. This guarantees that the

new probability distribution sums up to one. The normalization factor can then

be computed as follows:

Kt =

∫ ∞

−∞
P (o|γt) dx (7.5)

=

∫ ∞

−∞
P (ot)

γt dx (7.6)

=

∫ ∞

−∞

(
1√

(2π)NF |Σ| e−
1
2
(ot−µ)′Σ−1

(ot−µ)

)γt

dx (7.7)

=

∫ ∞

−∞

(
1√

(2π)NF |Σ|

)γt

e
− 1

2
(ot−µ)′

�
Σ
γt

�−1

(ot−µ)
dx. (7.8)

This value can be simplified if one can re-write Eq. 7.8 using another multi-variate

Gaussian distribution with covariance matrix Σ
γt

for which the determinant is

|Σ
γt
| = 1

γ
NF
t

|Σ| to obtain

Kt =
1√

(2π)NF |Σ|γt−1

1√
γt

NF

∫ ∞

−∞

1√
(2π)NF |Σ|

γt

e
− 1

2
(ot−µ)′

�
Σ
γt

�−1

(ot−µ)
dx

=
1√

γNF
t ((2π)NF |Σ|)γt−1

. (7.9)

Once the normalization constant, which is time-varying and a function of γt, is

computed, we obtain the following expression of the weighted probability:

P (ot|γt) =
P (ot)

γt

Kt

(7.10)

= P (ot)
γt ·

√
γNF

t ((2π)NF |Σ|)γt−1. (7.11)

Note that Kt is time-varying, independent of µ, but is dependent of Σ. Note
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also that if γt = 1, which corresponds to the original unweighted case, one has

Kt = 1, as expected.

The EM algorithm could be applied to this new set of probabilities, which

would take into account the channel conditions to derive HMM models that are

more channel robust by matching HMM training with channel conditions.

For instance, if single mixture Gaussian models with diagonal covariance were

used (or if the two Gaussians were sufficiently separated), one can analytically

derive the resulting Gaussian mean (µ̂) and variance (Σ̂) parameters by max-

imizing the log probability of observing the training set of features given the

parameters. If we refer to the likelihood by L, one obtains

L =
T∏

t=1

P (ot|γt) (7.12)

=
T∏

t=1

P (ot)
γt

Kt

(7.13)

=
T∏

t=1

[
1

(2π)NF /2
1

|Σ|1/2 e−
1
2
(ot−µ)Σ−1(ot−µ)′

]γt

Kt

(7.14)

and the following for the logarithm of the likelihood

log(L) = −1

2

T∑
t=1

[
NF log(2π) + log(|Σ|) + (ot − µ)Σ−1(ot − µ)′

] · γt − log(Kt).

(7.15)

The parameter µ̂ that maximizes log(L) is found by taking the derivative of

Eq. 7.15 with respect to µ and equaling it to zero. In other words, since ∂Kt

∂µ
= 0,

we have
∂ log(L)

∂µ
= −1

2

T∑
t=1

(ot − µ)Σ−1γt (7.16)

which is equal to zero if and only if

T∑
t=1

γtot =
T∑

t=1

γtµ (7.17)
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or equivalently if

µ̂ =

∑T
t=1 γtot∑T
t=1 γt

. (7.18)

Note that if ∀t γt = 1, computation of the mean becomes µ̂ =
PT

t=1 ot

T
, which

is equivalent to the formula for the unweighted case.

For the estimation of the diagonal elements (σ̂j) of the covariance matrix Σ,

assuming diagonal covariance matrix, Eq. 7.15 can be rewritten as

log(L) =
T∑

t=1

[
−NF

2
log(2π)−

NF∑
j=1

(
log(σj) +

(ot,j − µj)
2

2σ2
j

)]
· γt

+
NF

2
log γt +

NF

2
(γt − 1) log(2π) + (γt − 1)

NF∑
j=1

log(σj). (7.19)

Taking the derivative of Eq. 7.19 with respect to each variance (σj), one can

see that the maximum log likelihood is obtained when the derivative

∂ log(L)

∂σj

=
T∑

t=1

[
− γt

σj

+
(ot,j − µj)

2

σ3
j

γt +
(γt − 1)

σj

]
(7.20)

equals zero. This is the case when

σ̂j
2 =

∑T
t=1 γt(ot,j − µj)

2

T
. (7.21)

Note again that if ∀t γt = 1, the variance becomes

σ̂j
2 =

∑T
t=1(ot,j − µj)

2

T
, (7.22)

which is equivalent to the regular expression for the computation of the variance.

In the other extreme case where ∀t γt = 0 (all the observations are unreliable and

the probabilities are equal), then σ̂j
2 = 0.

Intuitively, as expected, Eqs. 7.18 and 7.21 indicate that the elements received

with a high degree of reliability should be given a larger weight in the estimation
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of the means and variances. However, note that no mathematical expression

exists for the case of Gaussian mixtures, and an iterative training algorithm,

such as the EM algorithm, must be used.

Note that the distribution for P (ot|γt) can be computed by directly dividing

P (ot)
γt by Kt to yield

P (ot|γt) =

(
1√

(2π)NF |Σ| e−
1
2
(ot−µ)′Σ−1

(ot−µ)

)γt

·
√

γNF
t ((2π)NF |Σ|)γt−1

=

√
γNF

t (2π)NF (γt−1)|Σ|γt−1

(2π)NF γt |Σ|γt
e−

1
2
(ot−µ)′Σ−1

(ot−µ)·γt (7.23)

=

√
γNF

t

(2π)NF |Σ| e−
1
2
(ot−µ)′Σ−1

(ot−µ)·γt (7.24)

=
1√

(2π)NF |Σt |
e
− 1

2
(ot−µ)′ Σt

−1

(ot−µ)
, (7.25)

which is another Gaussian probability distribution whose covariance matrix is

the original covariance matrix divided by γt.

The motivation for doing this is that HMM models trained on the features

corrupted by channel transmission could provide robustness against channel noise

in the same way that HMM models trained on features computed from noisy

speech signals provide robustness against acoustic noise. However, this method

is not pursued here since it would slightly degrade the results of the recognition

engine operating on uncorrupted data.

7.4 Performance of complete remote recognition systems

In the remainder of this chapter, the concepts presented previously (source cod-

ing, channel decoding and frame erasure concealment with weighted Viterbi recog-

nition) are applied to quantized ASR features in order to evaluate a complete DSR
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system including source and channel coding and decoding.

7.4.1 Comparison between hard and soft decision decoding

In this section, we compare recognition results when using hard and soft decision

decoding, both with and without WVR.

For the purpose of performing channel decoding based WVR, we first recall

that soft-decision based error detection was achieved using two types of channel

decoding reliability measurement: one based on the ratio of the a posteriori

probabilities (βt) and one based on the ratio of the log likelihoods (λt).

The estimate for the γt coefficient can be obtained by defining a mapping

function between the decoding measure βt introduced in Section 6.3.3 (Eq. 6.25)

(0 ≤ βt ≤ ∞) or the measure λt introduced in Section 6.3.4 (Eq. 6.31) (0 ≤ λt ≤
1) and the Viterbi weighting coefficient γt (0 ≤ γt ≤ 1).

For the βt value, we propose the following sigmoid function,

γt = 1/(1 + e−21.8(βt−0.3)) (7.26)

to map the relative difference in Euclidean distances βt into confidence estimate

γt. This function, shown in Figure 7.1, gives a confidence measure γt < 0.1 when

βt < 0.2 and γt > 0.9 when βt > 0.4.

Another solution for defining a weighting coefficient γt for the weighted Viterbi

algorithm could be more naturally derived from the λt value where λt ∈ [0, 1].

While the mapping function could be γt = λt, such linear function would not

decrease the weight of the unreliable feature enough (like in the sigmoid function

Eq. 7.26). We propose the following square function to map the interval [0, 1] for

λt to the interval [0, 1] for γt: γt = λ2
t . The quadratic exponent is empirically

chosen after it was proven to provide the necessary statistical rejection of the
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Figure 7.1: Sigmoid function mapping relative Euclidean distance difference (βt)

to confidence measure (γt).

uncertain frames. Given the superior behavior of soft decision decoding based

on the λt measurement, only the second channel decoding (λ-soft) and quadratic

mapping will be analyzed.

Note that if hard decision decoding was used, only binary weighting coeffi-

cients could be used for the WVR (γt = 0 for erasure and γt = 1 for reception).

For soft decision decoding, one can choose to apply the same binary weighting

with γt = 0 if λt < τ and γt = 1 if λt ≥ τ , or to apply the continuous weighting

γt = λ2.

Figure 7.2 compares recognition accuracy using λ-soft decision decoding with

continuous WVR, λ-soft decision decoding with binary WVR, and the widely

used hard decision decoding with binary WVR when transmitting PLP6 features

using the (10,6) linear block code over a wide range of independent Rayleigh

fading channels. Note that performing joint channel decoding and recognition

with continuous weighting always outperforms the other two strategies. For a

given recognition accuracy level, the gain of the λ-soft decision decoding with

continuous WVR is roughly 1 and 3 dB over λ-soft and hard decoding with
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Figure 7.2: Recognition accuracy using the P-LSFs of PLP6 quantized with 6 bits

per frame and the (10,6) linear block code over an independent Rayleigh fading

channel.

binary WVR, respectively.

Figure 7.3 illustrates recognition accuracy after choosing for each SNR the

block code that yields the best results. Observe again the notably superior per-

formance of the joint soft decision decoding-Viterbi recognition scheme. Even for

bit rates as low as 500 bps, λ-soft decision decoding combined with continuous

WVR allow for respectable recognition accuracies over a wide range of indepen-

dent Rayleigh fading channel SNRs.
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Figure 7.3: Recognition accuracy after transmission of the P-LSFs of PLP6 over

an independent Rayleigh fading channel.

7.4.2 Comparison between WVR with and without frame erasure

concealment

Simulations carried out in the previous section indicated that λ-soft decision

decoding always outperformed hard decision decoding. It was also shown that

performing continuous WVR with γt = λ2
t as a weighting coefficient instead

of frame dropping with binary weighting further improved recognition accuracy

throughout the spectrum of channel conditions.

In this section, we compare the merits of such configuration (λ-soft decoding

with continuous WVR) with another configuration which conceals the erased or

unreliable frames, both with and without continuous WVR, based this time on

the concealment quality weighting coefficient.

Table 7.4 presents recognition accuracy after transmission over a wide range

169



of independent Rayleigh fading channels whose equivalent bit error rate ranges

from 2% to 12%. Source coding is applied on the LSFs of the PLP6 system,

using anywhere between 5 and 8 bits per frame. Depending on the channel

conditions, different channel encoders are used. Overall bit rate, including source

and channel coding, is limited to less than 500 bps. Note that the equivalent

BER of the Rayleigh channel, computed as

Pe =
1

2

(
1−

√
z

1 + z

)
(7.27)

where z is the channel SNR, is also reported.

Two scenarios are considered. In the first one, all the features are transmitted

to the recognizer, even the unreliable ones, and the weighting coefficients (γt = λ2
t )

will lower the importance of the inaccurate ones. In the second, the unreliable

features (those for which λt < 0.16) are dropped and concealed with a substitution

feature vector. The WVR weighting coefficient is based on the quality of the

concealment operation (γ
k,t

=
√

ρ
k
(t− tc)).

Table 7.4 indicates that no one strategy always outperforms the other in a

statistically significant manner. However, it is expected that for heavily correlated

fading channels which can cause bursts of errors, frame erasure concealment could

provide improved recognition.

7.5 Performance of remote recognition systems using

quantized MFCCs

Parts of the experiments presented above for PLP are repeated in this section for

MFCC features, illustrating the generality of the source coding, channel coding

and channel decoding scheme presented in the previous chapters.
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Block Code SNR BER RECOGNITION (%)

(N,K) (dB) (%) λ-soft λ-soft

γt = λ2
t γk,t =

√
ρk(t− tc)

Cont. WVR Cont. WVR

(8,7) 10 2.33 98.7 98.7

(8,7) 9 2.88 98.5 98.6

(8,6) 8 3.55 98.3 98.2

(8,6) 7 4.35 98.3 98.4

(10,7) 6 5.30 98.4 98.5

(10,7) 5 6.42 98.2 98.3

(10,6) 4 7.71 98.1 98.1

(10,6) 3 9.19 97.8 97.8

(10,5) 2 10.85 97.5 97.6

(10,5) 1 12.67 97.1 97.4

Table 7.4: Comparison between performance of channel based continuous WVR

(γt = λ2
t ) and erasure concealment based continuous WVR (γk,t =

√
ρk(t− tc)).

MFCCs are quantized using the techniques presented in Section 5.4 with 7 to

9 bits per splits. After channel protection, the number of bits after forward error

correction is 10 or 12 bits per split, for a total of 1.0 or 1.2 kbps, depending on

channel conditions.

The source and channel coding pairs used over an independent Rayleigh fad-

ing channel at different SNRs are presented in Table 7.5. Note again that λ-soft

decision decoding almost always meets the channel coding requirements for re-

mote speech recognition, PUE < 0.5% and PCD > 90%. Hard decision would

not be able to meet the requirement for PCD, and soft decision would satisfy the

requisite for PUE.

Figure 7.4 illustrates recognition accuracy after choosing for each SNR the
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Code SNR PCD (%) PED (%) PUE (%)

(N,K) (dB) Hard Soft λ-soft Hard λ-soft Hard Soft λ-soft

(10,9) 11 90.6 98.7 91.3 9.0 8.7 0.4 1.3 0.0

(10,9) 10 88.4 97.9 89.3 11.1 10.6 0.6 2.1 0.1

(10,8) 9 86.0 98.8 94.0 13.8 5.8 0.3 1.2 0.1

(10,8) 8 82.6 98.3 92.4 17.0 7.4 0.4 1.7 0.2

(12,9) 7 75.4 98.3 93.0 24.2 6.7 0.3 1.7 0.3

(12,8) 6 70.2 99.3 96.2 29.8 3.8 0.0 0.7 0.0

(12,8) 5 65.0 98.7 94.3 35.0 5.6 0.1 1.3 0.2

(12,8) 4 58.8 97.6 91.6 41.1 8.1 0.1 2.4 0.3

(12,7) 3 52.3 98.6 94.3 47.7 5.5 0.0 1.4 0.2

(12,7) 2 45.1 97.3 91.3 54.9 8.3 0.1 2.7 0.4

(12,7) 1 38.2 95.3 87.3 61.8 11.7 0.1 4.7 1.0

Table 7.5: Probability of correct detection (PCD), error detection (PED) and

undetected error (PUE) using hard, soft and λ-soft (λ = 0.16) decision decoding

for the proposed linear block codes over different independent Rayleigh fading

channel SNRs. PED = 0 for soft decision decoding.

block code that yields the best results. The superior performance of the joint

soft decision decoding-Viterbi recognition scheme is confirmed for MFCC fea-

tures. Recognition accuracies remain acceptable over a wide range of independent

Rayleigh fading channel SNRs and using overall bit rates less than 1.2 kbps. This

improves by a factor of 4 the scheme proposed in the Aurora-2 standard [104].

7.6 Summary

In this chapter, we first developed frame erasure concealment techniques which

could significantly improve recognition accuracy over a wide range of indepen-
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Figure 7.4: Recognition accuracy after transmission of the 13 MFCCs over an

independent Rayleigh fading channel.

dent and bursty erasure channels. The techniques presented included frame drop-

ping, weighted Viterbi recognition, frame erasure concealment and channel multi-

conditional training.

Second, we analyzed the performance of complete DSR systems, which include

ASR feature quantization as well as channel coding and decoding. Over indepen-

dent Rayleigh fading channels, the λ-soft channel decoding scheme combined

with continuous WVR was shown to outperform both hard and λ-soft decoding

with frame dropping and binary WVR. By using a variety of source and channel

coding rate combinations, it was shown that remote speech recognition could be

obtained over a wide range of channel conditions and with a high recognition

rate with less than 500 bps for PLP features and 1.2 kbps for MFCC features.

Finally, the respective merits of channel based WVR and erasure concealment

based WVR are compared.
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CHAPTER 8

Summary, discussion and future

work

We have presented source and channel coding solutions for two types of speech

applications: speech transmission and remote speech recognition. The first ap-

plication, speech transmission, in which the speech signal is played back at the

receiver, focuses on speech quality as judged by a human listener. The second

application, remote speech recognition, focuses on the accuracy of the automatic

speech recognizer at the server.

While both applications are fundamentally different, the source and channel

coding techniques used in both applications involve similar concepts: 1) vari-

able bit rate source coding, 2) analysis of the sensitivity of the information bits

to channel errors, 3) determination of channel coding requirements, 4) variable

redundancy rate channel coding, and 5) dynamic bit allocation between source

and channel coding so that with a fixed overall bit rate, graceful performance

degradation over a wide range of channel conditions is achieved.

The realization of these concepts for both applications are reviewed in the

next two sections. The last two sections recapitulate the main contributions

made and present future research directions.
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8.1 Adaptive multi-rate speech transmission

In the first application, considered in Part I, we have shown how to combine

embedded and variable bit rate speech source coding with rate-compatible punc-

tured channel coding to build adaptive multi-rate (AMR) transmission systems.

Chapter 2 presented two types of speech coders whose properties (variable

bit rate and embedibility) are useful for implementing embedded adaptive multi-

rate speech transmission systems. The first coder is a perceptually-based subband

coder which incorporates knowledge of the human auditory system to produce a

bandwidth efficient bitstream with a very wide range of perceptual sensitivities to

channel errors. The second coder is the ITU embedded G.727 ADPCM standard.

The bit error sensitivities of both coders are evaluated to help determine for each

bit position the maximum tolerable BER that keeps channel distortions inaudible

and the amount of channel protection required.

Chapter 3 introduced the new rate-compatible punctured trellis codes (RCPT)

and compared their performance with rate-compatible punctured convolutional

codes (RCPC) and rate-compatible punctured convolutional codes with bit-interleaved

coded modulation (RCPC-BICM). RCPT codes are designed in order to maximize

the Euclidean distance between trellis error events, whereas RCPC codes maxi-

mize Hamming distances. For 4-PSK constellations, RCPC codes also maximize

Euclidean distance, but for larger constellations, they are sub-optimal. Larger

constellation sizes are important for larger throughput. For instance, it would be

interesting to propose RCPT codes for the upcoming EDGE (enhanced data rate

GSM evolution) channels, which will be using 8-PSK constellations.

The advantage of RCPT over RCPC-BICM comes from the combination of

trellis coding and modulation for an improved Euclidean distance profile. Also,
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RCPT decoding typically requires a smaller punctured traceback depth than

RCPC and RCPC-BICM; hence it requires smaller frame sizes and buffering de-

lays. By dropping symbols instead of bits, RCPT codes provide variable baud

rates. This can be useful in situations where it is advantageous to lower the

symbol throughput or the transmitter power consumption. The robustness and

flexibility of the progressive symbol puncturing scheme make the proposed archi-

tecture promising for communication channels where deep fade or strong inter-

ference can be modeled as symbol puncturing.

In Chapter 4, we present a technique for finding the optimal puncturing

schemes for different channel conditions and source bit rates, and we design

AMR systems for the perceptually-based embedded subband encoder and the

embedded ADPCM standard. Based on bit error sensitivity analysis, unequal

error channel protection requirements are determined and provided by RCPT,

RCPC and RCPC-BICM codes. Performance of AMR systems operating at 10

kbaud/s using an 8-PSK constellation for RCPT and RCPC-BICM or on a 4-PSK

constellation for RCPC are compared.

The main advantage of our AMR scheme is that different operating modes

can be selected at each time instant according to channel quality. One can switch

from a source/channel coding rate combination to another depending on chan-

nel conditions. This results in bandwidth efficient speech communication with

consistent quality over a wide range of channel conditions.

The intrinsic embedded structure of both source and channel encoders offers

multiple advantages. First, the entire AMR system can be implemented using a

single codec. Only the number of allocated bits and the puncturing table need

to be updated at the transmitter when switching between operating modes. At

the receiver, adjustment to rate changes is simple. Branch metrics corresponding

176



to the punctured symbols in the Viterbi decoder are set to zero according to the

puncturing table.

Second, one can drop bits or symbols anywhere in the transmission link, with-

out having to re-encode the signal. This offers flexibility for traffic management.

Third, embedded source coders usually produce bits with a wide range of

predictable sensitivities against channel errors and are therefore well suited for

unequal error protection. We have shown, for instance, that perceptually-based

dynamic bit allocation can isolate several bits in the bitstream that are almost

insensitive to channel errors and can be left unprotected. In addition, embed-

ded coding structures allow for multi-resolution coding, which is highly desirable

for delay sensitive communication systems, as there is no need to wait for the

reception of the entire bitstream before recovering speech of reasonable quality.

Systems using AMR source and channel coding are likely to be integrated in

future communication systems. We have provided some examples that demon-

strate the potential for RCPT AMR systems to provide graceful speech degrada-

tion over a wide range of channel SNRs.

8.2 Remote speech recognition

For the second application, considered in Part II, we presented a framework

for developing source coding, channel coding and decoding as well as erasure

concealment techniques for DSR applications.

As a case study, source coding, channel coding, and speech recognition tech-

niques are combined to provide high recognition accuracy over a large range of

channel conditions for two types of features, PLP and MFCC.

In Chapter 5, the perceptual line spectral frequencies representing the PLP
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spectrum are quantized using weighted vector quantization operating at low bit

rates (300 bps). The weighting coefficients are obtained after analytical and ex-

perimental study of the sensitivity of recognition accuracies to PLP quantization.

Similar techniques are used for MFCC quantization at less than 1.2 kbps.

It is shown in Chapter 6 that speech recognition, as opposed to speech coding,

is more sensitive to channel errors than channel erasures, and appropriate channel

coding design criteria are determined.

Efficient channel coding techniques for error detection based on linear block

codes are presented in Chapter 6, and a new technique that performs error de-

tection with soft decision decoding is described. The new channel decoder, which

introduces additional complexity only at the server, is proven to outperform the

widely-used hard decision decoding for error detection.

Once an error is detected, the corresponding frame is erased, and frame erasure

concealment techniques which alleviate the effects of channel transmission are

discussed. We introduced in Chapter 7 the weighted Viterbi recognizer (WVR),

whereby the recognizer is modified to include a time-varying weighting factor

depending on the assessed quality of each feature after transmission over time-

varying channels.

We demonstrate in Chapter 7 that high recognition accuracy over a wide range

of channel conditions is possible with low overall bit rate when using the appropri-

ate source and channel coder, as well as the adapted frame erasure concealment

and weighted Viterbi recognition techniques.

Note that the source and channel coding techniques presented are not re-

stricted to the transmission of PLP or MFCC and can be extended to other

recognition features.

Together, channel estimation, erasure concealment and weighted Viterbi speech
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recognition are shown to improve robustness of the DSR system against channel

noise, extending the range of channel conditions over which wireless or internet-

based speech recognition can be sustained.

To our knowledge, the effect of channel transmission on remote recognition

systems based on quantized ASR features is a topic not yet extensively covered

in the literature. Hence, our analysis and the proposed techniques present a

significant improvement toward gaining robustness against channel noise.

8.3 Contributions

The main contributions of this dissertation are in the design of source and channel

coding strategies for speech transmission and remote speech recognition.

Part I of the dissertation, dedicated to improving speech quality after trans-

mission over a wide range of channel conditions, makes contributions in the fol-

lowing areas.

In the area of source coding (Chapter 2), we present the bit error sensitivity

of two embedded coders and determine adequate levels of forward error coding

to keep channel distortions inaudible.

In the area of rate-compatible channel coding (Chapter 3), we introduce the

Rate-Compatible Punctured Trellis codes (RCPT) whereby unequal error pro-

tection is obtained by puncturing symbols in a trellis. RCPT codes are designed

to maximize residual Euclidean distance after puncturing, and are well suited for

constellations where Euclidean and Hamming distances are not equivalent.

In the area of AMR system design (Chapter 4), we introduce a technique for

determining puncturing architecture in accordance with channel conditions.

Part II of the dissertation, which is dedicated to improving remote speech
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recognition accuracy, makes contributions in several areas.

In the area of source coding (Chapter 5), we propose efficient quantization

techniques for PLP or MFCC features for remote speech recognition based on

quantized features.

In the area of channel coding (Chapter 6), it is first predicted and experi-

mentally verified that speech recognition, as opposed to speech coding, is more

sensitive to channel errors than channel erasures. Two types of channels are an-

alyzed: independent and bursty channels. Efficient channel coding techniques

for error detection based on linear block codes and the above requirements are

determined.

In the area of channel decoding (Chapter 6), the merits of soft and hard de-

cision decoding are discussed, and new techniques for performing error detection

with soft decision decoding are presented. The soft decision channel decoder,

which introduces additional complexity only at the server, is proven to outper-

form the widely-used hard decision decoding scheme.

In the area of speech recognition (Chapter 7), the recognition engine is modi-

fied to include a time-varying weighting factor depending on the quality of each

decoded feature after transmission over time-varying channels. Two different

techniques are proposed to assess the quality of the decoder feature: 1) based

on the soft values of the received bits, the probability of correctly decoding the

feature given the channel condition is computed, and constitutes a basis for esti-

mating the quality of the decoder feature; 2) frame erasure concealment is used to

approximate the missing features, and the quality of the concealment operation

is estimated. Subsequently, the quality of the features are taken into account by

a weighted Viterbi recognizer (WVR).
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8.4 Looking forward

The first part of this research has demonstrated the usefulness of adaptive trans-

mission with embedded source and channel coding, and provided new method-

ologies for improved implementation of embedded coding techniques in speech

communication. The work provides opportunities for several areas of research.

The current method for designing RCPT codes for Rayleigh fading channels

is based on the periodic effective code length (PECL) metric, which is essentially

a measure of the diversity provided by the code after periodic puncturing. It

would be interesting to extend the code design methodology of RCPT codes

using metrics reflecting the true diversity of the code.

Another main area of future work would consist of designing source and chan-

nel coders that are truly joint. Indeed, while the existing literature deals exten-

sively with source optimized channel coding or decoding (e.g. [125]) and channel

optimized source coding (e.g. [126]), the approach of joint source and channel

coding remains an open area of research. Applied to speech, the very existence

of channel coding can be rethought. Since the original redundancy of the speech

signal can serve as an efficient method to deal with noisy transmission, perhaps

one can design a speech source codec that is in essence robust against reasonable

transmission error.

The second part of this research made numerous contributions in the design of

remote speech recognition applications operating at low bit rates over error-prone

channels. Possible extensions of this work can be found in the following areas of

research.

One can foresee that in the future, mobile devices will free themselves from

interaction with a server for performing speech recognition. When the increas-
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ing memory size and processor speed become sufficient to store the acoustic and

language model as well as to perform the tasks of front-end processing and recog-

nition, it is reasonable to believe that a mobile device could perform speech

recognition locally. This opens a new area for research, which aims at reducing

the memory and computational requirements for achieving local speech recogni-

tion. For instance, it would be interesting to see how recognition performance

would degrade with constraints on the available memory or computational power.

A second possible extension is to apply the proposed methodologies to dif-

ferent recognition tasks, such as large vocabulary continuous speech recognition

(LVCSR), as well as to analyze the effect of model size (word, phone, tri-phone)

on source and channel coding design for remote speech recognition.

Finally, after robustness against quantization and channel noise has been

achieved through the use of appropriate source and channel coding methods,

respectively, another area of research is to analyze the robustness of the proposed

features and quantization methods to acoustic noise. Given the mobility of the

users, they will be exposed to a large variety of background noise conditions

which may degrade recognition performance. This topic has been extensively

studied, notably by modifying the front-end to derive robust ASR features or the

back-end by adapting the acoustic models to the present acoustic conditions. A

possible extension to our research could be to perform joint background noise

conditions evaluation and weighted Viterbi recognition to obtain improved ro-

bustness against acoustic noise.
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APPENDIX A

List of Abbreviations

ABS Analysis by Synthesis

ACELP Algebraic CELP coding

ADPCM Adaptive Differential Pulse Coded Modulation

AMR Adaptive Multi-Rate

AR Auto-Regressive

ASR Automatic Speech Recognition

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BES Bit Error Sensitivity

BICM Bit-Interleaved Coded Modulation

BPS Bit Per Second

BSC Binary Symmetric Channel

CD Correct Detection

CELP Coded Excitation Linear Prediction

CPD Code Product Distance

CPPD Code Periodic Product Distance

CRC Cyclic Redundancy Check

DCT Discrete Cosine Transform

DED Double Error Detection

DMR Digital Multi-Rate

DPCM Differential Pulse Code Modulation

DRT Diagnostic Rhyme Test

DSR Distributed Speech Recognition

ECL Effective Code Length

ED Error Detection

EFR Enhanced Full Rate

EMBSD Enhanced Modified Bark Spectral Distortion

ETSI European Telecommunications Standardization Institute
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FB Feed-Back

FEC Forward Error Correction

FF Feed-Forward

FS Federal Standard

GSM Group Special Mobile

HMM Hidden Markov Model

IDCT Inverse Discrete Cosine Transform

IIR Infinite Impulse Response

ITU International Telecommunication Union

JND Just Noticeable Distortion

KBPS Kilo Bit Per Second

LAR Log-Area Ratio

LP Linear Prediction

LPC Linear Predictive Coding

LPCC Linear Prediction Cepstral Coefficients

LSF Line Spectral Frequencies

LTP Long-Term Prediction

LVCSR Large Vocabulary Continuous Speech Recognition

MELP Mixed Excitation Linear Prediction

MFCC Mel Frequency Cepstrum Coefficients

ML Maximum Likelihood

MOS Mean Opinion Score

MPEG Motion Picture Expert Group

MSVQ Multi-Stage Vector Quantization

NMC Noise-Masking Curve

PCM Pulse Code Modulation

PDA Personal Digital Assistant

PECL Periodic Effective Code Length

PESQ Perceptual Evaluation of Speech Quality

PLP Perceptual Linear Prediction

PSK Phase Shift Keying

PVQ Predictive Vector Quantization
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QAM Quadrature Amplitude Modulation

QMF Quadrature Mirror Filter

RC Reflection Coefficient

RCPC Rate-Compatible Punctured Convolutional code

RCPT Rate-Compatible Punctured Trellis code

RED Residual Euclidean Distance

RHD Residual Hamming Distance

SBC Subband Coding

SEC Single Error Correction

SED Single Error Detection

SMR Signal-to-Mask Ratio

SNR Signal-to-Noise Ratio

STP Short-Term Prediction

TCM Trellis Code Modulation

TED Triple Error Detection

UE Undetected Error

UEP Unequal Error Protection

VA Viterbi Algorithm

VBR Variable Bit Rate

VQ Vector Quantization

WER Word Error Rate

WVR Weighted Viterbi Recognition

185



References

[1] B. Strope, Modeling auditory perception for robust speech recognition,

Ph.D. thesis, University of California, Los Angeles, 1999.

[2] A.M. Kondoz, Digital speech coding for low bit rate communication systems,

Wiley, England, 1995.

[3] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland,

The HTK Book (for HTK Version 3.0), July 2000.

[4] G. Fant, Acoustic theory of speech production, Mounton and Co., Graven-

hage, The Netherlands, 1960.

[5] J. Flanagan, Speech analysis, synthesis and perception, Springer-Verlag,

New York, 1972.

[6] L. Rabiner and B.H. Juang, Fundamentals of speech recognition, Prentice

Hall, Englewood, New Jersey, 1993.

[7] B.W. Kleijn and K.K. Paliwal, Speech coding and synthesis, Elsevier,

Amsterdam, Netherlands, 1995.

[8] T. Painter and A. Spanias, “A review of algorithms for perceptual coding

of digital audio signals,” in International Conference on Digital Signal

Processing Proceedings, July 1997, vol. 1, pp. 179–208.

[9] A. Alwan, S. Narayanan, B. Strope, and A. Shen, Speech production and

perception models and their applications to synthesis, recognition, and cod-

ing, chapter in book “Speech processing, recognition, and artificial neural

networks”, pp. 138–161, Springer-Verlag, UK, 1999.

[10] E. Zwicker and H. Fastl, Psychoacoustics, Springer-Verlag, Berlin, Ger-

many, 1990.

186



[11] B. Moore, An introduction to the psychology of hearing, Academic Press,

London, UK, 1989.

[12] C.D. Geisler, From sound to synapse: Physiology of the mammalian ear,

Oxford University Press, New York, 1998.

[13] H. Fletcher, “Loudness, masking and their relation to the hearing process

and the problem of noise measurement,” Journal of the Acoustical Society

of America, vol. 42, pp. 275–293, 1938.

[14] J.B. Allen, “Fletcher’s role in the creation of communication acoustics,”

Journal of the Acoustical Society of America, vol. 99, pp. 1825–1839, 1996.

[15] S.S. Stevens and H.W. Davis, Hearing, John Wiley & Sons, New York,

1938.

[16] H. Fletcher, “Auditory patterns,” Review of Modern Physics, pp. 47–65,

1940.

[17] K. Brandenburg and G. Stoll, “ISO MPEG-1 audio: A generic standard

for coding of high quality digital audio,” Journal of Audio Engineering

Society, vol. 42, no. 10, pp. 780–792, Oct. 1994.

[18] S. Shlieng, “Guide to MPEG-1 audio standard,” IEEE Transactions on

Broadcasting, vol. 40, no. 4, pp. 206–218, Dec. 1994.

[19] M.R. Schroeder, “A brief history of speech coding,” Proceedings Interna-

tional Conference on Communications, pp. 26.01.1–4, Sept. 1992.

[20] A. Gersho, “Advances in speech and audio compression,” IEEE Trans-

actions on Speech and Audio Processing, vol. 82, no. 6, pp. 900–918, June

1994.

187



[21] N. Jayant, “Signal compression: Technology targets and research direc-

tions,” IEEE Journal on Selected Areas in Communications, vol. 10, no. 5,

pp. 796–818, June 1992.

[22] T. Kailath, Lectures on Wiener and Kalman filtering, Springer Verlag,

New York, 1981.

[23] L.R. Rabiner and R.W. Schafer, Digital signal processing of speech signals,

Prentice Hall, New Jersey, 1978.

[24] F. Itakura, “Line spectrum representation of linear predictive coefficients,”

Journal of the Acoustical Society of America, vol. 57, pp. S35, 1975.

[25] N. Sugamara and F. Itakura, “Line spectrum representation of linear pre-

dictor coefficients of speech signal and its statistical properties,” Transac-

tions Inst. Electron., Commun. Eng. Japan, vol. J64-A, pp. 3230–40, July

1981.

[26] S. Quackenbush, T. Barnwell, and M. Clements, Objective measures for

speech quality, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[27] International Telecommunication Union, “Objective quality measurement

of telephone-band (300–4000 Hz) speech codecs,” Recommendation P.861,

Appendix II, Feb. 1998.

[28] A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra, “Perceptual

evaluation of speech quality (PESQ),” in Proceedings of the International

Conference on Audio, Speech and Signal Processing, May 2001, vol. 2, pp.

749–52.

[29] S. Furui, Digital speech processing, synthesis and recognition, Dekker, New

York, 1985.

188



[30] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,”

Journal of the Acoustical Society of America, vol. 87, no. 4, pp. 1738–52,

April 1990.

[31] Mark Hasegawa-Johnson, EE 214B lecture notes, University of California,

Los Angeles, Los Angeles, California, 1998.

[32] G.D. Forney, “The Viterbi algorithm,” IEEE Transactions on Communi-

cations, vol. 61, no. 3, pp. 268–278, Apr. 1973.

[33] C.-E. Shannon, “A mathematical theory of communication,” Bell Syst.

Technical Journal, vol. 27, pp. 379–423, 1948.

[34] W.W. Peterson, Error-correction codes, MIT Press and Wiley & Sons,

1961.

[35] C.-E. Shannon, “A mathematical theory of communication,” Bell Syst.

Technical Journal, vol. 27, pp. 623–656, 1948.

[36] J. Proakis, Digital communications, McGraw-Hill, 1995.

[37] S. Wilson, Digital modulation and coding, Prentice Hall, 1996.

[38] S. Lin and D. Costello, Error control coding: Fundamentals and applica-

tions, Prentice Hall, New Jersey, 1983.

[39] G. Ungerboeck, “Channel encoding with multilevel/phase signals,” IEEE

Transactions on Information Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[40] D. Divsalar, M.K. Simon, P. McLane, and E. Biglieri, Trellis code modula-

tion, Macmillan, New York, 1991.

[41] A. Gersho and E. Paksoy, “An overview of variable rate speech coding

for cellular networks,” in Proceedings IEEE International Conference on

Selected Topics in Wireless Communications, June 1999, pp. 172–175.

189



[42] J. Vainio, H. Mikkola, K. Jarvinen, and P. Haavisto, “GSM EFR based

multi-rate codec family,” in Proceedings of the International Conference on

Audio, Speech and Signal Processing, May 1998, vol. 1, pp. 141–144.

[43] A. Uvliden, S. Bruhn, and R. Hagen, “Adaptive multi-rate. A speech ser-

vice adapted to cellular radio network quality,” in Proceedings of the 32nd

Asilomar Conference on Signals, Systems and Computers, Nov. 1998, vol. 1,

pp. 343–347.

[44] E. Paksoy, J. Carlos de Martin, A. McCree, C. Gerlach, A. Anandakumar,

M. Lai, and V. Viswanathan, “An adaptive multi-rate speech coder for

digital cellular telephony,” in Proceedings of the International Conference

on Audio, Speech and Signal Processing, March 1999, vol. 1, pp. 193–196.

[45] H. Ito, M. Serizawa, K. Ozawa, and T. Nomura, “An adaptive multi-

rate speech codec based on MP-CELP coding algorithm for ETSI AMR

standard,” in Proceedings of the International Conference on Audio, Speech

and Signal Processing, Apr. 1998, vol. 1, pp. 137–140.

[46] D. Sinha and C.-E. Sundberg, “Unequal error protection methods for per-

ceptual audio coders,” in Proceedings of the International Conference on

Audio, Speech and Signal Processing, March 1999, vol. 5, pp. 2423–2426.

[47] J. Hagenauer, “Rate-compatible punctured convolutional codes and their

applications,” IEEE Transactions on Communications, vol. 36, no. 4, pp.

389–400, Apr. 1998.

[48] B. Masnick and J. Wolf, “On linear unequal error protection codes,” IEEE

Transactions on Information Theory, vol. 3, no. 5, pp. 600–607, Oct. 1967.

[49] R. Cox, J. Hagenauer, N. Seshadri, and C.-E. Sundberg, “Subband speech

coding and matched convolutional channel coding for mobile radio chan-

nels,” IEEE Transactions on Signal Processing, vol. 39, no. 8, pp. 1717–31,

Aug. 1991.

190



[50] D.J. Goodman and C.-E. Sundberg, “Combined source and channel coding

for variable bit-rate speech transmission,” Bell System Technical Journal,

vol. 7, pp. 2017–36, Sept. 1983.

[51] D.J. Goodman and C.-E. Sundberg, “Transmission errors and forward error

correction in embedded differential PCM,” Bell System Technical Journal,

vol. 9, pp. 2735–64, Nov. 1983.

[52] A. Bernard, X. Liu, R. Wesel, and A. Alwan, “Speech transmission using

rate-compatible trellis codes and embedded source coding,” IEEE Trans-

actions on Communications, vol. 50, no. 2, pp. 309–320, Feb. 2002.

[53] T. Salonidis and V. Digalakis, “Robust speech recognition for multiple

topological scenarios of the GSM mobile phone system,” in Proceedings of

the International Conference on Audio, Speech and Signal Processing, May

1998, pp. 101–4.

[54] S. Dufour, C. Glorion, and P. Lockwood, “Evaluation of the root-

normalised front-end (RN LFCC) for speech recognition in wireless GSM

network environments,” in Proceedings of the International Conference on

Audio, Speech and Signal Processing, May 1996, vol. 1, pp. 77–80.

[55] L. Karray, A. Jelloun, and C. Mokbel, “Solutions for robust recognition

over the GSM cellular network,” in Proceedings of the International Con-

ference on Audio, Speech and Signal Processing, 1998, vol. 1, pp. 166–170.

[56] A. Gallardo, F. Diaz, and F. Vavlerde, “Avoiding distortions due to speech

coding and transmission errors in GSM ASR tasks,” in Proceedings of

the International Conference on Audio, Speech and Signal Processing, May

1999, pp. 277–80.

[57] C. Mokbel, L. Mauray, L. Karray, D. Jouvet, J. Monne, C. Sorin, J. Si-

monin, and K. Bartkova, “Towards improving ASR robustness for PSN

191



and GSM telephone applications,” Speech Communication, vol. 23, pp.

141–59, Oct. 1998.

[58] A. Bernard and A. Alwan, “Joint channel decoding - Viterbi recognition

for wireless applications,” in Proceedings of Eurospeech, Sept. 2001, vol. 4,

pp. 2703–6.

[59] A. Potamianos and V. Weerackody, “Soft-feature decoding for speech

recognition over wireless channels,” in Proceedings of the International

Conference on Audio, Speech and Signal Processing, May 2001, vol. 1, pp.

269–72.

[60] B. Milner and S. Semnani, “Robust speech recognition over IP networks,”

in Proceedings of the International Conference on Audio, Speech and Signal

Processing, June 2000, vol. 3, pp. 1791–4.

[61] B. Milner, “Robust speech recognition in burst-like packet loss,” in Pro-

ceedings of the International Conference on Audio, Speech and Signal Pro-

cessing, May 2001, vol. 1, pp. 261–4.

[62] C. Perkins, O. Hodson, and V. Hardman, “A survey of packet loss recovery

techniques for streaming audio,” IEEE Network, vol. 12, no. 5, pp. 40–48,

Sept./Oct. 1998.

[63] A. Gersho and S. Gray, Vector quantization and signal compression,

Kluwer, Doordrecht, 1992.

[64] N. Jayant, J. Johnston, and R. Safranek, “Signal compression based on

models of human perception,” Proceedings of the IEEE, vol. 81, no. 10, pp.

1385–1422, Oct. 1993.

[65] T. Ramstad, “Sub-band coder with a simple adaptive bit allocation algo-

rithm,” in Proceedings of the International Conference on Audio, Speech

and Signal Processing, May 1982, vol. 1, pp. 203–207.

192



[66] B. Tang, A. Shen, A. Alwan, and G. Pottie, “A perceptually-based em-

bedded sub-band speech coder,” IEEE Transactions on Speech and Audio

Processing, vol. 5, no. 2, pp. 131–140, March 1997.

[67] A. Shen, “Perceptually based subband coding of speech signals,” M.S.

thesis, University of California, Los Angeles, 1994.

[68] Z. Jiang, A. Alwan, and A. Wilson, “High-performance IIR QMF banks

for speech subband coding,” in Proceedings of IEEE ISCAS, June 1994,

vol. 2, pp. 493–6.

[69] R. Cox, S. Gay, N. Seshadri, Y. Shoham, S. Quackenbush, and N. Jayant,

“New directions in subband coding,” IEEE Journal on Selected Areas in

Communications, vol. 6, no. 2, pp. 391–409, Feb. 1988.

[70] N. Rydbeck and C.-E. Sundberg, “Analysis of digital errors in non-linear

PCM systems,” IEEE Transactions on Communications, vol. 24, pp. 59–

65, Jan. 1976.

[71] C.-E. Sundberg, “The effect of single bit errors in standard non-linear PCM

systems,” IEEE Transactions on Communications, vol. 24, pp. 1062–64,

June 1976.

[72] V. Zue, S. Seneff, and J. Glass, “Speech database development at MIT:

TIMIT and beyond,” Speech Communication, vol. 9, no. 6, pp. 351–6, Aug.

1990.

[73] International Telecommunication Union, “5, 4, 3 and 2 bits samples em-

bedded adaptive differential pulse code modulation (ADPCM) Annex A:

Extensions for use with uniform-quantized input and output,” Recommen-

dation G.727, 1990.

193



[74] International Telecommunication Union, “5, 4, 3 and 2 bits samples em-

bedded adaptive differential pulse code modulation (ADPCM),” Recom-

mendation G.727, 1990.

[75] A. McCree, K. Truong, E. Bryan George, T.P. Barnwell, and

V. Viswanathan, “A 2.4 kbit/s MELP coder candidate for the new U.S.

federal standard,” in Proceedings of the International Conference on Audio,

Speech and Signal Processing, Apr. 1996, vol. 1, pp. 200–3.

[76] J.B. Cain, G.C. Clark, and J.M. Geist, “Punctured convolutional code of

rate (N-1)/N and simplified maximum likelihood decoding,” IEEE Trans-

actions on Information Theory, vol. 20, pp. 388–9, May 1974.

[77] Y. Yasuda, K. Kashiki, and Y. Hirata, “High rate punctured convolutional

codes for soft decision Viterbi decoding,” IEEE Transactions on Commu-

nications, vol. 32, no. 3, pp. 315–319, Mar. 1984.

[78] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft decision out-

puts and its applications,” in Proceedings of IEEE Globecom, Nov. 1989,

vol. 3, pp. 1680–3.

[79] J. Hagenauer, N. Seshadri, and C.-E. Sundberg, “The performance of rate-

compatible punctured convolutional codes for digital mobile radio,” IEEE

Transactions on Communications, vol. 38, no. 7, pp. 966–980, July 1990.

[80] R.D. Wesel, X. Liu, and W. Shi, “Periodic symbol puncturing of trellis

codes,” in Proceedings of the 31st Asilomar Conference on Signals, Systems

and Computers, Nov. 1997, vol. 1, pp. 172–6.

[81] R.D. Wesel, X. Liu, and W. Shi, “Trellis codes for periodic erasures,” IEEE

Transactions on Communications, vol. 58, no. 5, pp. 938–47, June 2000.

[82] L.H.C. Lee, “New rate-compatible punctured convolutional codes for

Viterbi decoding,” IEEE Transactions on Communications, vol. 41, no.

194



12, pp. 3073–79, Dec. 1994.

[83] J.B. Anderson and K. Balachandran, “Decision depths of convolutional

codes,” IEEE Transactions on Information Theory, vol. 35, no. 2, pp.

455–9, March 1989.

[84] R.D. Wesel and X. Liu, “Analytic techniques for periodic trellis codes,” in

Proceedings of the 36th Allerton Conference on Communications, Control

and Computing, Sept. 1998, pp. 39–48.

[85] C. Fragouli, C. Kominakis, and R.D. Wesel, “Minimality for punctured

convolutional codes,” in Proceedings of ICC 2001, June 2001, vol. 1, pp.

300–4.

[86] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,”

IEEE Transactions on Information Theory, vol. 44, no. 3, pp. 927–946,

May 1998.

[87] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Transac-

tions on Communications, vol. 40, no. 5, pp. 873–884, May 1992.

[88] D. Divsalar and M.K. Simon, “The design of trellis coded MPSK for fading

channels: Performance criteria,” IEEE Transactions on Communications,

vol. 36, no. 9, pp. 1004–12, Sept. 1988.

[89] Y.S. Leung, S.G. Wilson, and J.W. Ketchum, “Multifrequency trellis cod-

ing with low delay for fading channels,” IEEE Transactions on Communi-

cations, vol. 41, no. 10, pp. 1450–9, Oct. 1993.

[90] R.D. Wesel, Trellis code design for correlated fading and achievable rates

Tomlinson-Harashima precoding, Ph.D. thesis, Stanford University, Aug.

1996.

[91] C.-E. Shannon, “Coding theorems for a discrete source with a fidelity

criterion,” in IRE Nat. Conv. Rec., 1959, pp. 142–163.

195



[92] A. Bernard, X. Liu, R. Wesel, and A. Alwan, “Channel adaptive joint-

source channel coding of speech,” in Proceedings of the 32nd Asilomar

Conference on Signals, Systems and Computers, Nov. 1998, vol. 1, pp.

357–61.

[93] A. Bernard, X. Liu, R. Wesel, and A. Alwan, “Embedded joint-source

channel coding of speech using symbol puncturing of trellis codes,” in

Proceedings of the International Conference on Audio, Speech and Signal

Processing, March 1999, vol. 5, pp. 2427–30.

[94] S. Euler and J. Zinke, “The influence of speech coding algorithms on auto-

matic speech recognition,” in Proceedings of the International Conference

on Audio, Speech and Signal Processing, 1994, pp. 621–4.

[95] B.T. Lilly and K.K. Paliwal, “Effect of speech coders on speech recognition

performance,” in Proceedings of ICSLP, Oct. 1996, vol. 4, pp. 2344–7.

[96] L. Yapp and G. Zick, “Speech recognition on MPEG/audio encoded files,”

in IEEE International Conference on Multimedia Computing and Systems,

June 1997, pp. 624–5.

[97] J. Huerta and R. Stern, “Speech recognition from GSM parameters,” in

Proceedings of ICSLP, 1998, vol. 4, pp. 1463–6.

[98] S.H. Choi, H.K. Kim, H.S. Lee, and R.M. Gray, “Speech recognition

method using quantised LSP parameters in CELP-type coders,” Electron-

ics Letters, vol. 34, no. 2, pp. 156–7, Jan. 1998.

[99] H.K. Kim and R.V. Cox, “Feature enhancement for a bitstream-based

front-end in wireless speech recognition,” in Proceedings of the Interna-

tional Conference on Audio, Speech and Signal Processing, May 2001, vol. 1,

pp. 241–3.

196



[100] H.K. Kim and R. Cox, “Bitstream-based feature extraction for wireless

speech recognition,” in Proceedings of the International Conference on

Audio, Speech and Signal Processing, 2000, vol. 1, pp. 21–24.

[101] S.H. Choi, H.K. Kim, and H.S. Lee, “Speech recognition using quantized

LSP parameters and their transformations in digital communications,”

Speech Communication, vol. 4, no. 30, pp. 223–33, April 2000.

[102] H.Y. Hur and H.S. Kim, “Formant weighted cepstral feature for LSP-

based speech recognition,” in Proceedings of the International Conference

on Audio, Speech and Signal Processing, May 2001, vol. 1, pp. 141–4.

[103] V. Digalakis, L. Neumeyer, and M. Perakakis, “Quantization of cepstral

parameters for speech recognition over the World Wide Web,” IEEE Jour-

nal on Selected Areas in Communications, vol. 17, no. 1, pp. 82–90, Jan.

1999.

[104] D. Pearce, “Enabling new speech driven services for mobile devices: An

overview of the ETSI standards activities for distributed speech recog-

nition front-ends,” in Applied Voice Input/Output Society Conference

(AVIOS2000), May 2000.

[105] A. Bernard and A. Alwan, “Source and channel coding for remote speech

recognition over error-prone channels,” in Proceedings of the International

Conference on Audio, Speech and Signal Processing, May 2001, vol. 4, pp.

2613–6.

[106] G. Ramaswamy and P. Gopalakrishnan, “Compression of acoustic features

for speech recognition in network environments,” in Proceedings of the In-

ternational Conference on Audio, Speech and Signal Processing, May 1998,

vol. 2, pp. 977–80.

[107] N. Srinivasamurthy, A. Ortega, Q. Zhu, and A. Alwan, “Towards efficient

197



and scalable speech compression schemes for robust speech recognition ap-

plications,” in Proceedings of ICME, 2000, vol. 1, pp. 249–52.

[108] J.P. Campbell, V.C. Welch, and T.E. Tremain, “The new 4800 bps voice

coding standard,” in Proceedings of Military Speech Technology, 1989, pp.

64–70.

[109] A. McCree and T.P. Barnwell III, “A mixed excitation LPC vocoder model

for low bit rate speech coding,” IEEE Transactions on Speech and Audio

Processing, vol. 3, pp. 242–50, July 1995.

[110] W. LeBlanc, C. Liu, and V. Viswanathan, “An enhanced full rate speech

coder for digital cellular applications,” in Proceedings of the International

Conference on Audio, Speech and Signal Processing, May 1996, vol. 1, pp.

569–72.

[111] D.L. Thomson and R. Chengalvarayan, “Use of periodicity and jitter as

speech recognition features,” in Proceedings of the International Conference

on Audio, Speech and Signal Processing, May 1998, vol. 1, pp. 21–4.

[112] W. Gunawan and M. Hasegawa-Johnson, “PLP coefficients can be quan-

tized at 400 bps,” in Proceedings of the International Conference on Audio,

Speech and Signal Processing, May 2001, vol. 1, pp. 77–80.

[113] K.K. Paliwal and B.S. Atal, “Efficient vector quantization of LPC parame-

ters at 24 bits/frame,” IEEE Transactions on Speech and Audio Processing,

vol. 1, no. 1, pp. 3–14, 1993.

[114] R. Viswanathan and J. Makhoul, “Quantization properties of transmission

parameters in linear predictive systems,” IEEE Transactions on Speech

and Audio Processing, vol. 23, pp. 309–21, March 1975.

[115] K.K. Paliwal, “Interpolation properties of linear prediction parametric rep-

resentations,” in Proceedings of Eurospeech, 1995, pp. 1029–32.

198



[116] B. Atal, “Efficient coding of LPC parameters by temporal decomposition,”

in Proceedings of the International Conference on Audio, Speech and Signal

Processing, April 1983, vol. 1, pp. 81–84.

[117] M. Yong et al., “Encoding of LPC spectral parameters using switched

adaptive inter frame vector prediction,” in Proceedings of the International

Conference on Audio, Speech and Signal Processing, April 1988, vol. 1, pp.

402–405.

[118] F. Soong and B. Juang, “Line spectrum pairs and speech data compres-

sion,” in Proceedings of the International Conference on Audio, Speech and

Signal Processing, 1984, vol. 1, pp. 1–4.

[119] B. Atal, R.B. Cox, and P. Kroon, “Spectral quantization and interpolation

for CELP coders,” in Proceedings of the International Conference on Audio,

Speech and Signal Processing, May 1989, vol. 1, pp. 69–72.

[120] W. Gardner and B.D. Rao, “Theoretical analysis of the high-rate vector

quantization of LPC parameters,” IEEE Transactions on Speech and Audio

Processing, vol. 3, no. 5, pp. 367–381, Sept. 1995.

[121] V. Digalakis, S. Tsakalidis, C. Harizakis, and L. Neumeyer, “Effi-

cient speech recognition using subvector quantization and discrete-mixture

HMMs,” Computer Speech and Language, vol. 14, no. 1, pp. 33–46, Jan.

2000.

[122] Q. Zhu and A. Alwan, “An efficient and scalable 2D-DCT based feature

coding scheme for remote speech recognition,” in Proceedings of the In-

ternational Conference on Audio, Speech and Signal Processing, May 2001,

vol. 1, pp. 113–6.

[123] E.N. Gilbert, “Capacity of burst noise channel,” Bell System Technical

Journal, vol. 39, pp. 1253–65, Sept. 1960.

199



[124] T. Cover and J. Thomas, Elements of information theory, Wiley, New

York, 1991.

[125] J. Hagenauer, “Source controlled channel decoding,” IEEE Transactions

on Communications, vol. 43, no. 9, pp. 2449–57, Sept. 1995.

[126] I. Kozintsev and K. Ramchandran, “Robust image transmission

over energy-constrained time-varying channels using multiresolution joint

source-channel coding,” IEEE Transactions on Signal Processing, vol. 46,

no. 4, pp. 1012–26, Apr. 1998.

200


