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Abstract of the Dissertation

Improving LDPC Decoders: Informed Dynamic

Message-Passing Scheduling and Multiple-Rate Code Design

by

Andres Ivan Vila Casado

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2007

Professor Richard D. Wesel, Chair

Low-Density Parity-Check (LDPC) codes have become the code of choice in

communication systems that use modern channel coding. These codes are usually

decoded by running an iterative belief-propagation (BP), or message-passing, algo-

rithm over the factor graph of the code. The traditional message-passing schedul-

ing, called flooding, consists of updating all the variable nodes in the graph, using

the same pre-update information, followed by updating all the check nodes of the

graph, again, using the same pre-update information. Recently several studies

show that sequential scheduling, in which messages are generated using the lat-

est available information, significantly improves the convergence speed in terms of

the number of iterations. Sequential scheduling introduces the problem of finding

the best sequence of message updates. We propose Informed Dynamic Scheduling

(IDS) strategies that select the message-passing schedule according to the observed
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rate of change of the messages. In general, IDS strategies converge faster than

static scheduling strategies because IDS strategies focus on the part of the graph

that has not converged. Moreover, IDS yields a lower error-rate performance than

either flooding or sequential scheduling because IDS strategies solve traditional

trapping-set errors. The different IDS strategies presented in t his dissertation ad-

dress several issues including performance for short-blocklength codes, complexity

and implementability.

This dissertation also describes and analyzes low-density parity-check code fam-

ilies that support a variety of different rates while maintaining the same fundamen-

tal decoder architecture. Such families facilitate the decoding hardware design and

implementation for applications that require communication at different rates, for

example to adapt to changing channel conditions. Combining rows of the lowest-

rate parity-check matrix produces the parity-check matrices for higher rates. An

important advantage of this approach is that all effective code rates have the same

blocklength. This approach is compatible with well known techniques that al-

low low-complexity encoding and parallel decoding of these LDPC codes. This

technique also allows the design of programmable analog LDPC decoders. The

proposed design method maintains good graphical properties and hence low error

floors for all rates.
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Chapter 1

Introduction

A basic digital communications system transports information from a source

to a destination through a channel. The channel noise corrupts the transmitted

signal allowing the presence of errors in the received signal. These errors can be

corrected with channel codes as seen in Fig. 1.1. The channel code encoder maps

each possible source message u to a different valid codeword x. In the case of

binary codes, x corresponds to a sequence of bits. The decoder picks the most

likely transmitted message û according to the received signal y.

u

n

yx
SinkDecoderChannel

u
EncoderSource

Figure 1.1: Digital Communication System

The research on channel codes spans several decades. The first code was pro-

posed by Richard Hamming in 1950 [1]. Hamming was working on a relay computer

that would sound an alarm every time there was an error. This frustrating expe-

rience motivated him to develop a way for the computer to automatically correct

errors. He designed a code that would add three parity bits to every four in-

formation bits. The information and parity bits form 7-bit codewords. Each of

these codewords satisfy a set of linear equations. Thus, the computer can check if
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the 7-bits satisfy the equations and correct one error if it does not. This class of

single-error correcting codes are now known by their inventor’s name.

Since the invention of Hamming codes many papers have followed on the design,

encoding, decoding, theoretical performance, and practical hardware implementa-

tions of channel codes. Low-Density Parity-Check (LDPC) codes have become one

of the most popular classes of codes, perhaps the most popular. Well-designed

LDPC codes perform very close to the theoretical limit and have encoders and

decoders with reasonable complexity. In light of this, LDPC codes are being pro-

posed as the channel coding solution for modern digital communication systems

standards such as satellite TV (DVB-S2), WiMax (IEEE 802.16e), wireless LAN

(IEEE 802.11n) and mmWave WPAN (IEEE 802.15.3c).

Improving LDPC decoders is thus an important area of research that has a

direct impact on current communication systems. In this dissertation, we present

techniques that can translate into lower latency, higher throughput and simpler

architectures for modern LDPC decoder implementations. In order to present

these techniques, let us briefly introduce the basic concepts of channel coding and

also present the state of the art on the design, encoding and decoding of LDPC

codes.

1.1 Channel Coding

In his seminal work “A Mathematical Theory of Communication”, published in

1948, Claude Shannon showed that error-free communication can be achieved using

a channel code with any rate lower that the capacity of the channel [2]. Error-free

communication can be achieved asymptotically as the code blocklength goes to

infinity. However, Shannon’s proof wasn’t constructive, he proved the existence of

good codes without actually producing a good code. This generated a vast amount

of effort, that still continues today, to find capacity-approaching large-blocklength

channel codes that can be encoded and decoded in practice.

A channel code adds redundancy to the data helping the receiver to decide

the transmitted information. This creates a codebook C (with a finite number of

2



codewords) that maps each data sequence u to a valid codeword x with a one-

to-one correspondence. The receiver obtains a signal y from the channel and the

decoder selects û as the transmitted data based on y.

1.1.1 Decoding Rules

The decoder that minimizes codeword error rates selects x̂ (the codeword associ-

ated to û) to be the most probable transmitted sequence given that y was received.

This decision rule is called Maximum-A Posteriori (MAP) and is formally described

by the following equation

x̂MAP (y)
∆
= arg max

x∈C
P (x |y ) . (1.1)

The maximization in (1.1)is independent of P (y) because P (y) is constant for

every x ∈ C. Thus, (1.1) can be expressed as

x̂MAP (y) = arg max
x∈C

P (x,y) . (1.2)

Assuming that all every x ∈ C is equally likely, the maximization becomes

independent of P (x). This assumption, which holds true for most channel codes,

produces the Maximum-Likelihood (ML) decision rule formally described as

x̂ML (y)
∆
= arg max

x∈C
P (y |x) . (1.3)

The ML decision rule is popular because even if P (C) is not uniformly dis-

tributed, it is often unknown.

1.1.2 The Channel-Coding Paradigm Change of 1993

Over the years since 1948 many different types of structured codes were proposed.

Among them we have Hamming codes introduced in 1950 [1], Reed-Muller Codes

in 1954 [3] [4], convolutional codes in 1955 [5], BCH codes in 1959 [6] [7], Reed-

Solomon codes (a particularly important class of BCH codes) in 1960 [8], and

3



trellis coded modulation in 1982 [9]. Code design was focused almost exclusively

on finding algebraic or trellis structures that allowed simplified optimal decoding

methods such as the Berlekamp-Massey algorithm [10] [11] and the Viterbi algo-

rithm [12]. However, even with these structures, the maximum code blocklength

allowed in order to have ML decoders with reasonable complexity remained fairly

small. Thus, for many years the performance of practical codes remained far from

the theoretical limit imposed by Shannon which made famous the folk saying “All

codes are good, except those that we know of” [13].

In 1993, Berrou et al. [14] proposed a different approach to the channel coding

problem. Berrou proposed turbo-codes, large blocklength codes with sub-optimal

non-ML decoders. While sub-optimal, these decoders perform well enough to al-

low performance near the information theoretical limits. The performance gain

obtained by the larger blocklengths overpowers the non-ML errors of the sub-

optimal decoder. This revolutionary approach started a new era in channel cod-

ing, a capacity-approaching era. Inspired by this work, many types of “turbo-like”

codes have been proposed in recent years. “Turbo-like” codes are large blocklength

codes that can be described by loopy factor-graphs and decoded using the Belief-

Propagation (BP) algorithm [15]. Both the graph representation and the decoding

algorithms will be described in detail in the following sections for a specific type

of “turbo-like” codes, binary linear Low-Density Parity-Check (LDPC) codes.

1.1.3 Binary Linear Codes

Binary linear codes are a very popular class of channel codes. An (n, k) binary

linear code takes k information bits and maps them into n code bits. A code

C is linear if and only if C is closed under the addition operation. That is, the

addition of every pair of codewords {a,b} produces a valid codeword [16]. Formally,

(c = a+b) ∈ C for every {a,b} ∈ C. In the case of binary codes, addition is defined

as the bit-wise XOR which is equivalent to the modulo-2 addition.

Every (n, k) code can be fully described by a k × n generator matrix G. The

rows of G correspond to k linearly independent codewords that act as a base
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of the code space. Every codeword is a linear combination of these rows. The

generator matrix can be used to encode a k-bit information sequence u into a n-bit

codeword x with the following multiplication x = uG. Any other set of k linearly

independent codewords that span the same space can be used as rows of a generator

matrix. An example of a possible generator matrix of the (7,4)-Hamming code is

GHamming =




1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 1




. (1.4)

Binary linear codes can also be fully described by a (n − k) × n parity-check

matrix H. The columns of H represent the coded bits and the rows represent the

(n− k) linearly independent parity-check equations that these bits must satisfy in

order to be a codeword. Thus, x is a codeword if and only if xHT = 0. There are

many choices of H matrices that describe the same code. An example of a possible

parity check matrix of the (7,4)-Hamming code is

HHamming =




1 0 1 1 1 0 0

1 1 0 1 0 1 0

0 1 1 1 0 0 1


 . (1.5)

Each of the rows of an H matrix represents a parity-check equation i.e. the

first row indicates that the first four bits of every codeword must have even parity

(their sum modulo-2 must be equal to 0) and so on. An ML decoder finds the most

likely transmitted codeword x̂ out of all the sequences of n bits that satisfy all the

rows of H. However, the complexity of ML decoders grows exponentially with the

blocklength making ML decoding an NP-complete problem [17].

1.2 Low-Density Parity-Check (LDPC) Codes

Low-Density Parity-Check codes were introduced by Gallager in 1962 [18] and

forgotten for many years until re-discovered by Mackay in 1996 [19]. Binary LDPC
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codes are (n, k) linear codes with described by a sparse parity-check matrix H.

We focus our work in this dissertation on binary LDPC codes. The following is a

rate-1/2 LDPC H matrix,

H 1
2

=




1 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0 0 1 1




. (1.6)

LDPC codes can also be represented by factor graphs. The LDPC code graph

is a bi-partite graph composed by N variable nodes vj for j ∈ {1, . . . , N} that

represent the codeword bits and M check nodes ci for i ∈ {1, . . . , M} that rep-

resent the parity-check equations. Coded bits are represented as circular vertices

and parity-check equations are represented by square vertices (with a plus sign

indicating the parity-check operation). Edges are drawn between the parity-check

equations and the bits that participate in the equation. The number of neighbors

of a node is called the degree of the node. The factor-graph representation of the

LDPC code described in (3.1) can be seen in Fig. 1.2.

There is a one-to-one correspondence between the H matrix and the factor-

graph representation of an LDPC code. In our small example the ones in the

first column of the matrix correspond to the edges emanating from the top vari-

able node. These edges connect the top variable node with the first and second

check-node which corresponds to the position of the ones in the first column. In

the following sections we describe different aspects of LDPC codes such as their

decoding, encoding and design.

1.2.1 LDPC Decoding

LDPC codes are decoded using the Belief-Propagation (BP) algorithm on the code

graph. In general, BP consists of the exchange of messages between the nodes

6



Figure 1.2: Factor graph of a rate-1/2 LDPC code

of a graph [20]. Each node generates and propagates messages to its neighbors

based on its current incoming messages. BP provides Maximum-Likelihood (ML)

decoding over a cycle-free factor-graph representation of a code as shown in [21]

and [15]. Loopy-BP, BP over loopy factor graphs, is not guaranteed to have ML

performance. However, it has been shown to perform well on the (loopy) bi-partite

factor graphs composed of variable nodes and check nodes that describe LDPC

codes.

In LDPC decoding the exchanged messages correspond to the Log-Likelihood

Ratio (LLR) of the probabilities of the bits. The sign of the LLR indicates the

most likely value of the bit and the absolute value of the LLR gives the reliability

of the message. The channel information LLR of the variable node vj is Cvj
=

log
(

p(yj |vj=0)

p(yj |vj=1)

)
, where yj is the received signal. Then, for any ci and vj that are

connected, the two message generating functions are:

mvj→ci
=

∑

ca∈N (vj)\ci

mca→vj
+ Cvj

, (1.7)
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mci→vj
= 2× atanh


 ∏

vb∈N (ci)\vj

tanh
(mvb→ci

2

)

 , (1.8)

where mvj→ci
denotes the variable-to-check message from vj to ci and N (vj) \ci

denotes the neighbors of vj excluding ci.

The most difficult operations to implement in hardware are the hyperbolic and

inverse hyperbolic tangents in (1.8). A practical approximation is the min-sum

algorithm introduced in [22] and explained in [23]. In the min-sum algorithm the

variable-to-check update equation remains the same while the check-to-variable

update equations is simplified to

mci→vj
=

∏

vb∈N(ci)\vj

sgn (mvb→ci
) · min

vb∈N(ci)\vj

(|mvb→ci
|) . (1.9)

When updating all the check-to-variable messages emanating from the same

check node, the min-sum check-node update begins by identifying the two variable-

to-check messages with the smallest reliability. Then, the smallest reliability is

assigned as the check-to-variable message reliability for all the edges except the edge

that corresponds to the smallest variable-to-check reliability. The second smallest

reliability is assigned to that remaining edge. The correct sign is computed for all

the check-to-variable messages as shown in (1.9). This approximation reduces the

decoding-complexity while sacrificing the error-rate performance of the code [23].

Decoding can be done in practice using digital processors or analog circuits.

1.2.2 Digital Decoders and Message-Passing Schedules

In most implementations, digital processors decode LDPC codes by implementing

(1.7) and (1.8). Digital decoders iteratively update the messages until a stopping

rule is satisfied. This iterative nature of the algorithm requires a message-passing

schedule. Flooding, or simultaneous scheduling, is the original scheduling strategy.

In every iteration, flooding simultaneously updates all the variable nodes (with

each update using the same set of pre-update data) and then, updates all the
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check nodes (again, with each update using the same pre-update information).

Recently, several papers have addressed the effects of different types of sequen-

tial, or non-simultaneous, scheduling strategies in BP LDPC decoding [24], [25],

[26], [27], [28], [29]. With sequential scheduling, the messages are generated se-

quentially using the latest available information. Sequential scheduling is generally

known as Layered Belief Propagation (LBP), a term coined in [26]. LBP has been

shown to converge twice as fast as flooding when used in LDPC decoding. It has

also been shown that sequential updating doesn’t increase the decoding complexity

per iteration, thus allowing the convergence speed increase at no cost [24], [29].

Sequential updating introduces the problem of finding the ordering of message

updates that results in the best convergence speed and/or code performance. The

current state of the messages in the graph can be used to dynamically update the

schedule, producing what we call Informed Dynamic Scheduling (IDS). We propose

IDS strategies that significantly improve the performance of LDPC decoders. We

study the behavior of IDS for different types of codes and applications such as

short-blocklength LDPC codes, parallel decoders and lower-complexity decoders.

We propose appropriate IDS strategies that work well for these applications.

A second major theme of this dissertation considers the design of codes that

permit a common decoding architecture across rates. In principle, different codes

require different digital decoders. However, practical communication systems often

need to operate at several different rates. To keep the implementation as simple

as possible, the same basic hardware architecture should be able to decode the

encoded data at all possible rates. This dissertation presents a code structure that

supports a wide range of rates while maintaining a constant code blocklength. Rate

variation (increase) is accomplished by reducing the number of rows by linearly

combining the parity-check matrix rows, which is equivalent to replacing a group

of check nodes with a single check node that sums all the edges coming into each of

the original check nodes. This row-combining approach will generate higher-rate

LDPC codes that have the same blocklength as the mother code.
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1.2.3 Block Structure for High-Speed Decoding

Despite the intrinsic parallelism of the decoding process, the first attempts to design

high-throughput LDPC decoders encountered significant interconnection problems.

In fact, the exploitation of such parallelism requires the use of several check-and

variable-node processors, each connected to different memories in order to access

several messages simultaneously. The random character of the node connection in

the factor graph results in difficult memory/processor placement and intractable-

routing problems.

In order to solve these problems, LDPC codes can be designed to have an in-

herent structure as suggested by Mansour and Shanbag in [30]. This approach also

enables the implementation of high -speed decoders without memory fragmenta-

tion such as those presented in [31] and [32]. In [30] the LDPC matrices have a

block structure that consists of square sub-matrices each of size p. Each square

sub-matrix is either a zero sub-matrix or a structured sub-matrix.

An example that illustrates the structured sub-matrices proposed in [30] for

p = 4, is shown in (1.10). This sub-matrix, labelled as S2, results from performing

a right cyclic shift of 2 columns on the identity matrix of size p. Each sub-matrix

Si is produced by cyclically shifting the columns of an identity matrix to the right

i places,

S2 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




. (1.10)

This structured LDPC matrix allows the decoder to use at least p processors

in parallel and doesn’t preclude the implementation of faster decoders that use a

multiple of p processors as suggested in [33].
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1.2.4 Analog Decoders

Analog decoders of turbo-like codes were introduced simultaneously in 1998 by Ha-

genauer [34] and Loeliger et al. [35]. A good in-depth discussion of this alternative

decoding hardware can be found in [36]. They propose to use several small analog

circuits that perform the message-generation operations and to interconnect them

according to the code graph.

Thus, analog decoders are analog circuits that oscillate until an equilibrium

state is reached. Analog decoding shows promise because the decoders require low

power and the convergence is typically faster than with digital decoders. Digi-

tal decoders can use the same hardware to decode different LDPC codes by re-

programming the signal processing circuit. Their analog counterparts are not pro-

grammable, and they require different circuits to decode different LDPC codes.

Since many applications need various codes to support different data rates, the

lack of programmability of analog decoders makes them less attractive than dig-

ital decoders when it comes to LDPC codes. However, the row-combining codes

presented in this dissertation allow programmable analog decoders as will be seen

in Chapter 3.

1.2.5 Low-Complexity Encoding Using Back Substitution

The parity-check matrix should also allow a simple encoder implementation. Sys-

tematic codes are desirable for simple encoders. A code is deemed systematic if

the k information bits are part of the codeword. Thus, systematic-code codewords

can be divided into k information (or systematic) bits and (n − k) parity bits.

Encoding consist of computing the (n− k) parity bits based on the k information

bits. In [37] and [38] a low-complexity encoder for systematic LDPC codes is found

if its parity-check matrix H0 is composed of two matrices H0 = [H1|H2] where H2

is a square sub-matrix that has a particular structure. H1 is a (n− k)× k matrix

whose columns correspond to the k information bits. H2 is a (n − k) × (n − k)

matrix whose columns correspond to the (n − k) parity bits. With this special

structure, encoding complexity grows linearly with the code length.
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A code that where H2 is a lower triangular matrix allows a low-complexity

encoder based on back-substitution as explained in [38]. Back substitution obtains

the parity bits by solving sequentially the parity-check equations. The first (top)

row of H0 has only one unknown, the first parity bit. Since H2 is lower triangular,

once the value of that first parity bit is known, the second equation is guaranteed

to have at most one unknown, the second parity bit. In that fashion, each parity-

check equation is solved sequentially until all the parity bits are generated, which

happens when the bottom row is solved. As an example let us take the following

LDPC code

H0 =




1 1 1 0

1 0 0 1

0 1 0 0
︸ ︷︷ ︸

H1

∣∣∣∣∣∣∣∣

1 0 0

1 1 0

1 1 1




︸ ︷︷ ︸
H2

. (1.11)

Eq. (1.11) shows a parity-check matrix where H2 is lower triangular. Back-

substitution encoding starts by solving the top parity-check equation for the first

parity bit. Thus, we compute the first parity bit as the sum modulo-2 of the

first three information bits. With that information we proceed to solve the middle

parity-check equation. This middle row indicates that the second parity bit is equal

to the sum modulo-2 of the first and fourth systematic bits and the first parity bit.

Finally the last parity bit is computed by adding the second information bit with

the first and second parity bits as indicated by the bottom parity-check equation.

1.2.6 LDPC Code Design

Designing good LDPC codes appears at first to be a daunting task. Fortunately,

the design process can be divided in two distinct tasks that allow a straightforward

design procedure. The first task is to design good variable-node and check-node

degree distributions. A degree distribution describes the percentage of nodes of

each degree. For example, variable-node degree distribution can state that 15% of

the variable-nodes must have degree 13, 35% of the nodes degree 3, and 50% of the
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nodes degree 2. In [39], Richardson and Urbanke developed the density evolution

algorithm which computes the average Bit-Error Probability (BER) of an LDPC

code based only on its check-node and variable-node degree distributions. Density

evolution results are valid for asymptotically large blocklengths and ML decoders.

They showed that LDPC codes with different variable-node and check-node degree

distributions have different error-correcting behavior. This allows the design of the

degree distributions independently from the actual blocklength and realization of

the code.

Once the degree distributions are chosen, the second task is to construct the H

according to the selected degree distributions. There are several code construction

algorithms that share the same objective: to minimize the negative effects of BP

decoding. BP is not ML because there are loops in the factor-graph representation

of the code. Once possible approach is to construct the code while maximizing the

girth of the factor graph [40]. A different design approach is to identify and avoid

the most harmful loops [41], [42]. This second approach will be presented in detail

in Section 3.4.

1.3 Outline

The rest of the dissertation is organized as follows: Chapter 2 introduces the con-

cept of IDS as well as several strategies that work well for different scenarios such

as low-complexity decoders, short-blocklength LDPC codes and high-throughput

applications. Chapter 3 describes the row-combining approach in detail as well as

different multiple-rate LDPC code design algorithms based on the row-combining

idea. Chapter 4 delivers the overall conclusions.

The main contributions of the work presented in this dissertation are:

• The introduction of Informed Dynamic Scheduling for LDPC BP decoding

(Chapter 2).

• An understanding of the behavior and advantages of IDS LDPC decod-

ing when compared with traditional message-passing scheduling strategies
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(Chapter 2).

• IDS strategies for short-blocklength LDPC codes (Chapter 2).

• Low complexity and high throughput IDS strategies (Chapter 2).

• The introduction of row-combining as a tool to design multiple-rate LDPC

code with constant blocklength. This contribution is significant for both

digital and analog decoder implementations (Chapter 3).

• Two algorithms to design row-combining multiple-rate LDPC codes for dif-

ferent applications (Chapter 3).
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Chapter 2

LDPC Decoders with Informed

Dynamic Scheduling

As mentioned in Chapter 1, Belief Propagation (BP) provides Maximum-Likelihood

(ML) decoding over a cycle-free factor-graph representation of a code as shown

in [21] and [15]. In some cases, BP over loopy factor graphs of channel codes has

been shown to have near-ML performance. BP performs well on the (loopy) bi-

partite factor graphs composed of variable nodes and check nodes that describe

LDPC codes.

However, loopy BP is an iterative algorithm and therefore requires a message-

passing schedule. Flooding, or simultaneous scheduling, was the first scheduling

strategy. In flooding scheduling, an iteration consists of the simultaneous update

of all the messages mv→c followed by the simultaneous update of all the messages

mc→v.

Recently, several papers have addressed the effects of different types of sequen-

tial, or non-simultaneous, scheduling strategies in BP LDPC decoding. With se-

quential scheduling, the messages are generated sequentially using the latest avail-

able information. The idea was introduced as a sequence of check-node updates

in [24] and as a sequence of variable-node updates in [25]. It is also presented in [26]

under the name of Layered BP (LBP), in [27] as a serial schedule, in [28] as shuf-

fled BP, in [29] as row message passing, column message passing and row-column
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message passing, among others.

Monte-Carlo simulations and theoretical analysis in [43]- [29] show that se-

quential scheduling converges twice as fast as flooding when used in LDPC decod-

ing. It has also been shown that sequential updating doesn’t increase the decod-

ing complexity per iteration, thus allowing the convergence speed increase at no

cost [29], [44]. Furthermore, the various types of static sequential schedules dis-

cussed above have very similar performance results [29]. In this dissertation, the

sequential-scheduling strategy used for comparison is LBP, a sequence of check-

node updates, as presented in [24] and [26]. As an example, a possible LBP sched-

ule is described in Algorithm 1. The algorithm stops if the decoded bits satisfy all

the parity-check equations or a maximum number of iterations is reached.

Algorithm 1 LBP decoding for LDPC codes

1: Initialize all mc→v = 0
2: Initialize all mvj→ci

= Cj

3: for every i ∈ {1, . . . , M} do
4: for every vk ∈ N (ci) do
5: Generate and propagate mci→vk

6: for every ca ∈ N (vk) \ci do
7: Generate and propagate mvk→ca

8: end for
9: end for

10: end for
11: if Stopping rule is not satisfied then
12: Position=3;
13: end if

Sequential updating introduces the problem of finding the ordering of message

updates that results in the best convergence speed and/or code performance. The

current state of the messages in the graph can be used to dynamically update

the schedule, producing what we call Informed Dynamic Scheduling (IDS). We

presented IDS in [45] and first published it in [46]. To our knowledge, the only

well-defined IDS strategy, other than the work presented in this dissertation, is the

Residual Belief Propagation (RBP) algorithm [47]. RBP was proposed for general

sequential message passing, not specifically for BP decoding.
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RBP is a greedy algorithm that organizes the message updates according to

the absolute value of the difference between the message generated in the current

iteration and the message generated in the previous iteration. The intuition is that

the larger this difference, the further from convergence this part of the graph is.

Therefore, propagating this message first will make BP converge at a higher speed.

Simulations show that RBP LDPC decoding has a higher convergence speed

than LBP but its error-rate performance for a large enough number of iterations

is worse. This behavior is commonly found in greedy algorithms, which tend to

arrive at a solution faster, but arrive at the correct solution less often. We propose

a less-greedy IDS strategy in which all the outgoing messages of a check-node are

generated simultaneously. We call it Node-wise Scheduling (NS) and it converges

both faster and more often than LBP.

Both RBP and NS require the knowledge of the message to be updated in order

to pick which message to update. This means that many messages are computed

and not passed. This increases the complexity of the decoding per iteration. We

use the min-sum check-node update [22] [23] described in (1.9), to simplify the

ordering metric and significantly decrease the complexity of both strategies while

maintaining the same performance.

We study the behavior of IDS for different types of codes and applications such

as short-blocklength LDPC codes, parallel decoders and lower-complexity decoders.

We propose appropriate IDS strategies that work well for these applications.

This chapter is organized as follows. Section 2.1 introduces RBP and NS for

LDPC decoding as well as the min-sum IDS strategies. It also gives intuitive

explanations for their performance and analyzes their behavior in the presence

of traditional trapping-set errors. Section 2.2 analyzes the behavior of IDS on

short-blocklength LDPC codes and introduces strategies that perform better in

this scenario. Section 2.3 introduces schedules more suitable for hardware imple-

mentation such as a lower-complexity IDS strategy and a parallel IDS strategy.

Section 2.4 delivers the conclusions of this chapter. Simulation results of the vari-

ous message-passing schedules are presented along the way.
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2.1 Informed Dynamic Scheduling (IDS)

2.1.1 Residual Belief Propagation (RBP)

RBP, as introduced in [47], is an IDS strategy that updates messages according

to an ordering metric called the residual. The message with the largest residual

is updated first. A residual is the norm (defined over the message space) of the

difference between the values of a message before and after an update. For a

message mni→nj
that goes from node ni to node nj, the residual is defined as:

r
(
mni→nj

)
=

∥∥∥mnew
ni→nj

−mold
ni→nj

∥∥∥ , (2.1)

where the superscript new denotes the message to be propagated now and old

denotes the message that was propagated the last time mni→nj
was updated.

The intuition behind this approach is that as loopy BP converges, the residuals

go to zero. Therefore, if a message has a large residual, it means that it’s located in

a part of the graph that hasn’t converged yet. Therefore, propagating that message

first should speed up the process.

In LLR BP decoding, all the message spaces are one-dimensional (the real line).

Hence, the residuals are the absolute values of the differences of the LLRs.

Let us analyze the behavior of RBP decoding for LDPC codes in order to

simplify the decoding algorithm. Initially, all the messages mv→c are set to the

value of their corresponding channel message Cv. No operations are needed in this

initialization. This implies that the residuals of all the variable-to-check messages

r(mv→c) are equal to 0. Then, without loss of generality, we assume that the

message mci→vj
has residual r∗, which is the largest of the graph. After mci→vj

is

propagated, only residuals r(mvj→ca) change, with ca ∈ N (vj) \ci.

The new residuals r(mvj→ca) are equal to r∗ because r∗ was the change in the

message mci→vj
and (1.7) shows that the message-update operations of a variable

node are sums. Therefore, the messages mvj→ca have now the largest residuals in

the graph.

Assuming that propagating the messages mvj→ca won’t generate any new resid-
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uals bigger than r∗, RBP can be simplified. Every time a message mc→v is propa-

gated, the outgoing messages from the variable node v will be updated and prop-

agated. After propagation of the messages from the variable node v, all residuals

for messages from variable nodes are again zero. This facilitates the scheduling

since we need only to search for the largest r(mc→v) in order to find out the next

message to be propagated. RBP LDPC decoding is formally described in Algo-

rithm 2. Another way to implement RBP, presented in [47], is to create a priority

queue of messages, ordered by the value of their residuals, so at each step the first

message in the queue is updated and then the queue is reordered using the new

information.

Algorithm 2 RBP decoding for LDPC codes

1: Initialize all mc→v = 0
2: Initialize all mvj→ci

= Cj

3: Compute all r(mc→v)
4: Find r(mci→vj

) = max r(mc→v)
5: Generate and propagate mci→vj

6: Set r(mci→vj
) = 0

7: for every ca ∈ N (vj) \ci do
8: Generate and propagate mvj→ca

9: for every vb ∈ N (ca) \vj do
10: Compute r(mca→vb

)
11: end for
12: end for
13: if Stopping rule is not satisfied then
14: Position=4;
15: end if

There is an intuitive way to see how RBP decoding works for LDPC codes. Let

us assume that at a certain moment in the decoding, there is a check node ci with

residuals r(mci→vb
) = 0 for every vb ∈ N (ci). Now let us assume that there is a

change in the value of the message mvj→ci
. It can be proven that the largest change

in a check-to-variable message out of ci (therefore the largest residual) will occur

in the edge that corresponds to the incoming variable-to-check message with the

lowest reliability (excluding the message mvj→ci
). Let us denote by vk the variable

node that is the destination of the message that has the largest residual r(mci→vk
).
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Then, the message mvk→ci
has the smallest reliability out of all messages mvb→ci

,

with vb ∈ N (ci) \vj.

This implies that, for this particular scenario, once there’s a change in a

variable-to-check message, RBP will propagate first the message to the variable

node with the lowest reliability. This makes sense intuitively because the lowest-

reliability variable node is more likely to be in error than the higher-reliability

nodes.

The negative effects of the greediness of RBP are apparent in the case of unsat-

isfied check nodes connected to only one variable node in error. RBP will schedule

to propagate first the message that will “correct” the variable node with the lowest

reliability. Again, this is the most likely variable node to be in error. However,

if that variable node was already correct, the variable node in error will not be

corrected and there will be one more error. The information from this new error

will likely be propagated next because the largest changes in incoming messages

tend to induce the largest residuals. This analysis helps us see why RBP corrects

the most likely errors faster but has trouble correcting “difficult” errors as will be

seen in the performance plots. We define “difficult” errors as the errors that need

a large number of message updates to be corrected.

2.1.2 Node-wise Scheduling Decoding for LDPC Codes

In order to obtain a better performance for all types of errors, perhaps a less greedy

scheduling strategy must be used. As noted earlier, some of the greediness of RBP

came from the fact that it tends to propagate first the message to the least reliable

variable node. We propose to update and propagate simultaneously all the check-

to-variable messages that correspond to the same check node ci, instead of only

propagating the message with the largest residual r(mci→vj
). It can be seen, using

the analysis presented earlier, that this algorithm is less likely to propagate the

information from new errors in the next update. This is due to the fact that there

are many variable nodes that change as opposed to RBP where only one variable

node changes. We call this less greedy strategy Node-wise Scheduling (NS).
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NS is similar to LBP; it is a sequence of check-node updates. However, unlike

LBP, which follows a pre-determined order, the check node to be updated next is

chosen dynamically according to a metric αc computed as follows

αci
= max

vb∈N(ci)
r (mci→vb

) (2.2)

NS is formally described in Algorithm 3.

Algorithm 3 NS decoding for LDPC codes

1: Initialize all mc→v = 0
2: Initialize all mvj→ci

= Cj

3: Compute αci
for i = {1 . . .M}

4: Find i = arg max
u={1...M}

αcu

5: for every vk ∈ N (ci) do
6: Generate and propagate mci→vk

7: for every ca ∈ N (vk) \ci do
8: Generate and propagate mvk→ca

9: Compute αca

10: end for
11: end for
12: Set αci

= 0
13: if Stopping rule is not satisfied then
14: Position=4;
15: end if

NS converges both faster than LBP (in terms of number of messages updated)

and better than LBP (in terms of FER of the code for a large number of iterations).

2.1.3 Min-sum IDS Strategies

Both RBP and NS are more complex than traditional scheduling strategies because

on top of the message-generation complexity, these strategies incur two extra pro-

cesses: residual computation and search for largest residual, or sorting of the resid-

uals. The residual computation requires the value of the message that would be

propagated. This requires additional complexity since there will be numerous mes-

sage computations that will only be used to calculate residuals. We propose to use
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the min-sum check-node described in (1.9) to compute the approximate-residuals

as follows,

r̃ni→nj
(mk) =

∥∥∥m̃new
ni→nj

− m̃old
ni→nj

∥∥∥ , (2.3)

where the tilde indicates the min-sum approximation. Using approximate-residual

functions in Algorithms 2 and 3, defines Approximate RBP (ARBP) decoding and

Approximate NS (ANS) decoding. These significantly simpler algorithms perform

as well as the ones presented in Section 2.1. Note that we only propose to use

min-sum for the residual computation. For the actual propagation of messages we

use the full update equations (1.7) and (1.8).

We compare the performance of traditional scheduling strategies and IDS strate-

gies after the same number of messages are propagated. This comparison gives

a clear idea of how BP decoding performance changes with different scheduling

strategies. Thus, for an IDS strategy, we consider one iteration to have occurred

after the number of mc→v updates equals the number of mc→v updates in a flood-

ing or LBP iteration. After each iteration the algorithm checks if the decoded bits

satisfy the parity-check equations. Also, [29] shows that a flooding iteration uses

the same number of operations than a sequential scheduling iteration. Since IDS

strategies are sequential schedules with a smart ordering, the message-generation

complexity per iteration of the IDS strategies is the same as the one for both flood-

ing and LBP. However, any IDS strategy has more complexity per iteration than

traditional schedules because of the computation and sorting of residuals required

for selecting the next update to be performed.

Fig. 2.1 shows the AWGN performance of the scheduling strategies discussed

above, flooding, LBP, RBP, ARBP, NS, and ANS, vs. the number of iterations.

The code simulated is a rate-1/2 LDPC code with blocklength 1944. The fig-

ure shows that RBP has a significantly better performance than LBP for a small

number of iterations, but a sub-par performance for a larger number of iterations.

Specifically, the performance of RBP at 4 iterations is equal to the performance of

LBP at 13 iterations, but the curves cross over at 19 iterations. This suggests that
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Figure 2.1: FER vs. number of iterations of a blocklength-1944 rate-1/2 code using
flooding, LBP, RBP, ARBP, NS and ANS for a fixed Eb/No = 1.75 dB.

RBP has trouble with “difficult” errors as discussed earlier.

NS decoding, while not as good as RBP for a small number of iterations, shows

consistently better performance than LBP across all iterations. Specifically, the

performance of NS at 18 iterations is equal to the performance of LBP at 50 iter-

ations. The results for flooding are shown for comparison purposes, and replicate

the theoretical and empirical results of [24]- [29] that claim that flooding needs

twice the number of iterations as sequential scheduling.

Fig. 2.1 also shows the performance of the approximate residual schedules and

compares them with the schedules that use the exact residuals. It can be seen

that both ARBP and ANS perform almost indistinguishably from RBP and NS

respectively. We reiterate that the approximate residual diminishes the complexity

of residual computation significantly, thus, making ARBP and ANS more attractive

than their exact counterparts.
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Figure 2.2: FER vs. number of iterations of the 802.11n blocklength-1944 rate-
1/2 code using flooding, LBP, ARBP and ANS for a fixed Eb/No = 1.75 dB. The
dashed line indicates the expected performance of ARBP.

Fig. 2.2 and Fig. 2.3 show the performance of flooding, LBP, ARBP, and ANS

for the blocklength 1944 rate-1/2 and rate 5/6 LDPC codes selected for the IEEE

802.11n standard [48]. These simulations were run for a high number of iterations

(200) and show that ANS achieves a better FER performance than LBP. Fig. 2.3

also shows that even for high-rate codes, ANS converges both faster and better

than LBP.

In the rest of the chapter we focus on studying the behavior of ANS under

different conditions. We focus on ANS decoding because both ANS and NS achieve

the lowest error-rates across iterations and ANS is less complex.
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Figure 2.3: FER vs. number of iterations of the 802.11n blocklength-1944 rate-5/6
802.11n code using flooding, LBP, ARBP and ANS for a fixed SNR = 6.0 dB. The
dashed line indicates the expected performance of ARBP.
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2.1.4 IDS and Trapping-Set Errors

Using residuals as the ordering metric for IDS was proposed to allow a faster con-

vergence than LBP, the updates concentrate on the part of the graph that has not

converged and thus it accelerates the convergence process. However, the previously

presented performance results of both NS and ANS show that the algorithms per-

form not only faster but better than LBP. Fig. 2.2 and Fig. 2.3 show that for a

large number of iterations (200), ANS reaches an FER that neither flooding nor

LBP can reach.

Simulation results show that the lower error rates are achieved because informed

scheduling allows the LDPC decoder to overcome many trapping sets. Trapping

sets, or near-codewords, as defined in [49] and [50], are small variable-node sets such

that the induced sub-graph has a small number of odd-degree neighbors. In [50],

Richardson also mentions that the most troublesome trapping set errors are those

where the odd-degree neighbors have degree 1 (in the induced sub-graph), and the

even-degree neighbors have degree 2 (in the induced sub-graph).

Fig. 2.4 shows an example of how NS overcomes trapping sets. On the left

side, the figure shows the sub-graph induced by a set of variable nodes in error

and their nearest-neighbor check nodes. On the right side the figure shows the

new sub-graph that results after ANS corrects a variable node, thus removing it

from the sub-graph. By updating check nodes and variable nodes according to the

largest residuals, NS typically solves the variable nodes of a trapping-set error by

sequentially updating the degree-1 check nodes (in the induced sub-graph of the

trapping set) connected to them. If a variable node in a trapping set is corrected,

at least one check node that was degree-2 becomes degree-1. This check node

is likely to be picked as the next check node to be updated by ANS because its

messages will have large residuals (the check-to-variable messages change signs).

This update will probably correct another variable node in the trapping set. In

this way the trapping set is reduced and eventually eliminated. In contrast, LBP

always updates the check nodes in the trapping-set sub-graph according to the same

round-robin schedule that unfortunately returns the variable node to its incorrect
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Figure 2.4: Check-node update sequence that solves a trapping set. On the left
side, the figure shows the sub-graph induced by a set of variable nodes in error
and their nearest-neighbor check nodes. On the right side the figure shows the new
sub-graph that results after ANS corrects a variable node, thus removing it from
the sub-graph. Shaded nodes represent the check node that is updated and the
variable node that is corrected.

value before the sub-graph can shrink further.

We corroborated this analysis by studying the behavior of the decoders for the

noise realizations that the LBP decoder of the 802.11n rate-1/2 code could not

solve for 200 iterations and that ANS solved in a very small number of iterations

(less than 10). We found that a large majority of the LBP errors in these cases are

caused by trapping sets that ANS solved in the manner mentioned above. Also,

Fig. 2.5 shows the performance of the blocklength-2640 Margulis code, proposed

in [51], using flooding, LBP and ANS. The FER of the blocklength-2640 Margulis

code at high SNRs has been shown to be dominated by trapping-set errors in [49]

and [50]. The ANS performance improvement for the Margulis code with respect

to both flooding and LBP confirms that ANS can correct trapping-set errors that

traditional scheduling strategies cannot.
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Figure 2.5: AWGN performance of the blocklength-2640 Margulis code decoded
by 3 different scheduling strategies: flooding, LBP and ANS. A maximum of 50
iterations was used.
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2.2 ANS decoding of short-blocklength LDPC

codes

2.2.1 Shortcomings of ANS Decoding

ANS decoding, while better than traditional scheduling because it solves trapping

sets, presents other types of errors that don’t occur with LBP and flooding. They

can be categorized into two classes: non-ML undetected errors and myopic errors.

We define non-ML undetected errors as undetected errors where the squared

Euclidian distance between the decoded codeword and the received signal is larger

than the squared Euclidian distance between the transmitted codeword and the

received signal. This means that an ML decoder wouldn’t make this mistake. Given

its greedy nature, ANS makes more non-ML undetected errors than traditional

scheduling strategies.

If there is a received signal that is near the border between two decoding regions

(Voronoi regions), the initial BP iterations can take the decoder in any direction.

ANS is more likely to make non-ML undetected errors than flooding or LBP be-

cause it can update only a part of the graph. This locally optimum approach is

more likely to go in the wrong direction than the more global approaches of LBP

and flooding. The probability that ANS makes a non-ML undetected error de-

creases as the received signal is farther from the border. Short-blocklength codes

have a minimum Hamming distance small enough that the probability of receiving

a signal near the border of two decoding regions is comparable to the probability

of loopy-BP errors in high SNR regimes. Thus, the negative effect of this behavior

is more noticeable in the decoding of short-blocklength LDPC codes.

Myopic decoding errors, the second class of errors that results from the greed-

iness of ANS, happen when the decoder focuses on a small number of check nodes

while there are many other bits in error to solve in a different part of the graph.

Myopic errors become significant when the graph has length-4 cycles. If ANS up-

dates one of the check nodes in a length-4 cycle sub-graph, it is likely that the next

check node to be chosen is the other one in the cycle given that it receives two up-
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dated messages. Thus, if the code has graph structures that contain many length-4

cycles, it is likely for ANS to become stuck repeatedly updating the same small

number of check nodes even if there are errors on other parts of the code. Simu-

lations show that myopic errors are only significant for codes that present densely

connected sub-graphs such as randomly constructed short-blocklength codes that

allow length-4 cycles.

2.2.2 IDS Strategies for Short-Blocklength LDPC Codes

We propose mixed strategies that combine LBP and ANS iterations in order to

correct trapping-set errors and avoid the greedy ANS errors. The decoder starts

by performing LBP iterations and switches to ANS iterations. Fixed LBP/ANS

(F-LBP/ANS) first does a pre-determined number of LBP iterations ξ and then

switches to ANS.

Given that one of the main advantages of ANS is the fact that it solves trapping

sets, we propose another mixed strategy that we call Adaptive LBP/ANS (A-

LBP/ANS). In A-LBP/ANS the decoder switches from LBP to ANS when the

number of unsatisfied check nodes is below a certain value ζ. This makes sense

given that the dominant trapping sets are those that have a small number of

unsatisfied check nodes [50]. Thus, LBP will decode until it hits a trapping set

with a small number of unsatisfied check nodes where ANS, better equipped to

solve trapping sets, takes over. Since an ANS iteration is more complex than

an LBP iteration, these lower-complexity mixed strategies are also attractive for

larger-blocklength codes because of their close error-rate performance to ANS. The

optimal values of ξ and ζ can be found through Monte-Carlo simulations.

Table 2.1 shows the FER and Undetected FER (UFER) of 5 different rate-1/2

LDPC codes decoded using 5 different scheduling strategies. All the codes have

blocklength 648, have the same variable-node degree distribution and a concen-

trated check-node degree distribution. The UFER is defined as the total number

of frames with undetected errors divided by the total number of frames simulated.

The FER takes into account both the detected and undetected errors. The simu-
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Table 2.1: FER and UFER of 5 different LDPC codes decoded by 5 different
scheduling strategies: flooding, LBP, ANS, F-LBP/ANS with ξ = 35 and A-
LBP/ANS with ζ = 5. The channel used is AWGN with Eb/No = 3 dB.

Flooding LBP ANS F-LBP/ANS A-LBP/ANS
FER UFER FER UFER FER UFER FER UFER FER UFER

A 4.2e-5 1.1e-6 1.7e-5 1.0e-6 5.8e-5 3.5e-6 3.9e-6 1.3e-6 3.9e-6 2.0e-6
B 1.6e-4 3.2e-6 1.1e-4 2.2e-6 3.4e-5 2.9e-5 2.0e-5 4.7e-6 1.5e-5 1.0e-5
C 3.4e-5 1.1e-6 1.6e-5 1.1e-6 5.1e-6 4.6e-6 3.0e-6 1.2e-6 2.6e-6 1.6e-6
D 4.4e-5 4.4e-6 3.0e-5 5.3e-6 1.9e-5 1.8e-5 1.2e-5 7.5e-6 1.1e-5 9.2e-6
E 2.2e-5 8.9e-7 6.5e-6 2.0e-6 5.8e-6 5.3e-6 3.3e-6 2.4e-6 4.2e-6 3.4e-6

lations correspond to an AWGN channel with Eb/No = 3 dB and a maximum of

50 iterations.

Code A is a random code constructed using the ACE and SCC graph constraint

algorithms proposed in [41] and [42] respectively. These algorithms were designed

to avoid the presence of small stopping sets. However, this code allows the presence

of length-4 cycles. Code B was randomly constructed avoiding length-4 cycles.

The ACE and the SCC algorithms were used to construct code C and length-4

cycles were avoided. Code D was randomly constructed using the PEG algorithms

presented in and [40]. The PEG algorithm is design to locally maximize the girth

of the graph as the matrix generation process goes on. This code has a girth of

6 so it doesn’t have any length-4 cycles either. Finally, code E is an LDPC code

selected for the IEEE 802.11n standard [48].

Let us analyze the performance of the traditional scheduling strategies: flooding

and LBP. We corroborated experimentally that the detected errors, which are the

difference between their FER and UFER values, are mostly trapping-set errors.

Also, as expected, LBP performs better than flooding.

ANS outperforms LBP for all the codes except for code A. This is the only

code in the group that has length-4 cycles and we experimentally corroborated

that myopic errors described in Section 2.2 dominate the performance of this code

at this SNR. As further proof, code C was designed to keep the same ACE and

SCC graph constraints as code A while avoiding length-4 cycles. Code C doesn’t
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incur in any ANS myopic errors. This shows that myopic errors dominate the error

performance when the graph has several length-4 cycles. Furthermore, we see that

the ANS UFERs are larger than their corresponding UFERs for flooding and LBP.

This is due to an increase in the number of non-ML undetected errors as explained

in Section 2.2. Table 2.1 clearly shows that the ANS FER performance of the last

four codes is clearly dominated by the undetected errors given that the FER and

UFER values are very close to each other.

Table 2.1 also shows the results of the mixed scheduling strategies. The fourth

column shows the FER and UFER of F-LBP/ANS with ξ = 35. Hence, the decoder

starts by performing 35 LBP iterations and finishes with 15 ANS iterations. The

fifth column shows the FER and UFER of A-LBP/ANS with ζ = 5. Hence, the

decoder starts by performing LBP iterations until the number of unsatisfied check

nodes is less than or equal to 5. The values of ξ and ζ were not optimized. Both

mixed strategies correct the ANS myopic errors of code A and also have a lower

UFER than ANS in all the codes.

Fig. 2.6 shows the performance of code A as the number of iterations increases.

In the first iterations ANS presents good performance. However, it presents an error

floor at 6×10−5. As mentioned before, a careful analysis of these errors showed that

they were myopic errors due to the presence of length-4 cycles. No ANS myopic

errors were observed for codes that don’t have length-4 cycles. Furthermore, Fig.

2.6 shows that both mixed strategies perform very well when compared to LBP

and flooding.

Fig. 2.7 shows the FER and UFER of code C for a maximum number of iter-

ations equal to 50. The FERs of the three IDS strategies closely approach their

respective UFERs for a high SNR. Also, while ANS presents a larger UFER than

LBP and flooding at 3 dB, the mixed strategies’ UFERs are as low as those of

LBP and flooding. This shows that the mixed strategies provide a good combi-

nation of harvesting the trapping-set correction capability of ANS while avoiding

many of the errors generated by ANS’s greediness. Mixed strategies are also less

computationally demanding than pure ANS.
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Figure 2.6: AWGN Performance of code A vs. number of iterations for a fixed
Eb/No = 3 dB. Results of 5 different scheduling strategies are presented: flooding,
LBP, ANS, F-LBP/ANS with ξ = 35 and A-LBP/ANS with ζ = 5.
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Figure 2.7: AWGN performance of code C decoded by 5 different scheduling strate-
gies: flooding, LBP, ANS, F-LBP/ANS with ξ = 35 and A-LBP/ANS with ζ = 5.
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2.3 Implementation strategies for IDS

2.3.1 Lower-Complexity ANS (LC-ANS)

As mentioned in Section 2.1, ANS selects the check node to be updated based

on a metric αc, which is the largest approximate residual of the check-to-variable

messages that are generated in the check node. Thus, in order to generate αci
we

must compute the approximate residuals of all the check-to-variable messages of

check node ci and find the largest one.

In order to reduce these computations we propose to infer which edges are

more likely to have the larger residuals of each check node based on the following

considerations. The largest αci
metric corresponds to the largest residual of all the

check-to-variable messages in the graph. It is likely that the largest residual in the

graph corresponds to a check-to-variable message that has a different sign before

and after the update. It is also likely that among the check-to-variable messages

that change their sign after the update, the largest residual corresponds to the

message that has the largest reliability after the update.

Lower-Complexity ANS (LC-ANS) selects the check node to be updated based

on a simplified check-node metric αLC
c that focuses on the messages with the largest

reliability after the update. The check-to-variable messages, generated in the same

check node, with larger reliability correspond to the edges that have the variable-

to-check messages with the smaller reliability. We define αLC
c as the sum of the two

residuals that correspond to the edges that have the two variable-to-check messages

with the smallest reliability. Given that we use min-sum to compute the residuals,

the two variable-to-check messages with the smallest reliability are known. Thus,

in order to generate αLC
ci

, only two residuals are computed and then summed which

is significantly less complex than generating αci
.

2.3.2 Parallel Decoding

The possibility of having several processors computing messages at the same time

during the LDPC decoding has become an intense area of research and an impor-
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tant reason why LDPC codes are so successful. Furthermore, codes with a specific

structure have been shown to allow LBP decoding while maintaining the same par-

allelism degree obtained for flooding decoding [24]. In principle, the idea of having

an ordered sequence of updates, that uses the most recent information as much

as possible, isn’t compatible with the idea of simultaneously computing messages.

However, it is likely that one of the incoming variable-to-check messages to the

check-nodes with the largest residuals changes in the previous update. Hence, it

is possible that several parallel processors can work on different parts of the graph

that haven’t converged yet while still using the most recent information.

We propose Parallel-ANS (P-ANS) as an IDS strategy that is very similar to

ANS where instead of updating only one check-node, the one with the largest αci

metric, the p nodes that have the largest αci
metrics are updated simultaneously.

These p check nodes are not designed to work in parallel, unlike the p check-nodes

of a p× p sub-matrix as defined in [24].

However, parallel processing may be implemented extending the hardware solu-

tions presented in [52]. For instance, if one or more check-nodes have one or more

variable nodes in common, they will all use the same previous information and

compute the incremental variations that are afterwards combined in the variable-

node update. There are hardware issues, such as memory clashes, that still need

to be carefully addressed when implementing P-ANS.

Fig. 2.8 shows the FER of another blocklength-1944 LDPC code decoded using

6 different scheduling strategies: flooding, LBP, ANS, P-ANS with p = 81, LC-ANS

and A-LBP/ANS with ζ = 5. The code was designed to have no length-4 cycles and

the maximum number of iterations was set to 50. Both LC-ANS and A-LBP/ANS

perform closely to ANS while requiring a lower complexity. Furthermore, Fig. 2.9

shows that the performance of LC-ANS is close to the performance of ANS for all

iterations. Also, both figures show that P-ANS performs very close to ANS across

all SNRs and all iterations.

Finally, Fig. 2.8 shows that the performance improvement of IDS strategies

increases as the SNR increases. This is explained by the fact that as the SNR

increases, trapping-set errors become dominant. This suggests that IDS strategies
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Figure 2.8: AWGN performance of a blocklength-1944 LDPC code decoded by
6 different scheduling strategies: flooding, LBP, ANS, A-LBP/ANS with ζ = 5,
LC-ANS and P-ANS.
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Figure 2.9: AWGN Performance of a blocklength-1944 LDPC code vs. number of
iterations for a fixed Eb/No = 2 dB. Results of 5 different scheduling strategies:
flooding, LBP, ANS, A-LBP/ANS with ζ = 5, LC-ANS and P-ANS.
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can significantly improve the error-floor of LDPC codes.

2.4 Conclusions

While maintaining the same message-generation functions as well as the same total

number of messages propagated in the graph, IDS can improve the performance of

BP LDPC decoding.

RBP and its simplification ARBP are appropriate for applications that have a

high target error-rate, given that RBP achieves these error-rates using significantly

fewer iterations than LBP. They are also appropriate for high-speed applications

that only allow a small number of iterations. However, for applications that require

lower error rates and allow a large number of decoding iterations RBP and ARBP

aren’t appropriate.

For such applications NS and its simplification ANS perform better than LBP

for any target error-rate and any number of iterations. Both strategies achieve

lower error-rates by overcoming trapping-set errors that LBP cannot solve.

However, for short-blocklength codes there is an increase in the number of

non-ML undetected errors that significantly affects the performance of ANS in

high-SNR regimes. Also, for codes that have length-4 cycles ANS makes myopic

errors that can dominate the performance of the codes.

Mixing LBP and ANS iterations can solve trapping set errors without incurring

in the previously mentioned ANS greedy errors. We show experimentally that these

strategies perform very well for 5 different short-blocklength codes. Furthermore,

mixed strategies have a lower complexity than ANS since an LBP iteration is

simpler than an ANS iteration. Also, we propose LC-ANS as another IDS strategy

that performs as well as ANS while having a lower complexity.

Finally, a parallel implementation of ANS (P-ANS) was shown to perform

nearly as well as ANS, making this IDS very attractive for practical implemen-

tations.

The improvement in performance of IDS strategies was also shown for a variety

of codes with different blocklengths and rates. However, these improvements come
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at the cost of an increase in complexity per iteration due to the computations

needed to select the next update.
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Chapter 3

Row-Combining Codes

Practical communication systems often need to operate at several different

rates. To keep the implementation as simple as possible, the same basic hard-

ware architecture should be able to decode the encoded data at all possible rates.

One way to achieve this with Low-Density Parity-Check (LDPC) codes is to gen-

erate higher-rate codes by puncturing lower-rate codes, as proposed in [53], [54]

and [55]. However, puncturing reduces the code blocklength, which degrades per-

formance. For the highest-rate codes, where the puncturing is most severe, the

performance degradation is significant when compared to an LDPC code with the

original blocklength.

Another way to achieve this is to generate lower-rate codes by shortening higher-

rate codes, as described in [54]. As with puncturing, shortening reduces the code

blocklength, which degrades performance. For the lowest-rate codes where the

shortening is most severe, the performance degradation is significant when com-

pared to an LDPC code with the original blocklength.

This chapter presents a code structure that supports a wide range of rates while

maintaining a constant code blocklength. The basic idea is to generate higher rate

codes (called effective codes in this dissertation) from a low-rate code (called the

mother code in this dissertation) by reducing the number of rows in its parity check

matrix. From an implementation point of view, rows in the parity-check matrix

correspond to check nodes. We propose to reduce the number of rows by linearly
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combining the mother code rows, which is equivalent to replacing a group of check

nodes with a single check node that sums all the edges coming into each of the

original check nodes. This is also equivalent to the code that results by connecting

the check nodes of the mother code through a new check node, as seen in Fig.

3.1. These equivalences hold as long as the combined check nodes do not have any

variable-node neighbors in common.

Rate 3/4Rate 1/2

Figure 3.1: Graph of a rate-3/4 LDPC code obtained from a rate-1/2 LDPC code
via row combining.

Multiple-rate codes can be designed by generating effective codes solely by

combining rows as discussed above, and in this work these codes are called Strict

Row-Combining (SRC) codes. A performance improvement can be obtained by

adding a few edges and deleting a few other edges in the graph as the rows are

combined. This allows the code to have good variable-node degree distributions

at each rate. In this work these codes will be called Row Combining with Edge

Variation (RCEV) codes. Both approaches will be presented in the following sub-

sections.
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Section 3.1 describes the row-combining approach in detail. Section 3.2 explains

how row combining helps to simplify decoder architectures and consequently to

reduce chip area. Section 3.3 describes how to lower the complexity of the encoder

and decoder of row-combining codes. A design method for SRC codes is proposed

in Section 3.4. Section 3.5 describes the RCEV code design approach that results

in an improvement in performance by relaxing some constraints imposed in the

SRC design. Section 3.6 compares the performance of SRC, RCEV, single-rate

stand-alone codes, and punctured codes. Section 3.7 delivers the conclusions of

this chapter.

3.1 Row-Combining Codes

Consider the example mother LDPC matrix in (3.1),

H 1
2

=




1 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0 0 1 1




. (3.1)

This is a rate-1/2 mother LDPC matrix with blocklength 12 whose graph repre-

sentation can be seen in Fig. 3.1. This is by no means a good LDPC code but the

reader should see it as an example to explain row combining. Fig. 3.1 also shows

that replacing each pair of nodes with a new single node transforms this rate-1/2

code into a rate-3/4 code. This is equivalent to summing the rows of the mother

LDPC matrix that correspond to the check nodes that are combined, since the

check nodes in the example do not have any common neighbors. In general, the

mother matrix should be designed so that the rows that will be combined don’t

have ones in the same column.

Eq. (3.2) gives the effective rate-3/4 LDPC matrix that results from the row
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combining described in Fig. 3.1, where combining rows 1 and 4 of the mother

matrix produces row 1 of the effective matrix, combining rows 2 and 5 of the

mother matrix produces row 2 of the effective matrix, and combining rows 3 and

6 of the mother matrix produces row 3 of the effective matrix,

H 3
4

=




1 1 1 0 0 0 1 1 1 0 0 0

1 0 0 1 1 0 0 0 1 1 1 0

0 0 1 0 1 1 1 0 0 0 1 1


 . (3.2)

It is easy to see that many different rates can be obtained from the same mother

code by changing the way rows are combined. For example using the mother code

described in (3.1), combining three rows at a time generates the rate-5/6 LDPC

matrix shown in (3.3). In this rate-5/6 matrix the first row results from combining

the odd rows of the mother matrix and the second row results from combining the

even rows of the mother matrix,

H 5
6

=

(
1 1 1 0 1 1 1 0 1 1 1 0

1 0 1 1 1 0 1 1 1 0 1 1

)
. (3.3)

In general, row combining changes the rate without changing the blocklength

or the basic architecture of the decoder.

3.2 Impact of Row Combining on the Hardware

Architecture

The main goal of row-combining is to simplify the support of multiple rates. In

general, row-combining won’t lead to a faster decoder for any particular rate but

provides a simple overall architecture with a smaller chip area required to support

all the needed rates. Here are a couple of examples of how decoder simplification

might be accomplished in the case of digital decoders.

If the message passing is done through a memory, there is a list of memory

44



addresses that tell the processor which variable-to-check messages to compute in

order to compute a check-to-variable message. With row-combining, changing the

rate of the code can be achieved by replacing the lists for the combined check nodes

with a single list that is the union of those lists, thus changing only the quantity of

messages read. This is a simple change that can be done on the fly with a careful

implementation.

Another possible hardware implementation can be developed using the fact

that the code produced by row combining is equivalent to the code that results

from connecting the check nodes through another check node as shown in Fig.

3.1. An efficient hardware implementation would decode the higher rate code by

performing the extra-message generation on top of the message computing done

for the low rate codes, thus maintaining the basic hardware architecture. This idea

was used in [33], where an architecture that exploits our row-combining structure

was implemented. These examples, while not exhaustive, capture the essence of

the simplification facilitated by row combining.

On top of these simplified multiple-rate decoders, the fact that the codes are

designed such that the check nodes that will be combined don’t have any neigh-

bors in common guarantees some degree of parallelism. Check nodes that will be

combined can be processed in parallel because they will never try to access the

information of the same variable node. There are, of course, many ways to achieve

parallelism. Our point here is that row combining is completely compatible with

LDPC codes that support highly parallel decoding architectures.

Also, row-combining codes allow programmable analog decoders. An analog

decoder that works for all the rates would consist of the circuit that decodes the

mother code, with switches that turn on and off the connections to the new check

nodes that increase the rate of the code. These connections are shown in Fig. 3.1

with dashed lines.
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3.3 Structured Row-Combining Codes

The challenge presented when trying to design a structured row-combining code

is that the mother code (denoted by M) and all the effective codes (denoted by

E) must have both the sub-matrix structure (for parallel decoding) and a lower

triangular structure (for low-complexity encoding).

There is an easy way to maintain the sub-matrix structure for all the effective

codes. Instead of combining individual rows, rows of sub-matrices will be combined

so that if sub-matrix A and sub-matrix B are combined it implies that row i of A

and row i of B will be combined for i = {1, ..., p}. The resulting sub-matrix will

be equivalent to the superposition of sub-matrix A and sub-matrix B.

If the exact sub-matrix structure of [30] is to be maintained for all the effective

codes, the mother code and all effective codes have to be designed so that among the

combined sub-matrices at most only one is non-zero (and has the Si structure).

However, if the sub-matrix that results from the superposition of two or more

non-zero Si sub-matrices also has good parallel properties (which depends on the

hardware architecture of the decoder), this design criteria can be relaxed to include

such superpositions.

Furthermore, it’s desirable that the square H2 sub-matrices of both the mother

code and all effective codes have a lower triangular structure that would allow

back-substitution encoding. This is achieved by imposing a constraint in selection

of the rows to be combined, assuming that the H2 sub-matrix of the mother code

is lower triangular. Let us assume that row-combining generates an effective code

Ei that has ri check-nodes. As long as the bottom ri rows of the mother code

remain in their pre-row-combining relative positions and are not combined among

themselves, the square H2 sub-matrix (with size ri) of the effective code Ei is

lower triangular. The examples presented in Section 3.1 satisfy this condition.

The size-6 square H2 sub-matrix of the rate-1/2 mother LDPC matrix shown in

(refeq:h12) is lower triangular. The effective rate-3/4 code has ri = 3 check-nodes

and the combining is performed so that the bottom 3 rows are not combined among

themselves and remain in their pre-row-combining relative positions. It can be seen

46



in (3.2) that the size-3 square H2 sub-matrix of the effective rate-3/4 code is also

lower triangular.

One way to combine the sub-matrix structure with the lower triangular struc-

ture of H2 is to make H2 block lower triangular. This implies that the sub-matrices

along the diagonal of H2 will have the Si structure and all the sub-matrices that

are above this diagonal will be zero sub-matrices. The problem with this structure

is that the rightmost p columns (where p is the size of the sub-matrices) will be

degree-one columns which will negatively affect the performance of the codes. One

possible solution of the problem is to make the bottom right matrix have the bi-

diagonal structure described in (3.4). This structure allows back-substitution and

only 1 column will have degree 1,

Ss =




1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1




. (3.4)

Another solution can be seen in Fig. 3.2 which shows a LDPC structure that al-

lows both parallel decoding and low-complexity encoding. In this structure the four

bottom right matrices are carefully designed such that they allow back-substitution

encoding. For the Si sub-matrices with subscripts i = a, b, c, d, the subscripts (num-

ber of columns shifted) must satisfy (a− c + d− b) mod p = 1. The sub-matrix

labelled S ′b is an Si sub-matrix with the first row set to all zeros. This structure

guarantees that the last 2p parity bits can be generated by solving one parity check

equation with one unknown bit, thus allowing back substitution. In this structure

only 1 column has degree 1.

3.4 Design of Structured SRC Codes

This section proposes a design method for structured row-combining codes given

the blocklength of the code, the mother and effective rates and the sub-block size

p. Since only row combining is allowed to generate the high-rate matrices, these
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codes are called Strict Row-Combining (SRC) codes.

The first step is the selection of both the variable-node degree distribution and

the check-node degree distribution. As seen in Fig. 3.1, the number of neighbors

of the variable nodes remains the same as the rate changes, thus the variable-

node degree distribution will also remain unchanged. This implies that this degree

distribution cannot be optimized for the different rates of the code, so a degree

distribution that’s optimized for the highest-rate code is chosen. This is due to the

fact that row-combining imposes some specific constraints on the variable-node

degree distribution of the lower-rate codes, which will be explained in detail in

Section 3.5.

A concentrated degree distribution is a degree distribution in which every node

has the same degree or all the degrees are within one of each other. Concentrated

check-node degree distributions tend to approximate theoretical optimality [39].

Therefore, the check node degree distribution of the mother and effective codes

should be concentrated, if possible.

The check-node degree distributions depend on the selection of the rows to be

combined. This selection is the next step in the proposed design of SRC codes.

Since the check-node degree distribution of the mother code is concentrated, then

the check node degree distribution for the higher-rate effective code will also be

concentrated if all the rows in the effective LDPC matrix result from combining
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the same number of rows of the mother LDPC matrix. It is also necessary that

the row combining maintains the structure of the codes presented in Section 3.3.

There is a simple way to achieve this if the desired rates have the (a − 1)/a

form. The mother code is set to have a square matrix with a concentrated check

node degree distribution. Such a mother code has rate 0 and is used only to

generate effective codes; it is not a useful stand alone code. Combining a rows (or

rows of sub-matrices in the case of structured codes) at a time, generates a code

with rate (a − 1)/a as long as the total number of rows of the mother matrix is

a multiple of a. This effective code will have a concentrated check node degree

distribution. This shows that SRC codes can maintain a concentrated check node

degree distribution among all its rates if they all are in the (a− 1)/a form. Rates

of this form comprise a useful set of rates. In standards such as IEEE 802.11n, all

LDPC code rates have this form. Furthermore, puncturing and/or shortening can

be used with row combining in order to support more rates. As long as the number

of punctured and/or shortened bits is small, the effective blocklength of the code

is not significantly diminished.

Given that two check nodes that will be combined cannot have any common

neighbors, row combining introduces some constraints in the construction of the

LDPC matrices. These constraints may limit the degrees of freedom of the LDPC

design, especially in the case of structured LDPC codes where two sub-matrices

that will be combined can’t be both non-zero. In order to minimize this problem,

the overall number of row combinations across all rates must be as low as possi-

ble. This can be achieved by first choosing the row combining that generates the

highest-rate code. Once this is done, the row-combining that generates the second

highest rate-code is chosen using as many row combinations from the highest rate-

code as possible. If all the row-combining strategies are chosen this way the overall

number of combinations will be minimized. This minimization of the number of

combinations is also beneficial from an implementation point of view.

The remaining issue is to assign the positions and right cyclic shifts of the non-

zero sub-matrices in the mother code. It is well known that the performance of the

LDPC codes is limited by the fact that their graphs contain cycles which compro-
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mise the optimality of the belief propagation decoding. These cycles generate error

floors in the performance of LDPC codes in the high SNR regions. However, the

negative effect of the cycles can be reduced using graph-conditioning techniques

such as those described in [41] and [42]. So the last step in the design will be to

use the ideas described in these works, adapting them to work on structured SRC

codes.

As explained in [41] not all cycles degrade the performance of the code in the

same way. Among the most dangerous structures that can be found in LDPC

bi-partite graphs are stopping sets. A stopping set is a variable node set where all

its neighbors are connected to the set at least twice. This implies that if all the

variable nodes that belong to a stopping set are unreliable, the decoding will fail.

Small stopping sets must be avoided. This is a complex problem to attack

directly. To indirectly increase the size of stopping sets, [41] proposes the ACE

algorithm, which is based on maximizing the ACE metric of small cycles. The

ACE metric of a cycle is the sum of the number of neighbors of each of the variable

nodes in the cycle minus two times the number of variable nodes in the cycle.

According to this algorithm, the LDPC matrix is constructed by generating

a single column randomly until one is found where all the cycles of length less

than or equal to a previously specified threshold (denoted as 2dACE) that contain

its corresponding variable node have an ACE metric higher than or equal to an-

other previously specified threshold (denoted as ηACE). This process sequentially

produces all the columns starting from the one with the lowest degree.

The constraints specified in [42] also help to avoid small stopping sets in the

graph, particularly if applied to the high-degree columns. In [42] two new metrics

are defined called βc and βp and they are the number check nodes connected only

once to a cycle or a path respectively. In the same manner as the ACE algorithm,

random columns are generated and they must satisfy some constraints based on

previously specified thresholds which are denoted here as dSS, γc and γp. Specif-

ically, a randomly generated column is valid if all the cycles of length less than

or equal to 2dSS that contain its corresponding variable node have a βc metric of

value higher than or equal to γc and if all the paths of length less than or equal to
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dSS that contain its corresponding variable node have a βp metric of value higher

than or equal to γp.

The generation of the mother and effective matrices is done using simulta-

neous graph conditioning. This means that the previously described column by

column generation is still used and every column generated must satisfy the graph

constraints specified for the mother code and all the effective codes. Different

graph constraints can be used for different matrices, which is necessary because

the achievable values of these constraints change with the rate as shown in [56].

In the case of structured SRC codes, instead of a column by column generation,

all the columns that correspond to the same sub-matrices will be generated at the

same time.

The design procedure of structured SRC codes is shown in Algorithm 4 where Vj

denotes a set of variable nodes that belong to a sub-matrix, V M
j denotes a column

of sub-matrices in the mother code M and V Ei
j denotes a column of sub-matrices

in the effective code Ei. Algorithm 4 may not converge because the conditions

are too restrictive. In that case, we can relax the graph-constraints by lowering

the values of dACE, ηACE, dSS, γc, and/or γp. However, even if there aren’t any

graph-constraints, Algorithm 4 may not converge because there may be too many

effective rates that impose too many constraints thus the number of effective-rates

must be lowered.

3.5 Row Combining with Edge Variation (RCEV)

Codes

The main disadvantage with SRC codes is that the mother code and all of the effec-

tive codes of an SRC code have the same variable-node degree distribution. With

strict row combining, edges are neither created nor deleted. This is problematic

since in principle different rates require different variable-node degree distributions

for theoretical optimality, as stated in [39]. Row combining with edge variation

(RCEV) codes allow the addition and deletion of edges as rows are combined so
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Algorithm 4 SRC code design

Choose rates, blocklength (n) and sub-matrix size (p)
Choose variable node degree distributions
Choose rows of sub-matrices to be combined in order to generate the higher-rate
codes
for all columns of sub-matrices Vj do

Randomly generate V M
j according to the degree distribution selected in 2

if V M
j doesn’t satisfy the graph constraints set for M then

Discard Vj and go to line 5
end if
for all effective codes Ei do

Compute V Ei
j according to the row combinations selected in 3

if two non-zero sub-matrices are combined then
Discard Vj and go to line 5

end if
if V Ei

j doesn’t satisfy the graph constraints set for Ei then
Discard Vj and go to line 5

end if
end for

end for

the degree-distributions can be different for different rates. The key to maintaining

a simplified decoder architecture is to make the number of additions and deletions

small compared to the total number of edges in the graph.

One of the most critical differences in the optimal variable-node degree distri-

bution for different rates, is the number of degree-two variable nodes. In order to

have good error floor properties the number of degree-two variable nodes cannot

exceed the number of check nodes as shown in [56]. Having more degree-two nodes

than check nodes implies that there will be cycles composed by only degree-two

nodes and check-nodes. These cycles are stopping sets and have been shown to

degrade the performance of the codes [41]. These cycles will grow smaller and

more numerous as the number of degree-two nodes increases, further worsening

the performance of the codes.

As a result, the maximum number of degree-two variable nodes for a family

of SRC codes is given by the number of check nodes of the highest-rate effective

code. This limits the performance of the lower rate codes since their optimal
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degree-distribution generally requires a significantly larger number of degree-two

variable nodes [39]. The difference in the distributions depends on the rates of both

the mother code and all the effective codes. The loss in performance due to this

limitation increases as the range of possible rates of the SRC codes grows larger.

In order to avoid this problem in RCEV codes, the number of degree-two vari-

able nodes in the mother code is set to be the optimal for the lowest-rate code.

For high-rate effective codes, edges are added to some degree-two variable nodes so

that the maximum number of degree-two nodes is less than or equal to the number

of check nodes in the graph. Therefore, when generating the effective code Ei,

there is a set of degree-two variable nodes (SEi) that have degree 3 in the code Ei.

This, unfortunately, is not the only problem generated by the common degree-

distribution. Layered Belief Propagation (LBP), a decoding method that improves

the convergence speed and allows a low complexity hardware architecture, was

introduced in [24] and [26]. LBP decoding requires the parity-check matrix to be

divided into sub-matrices that can have at most one “1” per column and one “1”

per row. Thus, in order to generate an LDPC code that can be decoded with LBP,

the maximum variable-node degree is the number of sub-matrices in a column,

which is the number check nodes divided by the size of the sub-matrices. For

SRC codes that support LBP, the maximum variable-node degree must be the

same for all rates, and it is given by the number of check nodes of the highest

rate code divided by the size of the sub-matrices. As stated in [39], increasing

the maximum variable-node degree results in a better code. The SRC common

degree-distribution imposes a strict limit on the maximum variable-node degree,

and thus a performance limit when LBP decoding is used.

The technique used in RCEV codes to avoid this problem is the following. If

during the row combining, a non-zero sub-matrix is added to another non-zero

sub-matrix, one of them is discarded in order maintain the structure mentioned

before. This allows RCEV codes to have different maximum variable-node degrees

for different rates which will improve the performance of the lower rate codes.

RCEV codes are designed using the steps for SRC codes given in Section 3.4,

along with the edge variation techniques described in this section as shown in
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Algorithm 5.

Algorithm 5 RCEV code design

1: Choose rates, blocklength (n) and sub-matrix size (p)
2: Choose variable node degree distributions
3: Choose the variable-node sets SCi

4: Choose rows of sub-matrices to be combined in order to generate the higher-
rate codes

5: for all columns of sub-matrices Vj do
6: Randomly generate V M

j according to the degree distribution of the lowest-
rate code

7: if V M
j doesn’t satisfy the graph constraints set for M then

8: Discard Vj and go to line 6
9: end if

10: for all effective codes Ei do
11: Compute V Ei

j according to the row combinations selected in 4
12: if two non-zero sub-matrices are combined then
13: if The degree of V M

j is less than maximum variable-node degree then
14: Discard Vj and go to line 6
15: else
16: Discard one of the non-zero sub-matrices
17: end if
18: end if
19: if V Ei

j doesn’t satisfy the graph constraints set for Ei then
20: Discard Vj and go to line 6
21: end if
22: if Vj ∈ SEi then
23: randomly add a non-zero sub-matrix to V Ei

j

24: end if
25: end for
26: end for

3.6 Performance Comparison

The following figures show the performance of row-combining codes, designed using

all the techniques presented above, on the AWGN channel with a flooding LDPC

decoder. Fig. 3.3 shows the performance of a structured SRC code family and the

corresponding four stand-alone codes selected for the IEEE 802.11n standard [48].
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Figure 3.3: Performance of structured SRC with p=27 and IEEE 802.11n codes
with blocklength 1944 on an AWGN channel. Maximum number of iterations equal
to 15.

The specifications of the structured SRC code family are the following. The mother

code has rate 0, while the four effective codes have rates 1/2, 2/3, 3/4, and 5/6.

The blocklength of the codes is 1944 bits, the size of the sub-matrices is 27x27,

a maximum of 15 iterations was used in the simulation. It has at most one “1”

per column and one “1” per row given and therefore allows the simplified decoder

proposed in [24].

Fig. 3.3 shows that the SRC codes perform very well under these conditions

(blocklength, sub-matrix size, and number of iterations). The sub-matrix size is

small enough to allow a sufficiently large maximum variable-node degree. The

effect of the non-optimality of the variable-node degree distribution for the rate-

1/2 code is small for 15 iterations. This is because for such a small number of

iterations performance is dominated by the high-degree variable nodes. Thus,

the lower-than-optimal number of degree-two nodes of the rate-1/2 code does not

dramatically affect performance. For fifty iterations, the rate-1/2 code performance
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Table 3.1: Variable-node degree distributions of structured SRC and RCEV codes.

SRC SRC RCEV RCEV RCEV RCEV
p=27 p=54 R=1/2 R=2/3 R=3/4 R=5/6

x λx x λx x λx x λx x λx x λx

1 .00014 1 .00014 1 .00014 1 .00015 1 .00014 1 .00015
2 .09496 2 .09496 2 .2554 2 .19021 2 .13308 2 .09971
3 .57151 3 .52389 3 .29327 3 .42863 3 .46673 3 .60009
7 .33338 6 .38101 10 .45119 8 .38101 9 .40005 6 .30005

is affected, as we’ll see shortly.

This comparison at 15 iterations is practically important since there are many

applications that only allow a small number of iterations of the decoder. For

example, in most wireless applications the channel decoding must be done in a very

small amount of time, which limits the maximum number of iterations allowed.

Fig. 3.4 presents another comparison of the performance of a structured SRC

code, the four stand-alone codes selected for the IEEE 802.11n standard, and a

structured RCEV code. The row-combining codes have a mother code with rate 0,

while the four effective codes have rates 1/2, 2/3, 3/4, and 5/6. The variable-node

degree distribution of both codes can be found in Table 3.1. The blocklength of

the codes is 1944 bits, the size of the sub-matrices of the row-combining codes is

54x54 and a maximum of 50 iterations was used in these simulations. SRC and

RCEV codes of the same rate have similar total number of edges. The maximum

difference, found in the rate-3/4 code, is a 7%.

As expected, Fig. 3.4 shows the loss in performance of the SRC low rate codes.

The SRC rate-1/2 code show a performance loss of more than 0.2 dB with respect

to the IEEE 802.11n codes with the same blocklength and this is due to their

inadequate variable-node degree distribution.

As observed in Fig. 3.4 the FER of the lower rates of the RCEV code are

significantly better than those of the lower rates of the SRC code. This gain

follows from the improved degree distributions of the RCEV codes over those of

the SRC codes. The magnitude of the difference between the degree distributions

of the rate-1/2 codes can be seen in Table 3.1. For the high rate codes there is very
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Figure 3.4: Performance of structured SRC with p=54, structured RCEV, and
IEEE 802.11n codes with blocklength 1944 on an AWGN channel. Maximum
number of iterations equal to 50.
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Table 3.2: Graph-conditioning constraints of structured SRC and RCEV codes.

Code SRC p=27 SRC p=54 RCEV
Rate 1/2 2/3 3/4 5/6 1/2 2/3 3/4 5/6 1/2 2/3 3/4 5/6
dACE 10 2 3 3 10 3 3 2 6 2 3 2
ηACE 3 4 3 3 3 3 3 4 3 4 3 4
dSS 4 4 4 4 4 4 4 4 4 4 4 4
γc 4 4 4 3 3 3 3 3 4 4 4 3
γp 4 4 4 3 3 3 3 3 4 4 4 3

little difference between the performances of the RCEV and SRC codes, since their

degree distributions are very similar. RCEV techniques allow the optimization of

the degree distributions for each rate.

Fig. 3.4 also shows that the RCEV codes perform close to the IEEE 802.11n

codes. As expected there is a small loss due to the fact that RCEV codes must

satisfy the row-combining constraints. This slightly reduces the degrees of freedom

during the design process, thus making the set of all the possible RCEV codes a

subset of all the possible stand-alone codes. Table 3.2 shows the graph-conditioning

constraints used to generate these row-combining codes.

As mentioned before, the row-combining codes presented in this section have a

rate-0 mother code. We previously designed codes that had a rate-1/2 mother code

with the same variable-node degree distribution [57]. This mother code forces the

effective rate-2/3 code to have a non-concentrated check-node degree distribution.

This translates into a 0.3 dB loss at a FER of 10−3 in the performance of the rate-

2/3 code when compared to the 802.11n rate 2/3 code. Having a rate-0 mother

code reduces the loss to 0.1 dB as shown in Fig. 3.3.

A comparison in the performance of RCEV codes and punctured LDPC codes is

shown in Fig. 3.5. The punctured codes correspond to the ones presented in [55].

The RCEV code was designed to have very similar degree distributions to the

punctured codes so that the comparison would be fair. The blocklength of the

mother code of the punctured codes is 1024 while the blocklength of the RCEV

codes is 1030. There is a clear performance gap between the higher rate codes.

This is due to the fact that puncturing reduces the effective blocklength of the
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Figure 3.5: Performance of RCEV codes and punctured LDPC codes.

code.

Sphere-packing bounds [58] give a lower bound on the SNR that can support

reliable communication as a function of blocklength. The gap between the sphere-

packing bounds of several rate-9/10 row-combining code and rate-9/10 punctured

codes with equal mother-code blocklength (based on the different blocklengths) can

be seen in Fig. 3.6. The loss in performance of the punctured codes decreases as the

mother-code blocklength increases. However, the theoretical gap at a blocklength

of 1030 is half of the performance gap shown in Fig. 3.5. That punctured codes

aren’t always the best codes for their effective blocklength may help to explain why

there is a bigger gap in the actual performance of the codes.

3.7 Conclusions

As we know from information theory, channel codes approach capacity-achieving

performance as blocklength goes to infinity. Both theory and practice confirm
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that codes with longer blocklengths perform better. Recently, puncturing and

shortening have been used to provide a variety of rates in the context of a single

decoder architecture, but these techniques shorten the code blocklength as rates

move away from the rate of the mother code.

Multiple-rate LDPC codes that avoid this blocklength reduction can be gener-

ated using a row-combining approach. Structures that reduce complexity of both

encoder and decoder can be applied and maintained through all the rates, and

graph conditioning algorithms can be applied to the design of the codes to produce

good error floor performances at all the rates.

Structured SRC codes allow the use of simple hardware architectures (or pro-

grammable analog-decoding circuits) that can be used to decode the mother and all

the effective rates. The design of these codes imposes some constraints that barely

affect the performance when the codes are used at a small number of iterations. As

the maximum number of iterations increases, the performance gap between SRC

codes and stand-alone codes also increases.

RCEV codes relax the constraints required for SRC codes, and show a gain in

performance with respect to SRC codes for a large number of iterations. This in-

crease in performance comes at a cost of architecture complexity. The performance

of RCEV codes is very close to the performance of stand-alone codes for a large

number of iterations.

These codes become attractive for applications that require both performance

close to capacity and a low decoder complexity due to the fact that RCEV codes

have still a strong inherent structure that can be exploited in the hardware de-

coder.
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Chapter 4

Conclusions

This dissertation presents novel techniques that can result in better LDPC de-

coders. On one hand, dynamic scheduling can improve the error-rate performance

of an LDPC decoder. A decoder able to implement IDS can outperform rival de-

coders working on the same standardized code. On the other hand, CBMR code

design leads to families of codes that can re-use the same decoding hardware thus

reducing the decoder complexity for multiple-rate systems.

There are still several challenges to be addressed. It was shown intuitively

and heuristically that IDS solves some trapping-set errors. The percentage of

solved trapping-set errors continues to be an open problem. Furthermore, trapping-

set errors were introduce to explain the error-floor behavior of LDPC codes, a

careful study of the IDS behavior in the error-floor region is needed. We proposed

parameterized Mixed-IDS strategies that could be carefully studied in order to

obtain optimal theoretical values of their parameters ζ and ξ.

A quantification of the advantages of both IDS and CBMR codes is needed.

The trade-off provided by IDS between increasing the per-iteration complexity and

reducing the number of iterations (while also reducing the FER for a large number

of iterations) requires further investigation in the context of specific implementa-

tions. Future work could compare the difference between the actual throughput,

area, and power consumption of different scheduling strategies. A specific challenge

in the implementation of IDS is to solve the memory clash problem present in P-
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ANS. The practical benefits of CBMR, in both digital and analog implementations,

should also be quantized.

The scheduling ideas presented in this work may be extended to other commu-

nication solutions that use iterative BP, such as turbo codes, turbo-equalization,

iterative demodulation and decoding of high-order constellations, among others.

The extensions of the IDS strategies may also prove beneficial for loopy-BP solu-

tions to problems outside the communications field.
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propagation and decoding in analog VLSI. In Proc. 1998 IEEE Int. Symp.

Inform. Th., page 146, Cambridge, MA, August 1998.

[36] F. Lustenberger. On the Design of Analog VLSI Iterative Decoders. PhD

thesis, Diss. ETH No 13879, November 2000.

[37] M. Yang, W. E. Ryan, and Y. Li. Design of Efficiently Encodable Moderate-

LengthHigh-Rate Irregular LDPC Codes. IEEE Trans. on Comm., 52(4):564–

571, April 2004.

[38] T. Richardson and R. Urbanke. Efficient encoding of low-density parity-check

codes. IEEE Trans. Inform. Theory, 47:638–656, February 2001.

67



[39] T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-

approaching irregular low-density parity-check codes. IEEE Trans. Inform.

Theory, 47:619–637, February 2001.

[40] Xiao Yu Hu, Evangelos Eleftherioua, and Dieter Michael Arnold. Progressive

edge-growth tanner graphs. In GLOBECOM, The Evolving Global Commu-

nications Network, pages 995–1001, San Antonio, Texas, November 2001.

[41] T. Tian, C. Jones, J. Villasenor, and R. Wesel. Avoidance of Cycles in Irregular

LDPCC Construction. In IEEE Transactions on Communications, August

2004.

[42] A. Ramamoorthy and R. D. Wesel. Construction of Short Block Length Ir-

regular LDPCCs. In Proc. IEEE ICC 2004, Paris, France, June 2004.

[43] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam. High Throughput Low-

Density Parity-Check Decoder Architectures. In Proc. 2001 Global Conference

on Communications, pages 3019–3024, San Antonio, TX, November 2001.

[44] F. Guilloud, E. Boutillon, J. Tousch, and J.L. Danger. Generic description

and synthesis of LDPC decoder. Accepted for publication, IEEE Transactions

On Communications.

[45] A. I. Vila Casado, M. Griot, and R. Wesel. Overcoming LDPC trapping sets

with informed scheduling. In Information Theory and Applications Workshop,

UCSD, San Diego, CA, January 2007.

[46] A. I. Vila Casado, M. Griot, and R. Wesel. Informed Dynamic Scheduling

for Belief-Propagation Decoding of LDPC Codes. In Proc. IEEE ICC 2007,

Glasgow, Scotland, June 2007.

[47] G. Elidan, I. McGraw, and D. Koller. Residual belief propagation: informed

scheduling for asynchronous message passing. In Proc. 22nd Conference on

Uncertainty in Artificial Intelligence, MIT, Cambridge, MA, July 2006.

68



[48] IEEE P802.11n/D1.05 October 2006, Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications - Enhancements for Higher

Throughput (Draft).

[49] D. MacKay and M. Postol. Weaknesses of margulis and ramanujan-margulis

low-density parity-check codes. Electronic Notes in Theoretical Computer Sci-

ence, 74, 2003.

[50] T. Richardson. Error floors of LDPC codes. In Proc. 41st Annual Allerton

Conf. on Comm., Monticello, IL, 2003.

[51] G. A. Margulis. Explicit constructions of graphs without short cycles and

low-density codes. Combinatorica 2, 1:71–78, 1982.

[52] M. Rovini, F. Rossi, P. Ciao, N. L’Insalata, and L. Fanucci. Layered Decoding

of Non-Layered LDPC Codes . In Proc. 9th EUROMICRO Conference on

Digital System Design, pages 537–544, August 2006.

[53] J.Ha and S.W. McLaughlin. Rate-Compatible Puncturing of Low-Density

Parity-Check Codes. IEEE Trans. on Inform. Theory, 50(11):2824–2836,

November 2004.

[54] T. Tian, C. Jones, and J. Villasenor. Rate-Compatible Low-Density Parity-

Check Codes. In Proc. IEEE ISIT 2004, Chicago, July 2004.

[55] J. Kim, A. Ramamoorthy, and S.W. McLaughlin. Design of Efficiently-

Encodable Rate-Compatible Irregular LDPC Codes. In Proc. IEEE ICC 2006,

Istanbul, Turkey, June 2006.

[56] W. Weng, A. Ramamoorthy, and R. Wesel. Lowering the error floors of irreg-

ular high-rate ldpc codes by graph conditioning. In Proc. VTC, Los Angeles,

California, September 2004.

[57] A. I. Vila Casado, W. Weng, and R. D. Wesel. Multiple Rate Low-Density

Parity-Check Codes with Constant Block Length. In Proc. Asilomar Conf. on

Signals, Systems and Computers, Pacific Grove, CA, November 2004.

69



[58] C. E. Shannon. Probability of error for optimal codes in a gaussian channel.

Bell System Technical Journal, 38:611–656, May 1959.

70


